lbcd/mempool/mempool_test.go
Olaoluwa Osuntokun ee5896bad5 mempool: add additional test case for inherited RBF replacement
In this commit, we add an additional test case for inherited RBF
replacement. This test case asserts that if a parent is marked as being
replaceable, but the child isn't, then the child can still be replaced
as according to BIP 125 it shoudl _inhreit_ the replaceability of its
parent.

The addition of this test case was prompted by the recently discovered
Bitcoin Core "CVE" [1]. It turns out that bitcoind doesn't properly
implement BIP 125. Namely it fails to allow a child to "inherit"
replaceability if its parent is also replaceable. Our implementation
makes this trait rather explicit due to its recursive implementation.
Kudos to the original implementer @wpaulino for getting this correct.

[1]: https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2021-May/018893.html.
2021-05-13 10:15:27 -04:00

1854 lines
59 KiB
Go

// Copyright (c) 2016 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package mempool
import (
"encoding/hex"
"reflect"
"strings"
"sync"
"testing"
"time"
"github.com/btcsuite/btcd/blockchain"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
)
// fakeChain is used by the pool harness to provide generated test utxos and
// a current faked chain height to the pool callbacks. This, in turn, allows
// transactions to appear as though they are spending completely valid utxos.
type fakeChain struct {
sync.RWMutex
utxos *blockchain.UtxoViewpoint
currentHeight int32
medianTimePast time.Time
}
// FetchUtxoView loads utxo details about the inputs referenced by the passed
// transaction from the point of view of the fake chain. It also attempts to
// fetch the utxos for the outputs of the transaction itself so the returned
// view can be examined for duplicate transactions.
//
// This function is safe for concurrent access however the returned view is NOT.
func (s *fakeChain) FetchUtxoView(tx *btcutil.Tx) (*blockchain.UtxoViewpoint, error) {
s.RLock()
defer s.RUnlock()
// All entries are cloned to ensure modifications to the returned view
// do not affect the fake chain's view.
// Add an entry for the tx itself to the new view.
viewpoint := blockchain.NewUtxoViewpoint()
prevOut := wire.OutPoint{Hash: *tx.Hash()}
for txOutIdx := range tx.MsgTx().TxOut {
prevOut.Index = uint32(txOutIdx)
entry := s.utxos.LookupEntry(prevOut)
viewpoint.Entries()[prevOut] = entry.Clone()
}
// Add entries for all of the inputs to the tx to the new view.
for _, txIn := range tx.MsgTx().TxIn {
entry := s.utxos.LookupEntry(txIn.PreviousOutPoint)
viewpoint.Entries()[txIn.PreviousOutPoint] = entry.Clone()
}
return viewpoint, nil
}
// BestHeight returns the current height associated with the fake chain
// instance.
func (s *fakeChain) BestHeight() int32 {
s.RLock()
height := s.currentHeight
s.RUnlock()
return height
}
// SetHeight sets the current height associated with the fake chain instance.
func (s *fakeChain) SetHeight(height int32) {
s.Lock()
s.currentHeight = height
s.Unlock()
}
// MedianTimePast returns the current median time past associated with the fake
// chain instance.
func (s *fakeChain) MedianTimePast() time.Time {
s.RLock()
mtp := s.medianTimePast
s.RUnlock()
return mtp
}
// SetMedianTimePast sets the current median time past associated with the fake
// chain instance.
func (s *fakeChain) SetMedianTimePast(mtp time.Time) {
s.Lock()
s.medianTimePast = mtp
s.Unlock()
}
// CalcSequenceLock returns the current sequence lock for the passed
// transaction associated with the fake chain instance.
func (s *fakeChain) CalcSequenceLock(tx *btcutil.Tx,
view *blockchain.UtxoViewpoint) (*blockchain.SequenceLock, error) {
return &blockchain.SequenceLock{
Seconds: -1,
BlockHeight: -1,
}, nil
}
// spendableOutput is a convenience type that houses a particular utxo and the
// amount associated with it.
type spendableOutput struct {
outPoint wire.OutPoint
amount btcutil.Amount
}
// txOutToSpendableOut returns a spendable output given a transaction and index
// of the output to use. This is useful as a convenience when creating test
// transactions.
func txOutToSpendableOut(tx *btcutil.Tx, outputNum uint32) spendableOutput {
return spendableOutput{
outPoint: wire.OutPoint{Hash: *tx.Hash(), Index: outputNum},
amount: btcutil.Amount(tx.MsgTx().TxOut[outputNum].Value),
}
}
// poolHarness provides a harness that includes functionality for creating and
// signing transactions as well as a fake chain that provides utxos for use in
// generating valid transactions.
type poolHarness struct {
// signKey is the signing key used for creating transactions throughout
// the tests.
//
// payAddr is the p2sh address for the signing key and is used for the
// payment address throughout the tests.
signKey *btcec.PrivateKey
payAddr btcutil.Address
payScript []byte
chainParams *chaincfg.Params
chain *fakeChain
txPool *TxPool
}
// CreateCoinbaseTx returns a coinbase transaction with the requested number of
// outputs paying an appropriate subsidy based on the passed block height to the
// address associated with the harness. It automatically uses a standard
// signature script that starts with the block height that is required by
// version 2 blocks.
func (p *poolHarness) CreateCoinbaseTx(blockHeight int32, numOutputs uint32) (*btcutil.Tx, error) {
// Create standard coinbase script.
extraNonce := int64(0)
coinbaseScript, err := txscript.NewScriptBuilder().
AddInt64(int64(blockHeight)).AddInt64(extraNonce).Script()
if err != nil {
return nil, err
}
tx := wire.NewMsgTx(wire.TxVersion)
tx.AddTxIn(&wire.TxIn{
// Coinbase transactions have no inputs, so previous outpoint is
// zero hash and max index.
PreviousOutPoint: *wire.NewOutPoint(&chainhash.Hash{},
wire.MaxPrevOutIndex),
SignatureScript: coinbaseScript,
Sequence: wire.MaxTxInSequenceNum,
})
totalInput := blockchain.CalcBlockSubsidy(blockHeight, p.chainParams)
amountPerOutput := totalInput / int64(numOutputs)
remainder := totalInput - amountPerOutput*int64(numOutputs)
for i := uint32(0); i < numOutputs; i++ {
// Ensure the final output accounts for any remainder that might
// be left from splitting the input amount.
amount := amountPerOutput
if i == numOutputs-1 {
amount = amountPerOutput + remainder
}
tx.AddTxOut(&wire.TxOut{
PkScript: p.payScript,
Value: amount,
})
}
return btcutil.NewTx(tx), nil
}
// CreateSignedTx creates a new signed transaction that consumes the provided
// inputs and generates the provided number of outputs by evenly splitting the
// total input amount. All outputs will be to the payment script associated
// with the harness and all inputs are assumed to do the same.
func (p *poolHarness) CreateSignedTx(inputs []spendableOutput,
numOutputs uint32, fee btcutil.Amount,
signalsReplacement bool) (*btcutil.Tx, error) {
// Calculate the total input amount and split it amongst the requested
// number of outputs.
var totalInput btcutil.Amount
for _, input := range inputs {
totalInput += input.amount
}
totalInput -= fee
amountPerOutput := int64(totalInput) / int64(numOutputs)
remainder := int64(totalInput) - amountPerOutput*int64(numOutputs)
tx := wire.NewMsgTx(wire.TxVersion)
sequence := wire.MaxTxInSequenceNum
if signalsReplacement {
sequence = MaxRBFSequence
}
for _, input := range inputs {
tx.AddTxIn(&wire.TxIn{
PreviousOutPoint: input.outPoint,
SignatureScript: nil,
Sequence: sequence,
})
}
for i := uint32(0); i < numOutputs; i++ {
// Ensure the final output accounts for any remainder that might
// be left from splitting the input amount.
amount := amountPerOutput
if i == numOutputs-1 {
amount = amountPerOutput + remainder
}
tx.AddTxOut(&wire.TxOut{
PkScript: p.payScript,
Value: amount,
})
}
// Sign the new transaction.
for i := range tx.TxIn {
sigScript, err := txscript.SignatureScript(tx, i, p.payScript,
txscript.SigHashAll, p.signKey, true)
if err != nil {
return nil, err
}
tx.TxIn[i].SignatureScript = sigScript
}
return btcutil.NewTx(tx), nil
}
// CreateTxChain creates a chain of zero-fee transactions (each subsequent
// transaction spends the entire amount from the previous one) with the first
// one spending the provided outpoint. Each transaction spends the entire
// amount of the previous one and as such does not include any fees.
func (p *poolHarness) CreateTxChain(firstOutput spendableOutput, numTxns uint32) ([]*btcutil.Tx, error) {
txChain := make([]*btcutil.Tx, 0, numTxns)
prevOutPoint := firstOutput.outPoint
spendableAmount := firstOutput.amount
for i := uint32(0); i < numTxns; i++ {
// Create the transaction using the previous transaction output
// and paying the full amount to the payment address associated
// with the harness.
tx := wire.NewMsgTx(wire.TxVersion)
tx.AddTxIn(&wire.TxIn{
PreviousOutPoint: prevOutPoint,
SignatureScript: nil,
Sequence: wire.MaxTxInSequenceNum,
})
tx.AddTxOut(&wire.TxOut{
PkScript: p.payScript,
Value: int64(spendableAmount),
})
// Sign the new transaction.
sigScript, err := txscript.SignatureScript(tx, 0, p.payScript,
txscript.SigHashAll, p.signKey, true)
if err != nil {
return nil, err
}
tx.TxIn[0].SignatureScript = sigScript
txChain = append(txChain, btcutil.NewTx(tx))
// Next transaction uses outputs from this one.
prevOutPoint = wire.OutPoint{Hash: tx.TxHash(), Index: 0}
}
return txChain, nil
}
// newPoolHarness returns a new instance of a pool harness initialized with a
// fake chain and a TxPool bound to it that is configured with a policy suitable
// for testing. Also, the fake chain is populated with the returned spendable
// outputs so the caller can easily create new valid transactions which build
// off of it.
func newPoolHarness(chainParams *chaincfg.Params) (*poolHarness, []spendableOutput, error) {
// Use a hard coded key pair for deterministic results.
keyBytes, err := hex.DecodeString("700868df1838811ffbdf918fb482c1f7e" +
"ad62db4b97bd7012c23e726485e577d")
if err != nil {
return nil, nil, err
}
signKey, signPub := btcec.PrivKeyFromBytes(btcec.S256(), keyBytes)
// Generate associated pay-to-script-hash address and resulting payment
// script.
pubKeyBytes := signPub.SerializeCompressed()
payPubKeyAddr, err := btcutil.NewAddressPubKey(pubKeyBytes, chainParams)
if err != nil {
return nil, nil, err
}
payAddr := payPubKeyAddr.AddressPubKeyHash()
pkScript, err := txscript.PayToAddrScript(payAddr)
if err != nil {
return nil, nil, err
}
// Create a new fake chain and harness bound to it.
chain := &fakeChain{utxos: blockchain.NewUtxoViewpoint()}
harness := poolHarness{
signKey: signKey,
payAddr: payAddr,
payScript: pkScript,
chainParams: chainParams,
chain: chain,
txPool: New(&Config{
Policy: Policy{
DisableRelayPriority: true,
FreeTxRelayLimit: 15.0,
MaxOrphanTxs: 5,
MaxOrphanTxSize: 1000,
MaxSigOpCostPerTx: blockchain.MaxBlockSigOpsCost / 4,
MinRelayTxFee: 1000, // 1 Satoshi per byte
MaxTxVersion: 1,
},
ChainParams: chainParams,
FetchUtxoView: chain.FetchUtxoView,
BestHeight: chain.BestHeight,
MedianTimePast: chain.MedianTimePast,
CalcSequenceLock: chain.CalcSequenceLock,
SigCache: nil,
AddrIndex: nil,
}),
}
// Create a single coinbase transaction and add it to the harness
// chain's utxo set and set the harness chain height such that the
// coinbase will mature in the next block. This ensures the txpool
// accepts transactions which spend immature coinbases that will become
// mature in the next block.
numOutputs := uint32(1)
outputs := make([]spendableOutput, 0, numOutputs)
curHeight := harness.chain.BestHeight()
coinbase, err := harness.CreateCoinbaseTx(curHeight+1, numOutputs)
if err != nil {
return nil, nil, err
}
harness.chain.utxos.AddTxOuts(coinbase, curHeight+1)
for i := uint32(0); i < numOutputs; i++ {
outputs = append(outputs, txOutToSpendableOut(coinbase, i))
}
harness.chain.SetHeight(int32(chainParams.CoinbaseMaturity) + curHeight)
harness.chain.SetMedianTimePast(time.Now())
return &harness, outputs, nil
}
// testContext houses a test-related state that is useful to pass to helper
// functions as a single argument.
type testContext struct {
t *testing.T
harness *poolHarness
}
// addCoinbaseTx adds a spendable coinbase transaction to the test context's
// mock chain.
func (ctx *testContext) addCoinbaseTx(numOutputs uint32) *btcutil.Tx {
ctx.t.Helper()
coinbaseHeight := ctx.harness.chain.BestHeight() + 1
coinbase, err := ctx.harness.CreateCoinbaseTx(coinbaseHeight, numOutputs)
if err != nil {
ctx.t.Fatalf("unable to create coinbase: %v", err)
}
ctx.harness.chain.utxos.AddTxOuts(coinbase, coinbaseHeight)
maturity := int32(ctx.harness.chainParams.CoinbaseMaturity)
ctx.harness.chain.SetHeight(coinbaseHeight + maturity)
ctx.harness.chain.SetMedianTimePast(time.Now())
return coinbase
}
// addSignedTx creates a transaction that spends the inputs with the given fee.
// It can be added to the test context's mempool or mock chain based on the
// confirmed boolean.
func (ctx *testContext) addSignedTx(inputs []spendableOutput,
numOutputs uint32, fee btcutil.Amount,
signalsReplacement, confirmed bool) *btcutil.Tx {
ctx.t.Helper()
tx, err := ctx.harness.CreateSignedTx(
inputs, numOutputs, fee, signalsReplacement,
)
if err != nil {
ctx.t.Fatalf("unable to create transaction: %v", err)
}
if confirmed {
newHeight := ctx.harness.chain.BestHeight() + 1
ctx.harness.chain.utxos.AddTxOuts(tx, newHeight)
ctx.harness.chain.SetHeight(newHeight)
ctx.harness.chain.SetMedianTimePast(time.Now())
} else {
acceptedTxns, err := ctx.harness.txPool.ProcessTransaction(
tx, true, false, 0,
)
if err != nil {
ctx.t.Fatalf("unable to process transaction: %v", err)
}
if len(acceptedTxns) != 1 {
ctx.t.Fatalf("expected one accepted transaction, got %d",
len(acceptedTxns))
}
testPoolMembership(ctx, tx, false, true)
}
return tx
}
// testPoolMembership tests the transaction pool associated with the provided
// test context to determine if the passed transaction matches the provided
// orphan pool and transaction pool status. It also further determines if it
// should be reported as available by the HaveTransaction function based upon
// the two flags and tests that condition as well.
func testPoolMembership(tc *testContext, tx *btcutil.Tx, inOrphanPool, inTxPool bool) {
tc.t.Helper()
txHash := tx.Hash()
gotOrphanPool := tc.harness.txPool.IsOrphanInPool(txHash)
if inOrphanPool != gotOrphanPool {
tc.t.Fatalf("IsOrphanInPool: want %v, got %v", inOrphanPool,
gotOrphanPool)
}
gotTxPool := tc.harness.txPool.IsTransactionInPool(txHash)
if inTxPool != gotTxPool {
tc.t.Fatalf("IsTransactionInPool: want %v, got %v", inTxPool,
gotTxPool)
}
gotHaveTx := tc.harness.txPool.HaveTransaction(txHash)
wantHaveTx := inOrphanPool || inTxPool
if wantHaveTx != gotHaveTx {
tc.t.Fatalf("HaveTransaction: want %v, got %v", wantHaveTx,
gotHaveTx)
}
}
// TestSimpleOrphanChain ensures that a simple chain of orphans is handled
// properly. In particular, it generates a chain of single input, single output
// transactions and inserts them while skipping the first linking transaction so
// they are all orphans. Finally, it adds the linking transaction and ensures
// the entire orphan chain is moved to the transaction pool.
func TestSimpleOrphanChain(t *testing.T) {
t.Parallel()
harness, spendableOuts, err := newPoolHarness(&chaincfg.MainNetParams)
if err != nil {
t.Fatalf("unable to create test pool: %v", err)
}
tc := &testContext{t, harness}
// Create a chain of transactions rooted with the first spendable output
// provided by the harness.
maxOrphans := uint32(harness.txPool.cfg.Policy.MaxOrphanTxs)
chainedTxns, err := harness.CreateTxChain(spendableOuts[0], maxOrphans+1)
if err != nil {
t.Fatalf("unable to create transaction chain: %v", err)
}
// Ensure the orphans are accepted (only up to the maximum allowed so
// none are evicted).
for _, tx := range chainedTxns[1 : maxOrphans+1] {
acceptedTxns, err := harness.txPool.ProcessTransaction(tx, true,
false, 0)
if err != nil {
t.Fatalf("ProcessTransaction: failed to accept valid "+
"orphan %v", err)
}
// Ensure no transactions were reported as accepted.
if len(acceptedTxns) != 0 {
t.Fatalf("ProcessTransaction: reported %d accepted "+
"transactions from what should be an orphan",
len(acceptedTxns))
}
// Ensure the transaction is in the orphan pool, is not in the
// transaction pool, and is reported as available.
testPoolMembership(tc, tx, true, false)
}
// Add the transaction which completes the orphan chain and ensure they
// all get accepted. Notice the accept orphans flag is also false here
// to ensure it has no bearing on whether or not already existing
// orphans in the pool are linked.
acceptedTxns, err := harness.txPool.ProcessTransaction(chainedTxns[0],
false, false, 0)
if err != nil {
t.Fatalf("ProcessTransaction: failed to accept valid "+
"orphan %v", err)
}
if len(acceptedTxns) != len(chainedTxns) {
t.Fatalf("ProcessTransaction: reported accepted transactions "+
"length does not match expected -- got %d, want %d",
len(acceptedTxns), len(chainedTxns))
}
for _, txD := range acceptedTxns {
// Ensure the transaction is no longer in the orphan pool, is
// now in the transaction pool, and is reported as available.
testPoolMembership(tc, txD.Tx, false, true)
}
}
// TestOrphanReject ensures that orphans are properly rejected when the allow
// orphans flag is not set on ProcessTransaction.
func TestOrphanReject(t *testing.T) {
t.Parallel()
harness, outputs, err := newPoolHarness(&chaincfg.MainNetParams)
if err != nil {
t.Fatalf("unable to create test pool: %v", err)
}
tc := &testContext{t, harness}
// Create a chain of transactions rooted with the first spendable output
// provided by the harness.
maxOrphans := uint32(harness.txPool.cfg.Policy.MaxOrphanTxs)
chainedTxns, err := harness.CreateTxChain(outputs[0], maxOrphans+1)
if err != nil {
t.Fatalf("unable to create transaction chain: %v", err)
}
// Ensure orphans are rejected when the allow orphans flag is not set.
for _, tx := range chainedTxns[1:] {
acceptedTxns, err := harness.txPool.ProcessTransaction(tx, false,
false, 0)
if err == nil {
t.Fatalf("ProcessTransaction: did not fail on orphan "+
"%v when allow orphans flag is false", tx.Hash())
}
expectedErr := RuleError{}
if reflect.TypeOf(err) != reflect.TypeOf(expectedErr) {
t.Fatalf("ProcessTransaction: wrong error got: <%T> %v, "+
"want: <%T>", err, err, expectedErr)
}
code, extracted := extractRejectCode(err)
if !extracted {
t.Fatalf("ProcessTransaction: failed to extract reject "+
"code from error %q", err)
}
if code != wire.RejectDuplicate {
t.Fatalf("ProcessTransaction: unexpected reject code "+
"-- got %v, want %v", code, wire.RejectDuplicate)
}
// Ensure no transactions were reported as accepted.
if len(acceptedTxns) != 0 {
t.Fatal("ProcessTransaction: reported %d accepted "+
"transactions from failed orphan attempt",
len(acceptedTxns))
}
// Ensure the transaction is not in the orphan pool, not in the
// transaction pool, and not reported as available
testPoolMembership(tc, tx, false, false)
}
}
// TestOrphanEviction ensures that exceeding the maximum number of orphans
// evicts entries to make room for the new ones.
func TestOrphanEviction(t *testing.T) {
t.Parallel()
harness, outputs, err := newPoolHarness(&chaincfg.MainNetParams)
if err != nil {
t.Fatalf("unable to create test pool: %v", err)
}
tc := &testContext{t, harness}
// Create a chain of transactions rooted with the first spendable output
// provided by the harness that is long enough to be able to force
// several orphan evictions.
maxOrphans := uint32(harness.txPool.cfg.Policy.MaxOrphanTxs)
chainedTxns, err := harness.CreateTxChain(outputs[0], maxOrphans+5)
if err != nil {
t.Fatalf("unable to create transaction chain: %v", err)
}
// Add enough orphans to exceed the max allowed while ensuring they are
// all accepted. This will cause an eviction.
for _, tx := range chainedTxns[1:] {
acceptedTxns, err := harness.txPool.ProcessTransaction(tx, true,
false, 0)
if err != nil {
t.Fatalf("ProcessTransaction: failed to accept valid "+
"orphan %v", err)
}
// Ensure no transactions were reported as accepted.
if len(acceptedTxns) != 0 {
t.Fatalf("ProcessTransaction: reported %d accepted "+
"transactions from what should be an orphan",
len(acceptedTxns))
}
// Ensure the transaction is in the orphan pool, is not in the
// transaction pool, and is reported as available.
testPoolMembership(tc, tx, true, false)
}
// Figure out which transactions were evicted and make sure the number
// evicted matches the expected number.
var evictedTxns []*btcutil.Tx
for _, tx := range chainedTxns[1:] {
if !harness.txPool.IsOrphanInPool(tx.Hash()) {
evictedTxns = append(evictedTxns, tx)
}
}
expectedEvictions := len(chainedTxns) - 1 - int(maxOrphans)
if len(evictedTxns) != expectedEvictions {
t.Fatalf("unexpected number of evictions -- got %d, want %d",
len(evictedTxns), expectedEvictions)
}
// Ensure none of the evicted transactions ended up in the transaction
// pool.
for _, tx := range evictedTxns {
testPoolMembership(tc, tx, false, false)
}
}
// TestBasicOrphanRemoval ensure that orphan removal works as expected when an
// orphan that doesn't exist is removed both when there is another orphan that
// redeems it and when there is not.
func TestBasicOrphanRemoval(t *testing.T) {
t.Parallel()
const maxOrphans = 4
harness, spendableOuts, err := newPoolHarness(&chaincfg.MainNetParams)
if err != nil {
t.Fatalf("unable to create test pool: %v", err)
}
harness.txPool.cfg.Policy.MaxOrphanTxs = maxOrphans
tc := &testContext{t, harness}
// Create a chain of transactions rooted with the first spendable output
// provided by the harness.
chainedTxns, err := harness.CreateTxChain(spendableOuts[0], maxOrphans+1)
if err != nil {
t.Fatalf("unable to create transaction chain: %v", err)
}
// Ensure the orphans are accepted (only up to the maximum allowed so
// none are evicted).
for _, tx := range chainedTxns[1 : maxOrphans+1] {
acceptedTxns, err := harness.txPool.ProcessTransaction(tx, true,
false, 0)
if err != nil {
t.Fatalf("ProcessTransaction: failed to accept valid "+
"orphan %v", err)
}
// Ensure no transactions were reported as accepted.
if len(acceptedTxns) != 0 {
t.Fatalf("ProcessTransaction: reported %d accepted "+
"transactions from what should be an orphan",
len(acceptedTxns))
}
// Ensure the transaction is in the orphan pool, not in the
// transaction pool, and reported as available.
testPoolMembership(tc, tx, true, false)
}
// Attempt to remove an orphan that has no redeemers and is not present,
// and ensure the state of all other orphans are unaffected.
nonChainedOrphanTx, err := harness.CreateSignedTx([]spendableOutput{{
amount: btcutil.Amount(5000000000),
outPoint: wire.OutPoint{Hash: chainhash.Hash{}, Index: 0},
}}, 1, 0, false)
if err != nil {
t.Fatalf("unable to create signed tx: %v", err)
}
harness.txPool.RemoveOrphan(nonChainedOrphanTx)
testPoolMembership(tc, nonChainedOrphanTx, false, false)
for _, tx := range chainedTxns[1 : maxOrphans+1] {
testPoolMembership(tc, tx, true, false)
}
// Attempt to remove an orphan that has a existing redeemer but itself
// is not present and ensure the state of all other orphans (including
// the one that redeems it) are unaffected.
harness.txPool.RemoveOrphan(chainedTxns[0])
testPoolMembership(tc, chainedTxns[0], false, false)
for _, tx := range chainedTxns[1 : maxOrphans+1] {
testPoolMembership(tc, tx, true, false)
}
// Remove each orphan one-by-one and ensure they are removed as
// expected.
for _, tx := range chainedTxns[1 : maxOrphans+1] {
harness.txPool.RemoveOrphan(tx)
testPoolMembership(tc, tx, false, false)
}
}
// TestOrphanChainRemoval ensure that orphan chains (orphans that spend outputs
// from other orphans) are removed as expected.
func TestOrphanChainRemoval(t *testing.T) {
t.Parallel()
const maxOrphans = 10
harness, spendableOuts, err := newPoolHarness(&chaincfg.MainNetParams)
if err != nil {
t.Fatalf("unable to create test pool: %v", err)
}
harness.txPool.cfg.Policy.MaxOrphanTxs = maxOrphans
tc := &testContext{t, harness}
// Create a chain of transactions rooted with the first spendable output
// provided by the harness.
chainedTxns, err := harness.CreateTxChain(spendableOuts[0], maxOrphans+1)
if err != nil {
t.Fatalf("unable to create transaction chain: %v", err)
}
// Ensure the orphans are accepted (only up to the maximum allowed so
// none are evicted).
for _, tx := range chainedTxns[1 : maxOrphans+1] {
acceptedTxns, err := harness.txPool.ProcessTransaction(tx, true,
false, 0)
if err != nil {
t.Fatalf("ProcessTransaction: failed to accept valid "+
"orphan %v", err)
}
// Ensure no transactions were reported as accepted.
if len(acceptedTxns) != 0 {
t.Fatalf("ProcessTransaction: reported %d accepted "+
"transactions from what should be an orphan",
len(acceptedTxns))
}
// Ensure the transaction is in the orphan pool, not in the
// transaction pool, and reported as available.
testPoolMembership(tc, tx, true, false)
}
// Remove the first orphan that starts the orphan chain without the
// remove redeemer flag set and ensure that only the first orphan was
// removed.
harness.txPool.mtx.Lock()
harness.txPool.removeOrphan(chainedTxns[1], false)
harness.txPool.mtx.Unlock()
testPoolMembership(tc, chainedTxns[1], false, false)
for _, tx := range chainedTxns[2 : maxOrphans+1] {
testPoolMembership(tc, tx, true, false)
}
// Remove the first remaining orphan that starts the orphan chain with
// the remove redeemer flag set and ensure they are all removed.
harness.txPool.mtx.Lock()
harness.txPool.removeOrphan(chainedTxns[2], true)
harness.txPool.mtx.Unlock()
for _, tx := range chainedTxns[2 : maxOrphans+1] {
testPoolMembership(tc, tx, false, false)
}
}
// TestMultiInputOrphanDoubleSpend ensures that orphans that spend from an
// output that is spend by another transaction entering the pool are removed.
func TestMultiInputOrphanDoubleSpend(t *testing.T) {
t.Parallel()
const maxOrphans = 4
harness, outputs, err := newPoolHarness(&chaincfg.MainNetParams)
if err != nil {
t.Fatalf("unable to create test pool: %v", err)
}
harness.txPool.cfg.Policy.MaxOrphanTxs = maxOrphans
tc := &testContext{t, harness}
// Create a chain of transactions rooted with the first spendable output
// provided by the harness.
chainedTxns, err := harness.CreateTxChain(outputs[0], maxOrphans+1)
if err != nil {
t.Fatalf("unable to create transaction chain: %v", err)
}
// Start by adding the orphan transactions from the generated chain
// except the final one.
for _, tx := range chainedTxns[1:maxOrphans] {
acceptedTxns, err := harness.txPool.ProcessTransaction(tx, true,
false, 0)
if err != nil {
t.Fatalf("ProcessTransaction: failed to accept valid "+
"orphan %v", err)
}
if len(acceptedTxns) != 0 {
t.Fatalf("ProcessTransaction: reported %d accepted transactions "+
"from what should be an orphan", len(acceptedTxns))
}
testPoolMembership(tc, tx, true, false)
}
// Ensure a transaction that contains a double spend of the same output
// as the second orphan that was just added as well as a valid spend
// from that last orphan in the chain generated above (and is not in the
// orphan pool) is accepted to the orphan pool. This must be allowed
// since it would otherwise be possible for a malicious actor to disrupt
// tx chains.
doubleSpendTx, err := harness.CreateSignedTx([]spendableOutput{
txOutToSpendableOut(chainedTxns[1], 0),
txOutToSpendableOut(chainedTxns[maxOrphans], 0),
}, 1, 0, false)
if err != nil {
t.Fatalf("unable to create signed tx: %v", err)
}
acceptedTxns, err := harness.txPool.ProcessTransaction(doubleSpendTx,
true, false, 0)
if err != nil {
t.Fatalf("ProcessTransaction: failed to accept valid orphan %v",
err)
}
if len(acceptedTxns) != 0 {
t.Fatalf("ProcessTransaction: reported %d accepted transactions "+
"from what should be an orphan", len(acceptedTxns))
}
testPoolMembership(tc, doubleSpendTx, true, false)
// Add the transaction which completes the orphan chain and ensure the
// chain gets accepted. Notice the accept orphans flag is also false
// here to ensure it has no bearing on whether or not already existing
// orphans in the pool are linked.
//
// This will cause the shared output to become a concrete spend which
// will in turn must cause the double spending orphan to be removed.
acceptedTxns, err = harness.txPool.ProcessTransaction(chainedTxns[0],
false, false, 0)
if err != nil {
t.Fatalf("ProcessTransaction: failed to accept valid tx %v", err)
}
if len(acceptedTxns) != maxOrphans {
t.Fatalf("ProcessTransaction: reported accepted transactions "+
"length does not match expected -- got %d, want %d",
len(acceptedTxns), maxOrphans)
}
for _, txD := range acceptedTxns {
// Ensure the transaction is no longer in the orphan pool, is
// in the transaction pool, and is reported as available.
testPoolMembership(tc, txD.Tx, false, true)
}
// Ensure the double spending orphan is no longer in the orphan pool and
// was not moved to the transaction pool.
testPoolMembership(tc, doubleSpendTx, false, false)
}
// TestCheckSpend tests that CheckSpend returns the expected spends found in
// the mempool.
func TestCheckSpend(t *testing.T) {
t.Parallel()
harness, outputs, err := newPoolHarness(&chaincfg.MainNetParams)
if err != nil {
t.Fatalf("unable to create test pool: %v", err)
}
// The mempool is empty, so none of the spendable outputs should have a
// spend there.
for _, op := range outputs {
spend := harness.txPool.CheckSpend(op.outPoint)
if spend != nil {
t.Fatalf("Unexpeced spend found in pool: %v", spend)
}
}
// Create a chain of transactions rooted with the first spendable
// output provided by the harness.
const txChainLength = 5
chainedTxns, err := harness.CreateTxChain(outputs[0], txChainLength)
if err != nil {
t.Fatalf("unable to create transaction chain: %v", err)
}
for _, tx := range chainedTxns {
_, err := harness.txPool.ProcessTransaction(tx, true,
false, 0)
if err != nil {
t.Fatalf("ProcessTransaction: failed to accept "+
"tx: %v", err)
}
}
// The first tx in the chain should be the spend of the spendable
// output.
op := outputs[0].outPoint
spend := harness.txPool.CheckSpend(op)
if spend != chainedTxns[0] {
t.Fatalf("expected %v to be spent by %v, instead "+
"got %v", op, chainedTxns[0], spend)
}
// Now all but the last tx should be spent by the next.
for i := 0; i < len(chainedTxns)-1; i++ {
op = wire.OutPoint{
Hash: *chainedTxns[i].Hash(),
Index: 0,
}
expSpend := chainedTxns[i+1]
spend = harness.txPool.CheckSpend(op)
if spend != expSpend {
t.Fatalf("expected %v to be spent by %v, instead "+
"got %v", op, expSpend, spend)
}
}
// The last tx should have no spend.
op = wire.OutPoint{
Hash: *chainedTxns[txChainLength-1].Hash(),
Index: 0,
}
spend = harness.txPool.CheckSpend(op)
if spend != nil {
t.Fatalf("Unexpeced spend found in pool: %v", spend)
}
}
// TestSignalsReplacement tests that transactions properly signal they can be
// replaced using RBF.
func TestSignalsReplacement(t *testing.T) {
t.Parallel()
testCases := []struct {
name string
setup func(ctx *testContext) *btcutil.Tx
signalsReplacement bool
}{
{
// Transactions can signal replacement through
// inheritance if any of its ancestors does.
name: "non-signaling with unconfirmed non-signaling parent",
setup: func(ctx *testContext) *btcutil.Tx {
coinbase := ctx.addCoinbaseTx(1)
coinbaseOut := txOutToSpendableOut(coinbase, 0)
outs := []spendableOutput{coinbaseOut}
parent := ctx.addSignedTx(outs, 1, 0, false, false)
parentOut := txOutToSpendableOut(parent, 0)
outs = []spendableOutput{parentOut}
return ctx.addSignedTx(outs, 1, 0, false, false)
},
signalsReplacement: false,
},
{
// Transactions can signal replacement through
// inheritance if any of its ancestors does, but they
// must be unconfirmed.
name: "non-signaling with confirmed signaling parent",
setup: func(ctx *testContext) *btcutil.Tx {
coinbase := ctx.addCoinbaseTx(1)
coinbaseOut := txOutToSpendableOut(coinbase, 0)
outs := []spendableOutput{coinbaseOut}
parent := ctx.addSignedTx(outs, 1, 0, true, true)
parentOut := txOutToSpendableOut(parent, 0)
outs = []spendableOutput{parentOut}
return ctx.addSignedTx(outs, 1, 0, false, false)
},
signalsReplacement: false,
},
{
name: "inherited signaling",
setup: func(ctx *testContext) *btcutil.Tx {
coinbase := ctx.addCoinbaseTx(1)
// We'll create a chain of transactions
// A -> B -> C where C is the transaction we'll
// be checking for replacement signaling. The
// transaction can signal replacement through
// any of its ancestors as long as they also
// signal replacement.
coinbaseOut := txOutToSpendableOut(coinbase, 0)
outs := []spendableOutput{coinbaseOut}
a := ctx.addSignedTx(outs, 1, 0, true, false)
aOut := txOutToSpendableOut(a, 0)
outs = []spendableOutput{aOut}
b := ctx.addSignedTx(outs, 1, 0, false, false)
bOut := txOutToSpendableOut(b, 0)
outs = []spendableOutput{bOut}
return ctx.addSignedTx(outs, 1, 0, false, false)
},
signalsReplacement: true,
},
{
name: "explicit signaling",
setup: func(ctx *testContext) *btcutil.Tx {
coinbase := ctx.addCoinbaseTx(1)
coinbaseOut := txOutToSpendableOut(coinbase, 0)
outs := []spendableOutput{coinbaseOut}
return ctx.addSignedTx(outs, 1, 0, true, false)
},
signalsReplacement: true,
},
}
for _, testCase := range testCases {
success := t.Run(testCase.name, func(t *testing.T) {
// We'll start each test by creating our mempool
// harness.
harness, _, err := newPoolHarness(&chaincfg.MainNetParams)
if err != nil {
t.Fatalf("unable to create test pool: %v", err)
}
ctx := &testContext{t, harness}
// Each test includes a setup method, which will set up
// its required dependencies. The transaction returned
// is the one we'll be using to determine if it signals
// replacement support.
tx := testCase.setup(ctx)
// Each test should match the expected response.
signalsReplacement := ctx.harness.txPool.signalsReplacement(
tx, nil,
)
if signalsReplacement && !testCase.signalsReplacement {
ctx.t.Fatalf("expected transaction %v to not "+
"signal replacement", tx.Hash())
}
if !signalsReplacement && testCase.signalsReplacement {
ctx.t.Fatalf("expected transaction %v to "+
"signal replacement", tx.Hash())
}
})
if !success {
break
}
}
}
// TestCheckPoolDoubleSpend ensures that the mempool can properly detect
// unconfirmed double spends in the case of replacement and non-replacement
// transactions.
func TestCheckPoolDoubleSpend(t *testing.T) {
t.Parallel()
testCases := []struct {
name string
setup func(ctx *testContext) *btcutil.Tx
isReplacement bool
}{
{
// Transactions that don't double spend any inputs,
// regardless of whether they signal replacement or not,
// are valid.
name: "no double spend",
setup: func(ctx *testContext) *btcutil.Tx {
coinbase := ctx.addCoinbaseTx(1)
coinbaseOut := txOutToSpendableOut(coinbase, 0)
outs := []spendableOutput{coinbaseOut}
parent := ctx.addSignedTx(outs, 1, 0, false, false)
parentOut := txOutToSpendableOut(parent, 0)
outs = []spendableOutput{parentOut}
return ctx.addSignedTx(outs, 2, 0, false, false)
},
isReplacement: false,
},
{
// Transactions that don't signal replacement and double
// spend inputs are invalid.
name: "non-replacement double spend",
setup: func(ctx *testContext) *btcutil.Tx {
coinbase1 := ctx.addCoinbaseTx(1)
coinbaseOut1 := txOutToSpendableOut(coinbase1, 0)
outs := []spendableOutput{coinbaseOut1}
ctx.addSignedTx(outs, 1, 0, true, false)
coinbase2 := ctx.addCoinbaseTx(1)
coinbaseOut2 := txOutToSpendableOut(coinbase2, 0)
outs = []spendableOutput{coinbaseOut2}
ctx.addSignedTx(outs, 1, 0, false, false)
// Create a transaction that spends both
// coinbase outputs that were spent above. This
// should be detected as a double spend as one
// of the transactions doesn't signal
// replacement.
outs = []spendableOutput{coinbaseOut1, coinbaseOut2}
tx, err := ctx.harness.CreateSignedTx(
outs, 1, 0, false,
)
if err != nil {
ctx.t.Fatalf("unable to create "+
"transaction: %v", err)
}
return tx
},
isReplacement: false,
},
{
// Transactions that double spend inputs and signal
// replacement are invalid if the mempool's policy
// rejects replacements.
name: "reject replacement policy",
setup: func(ctx *testContext) *btcutil.Tx {
// Set the mempool's policy to reject
// replacements. Even if we have a transaction
// that spends inputs that signal replacement,
// it should still be rejected.
ctx.harness.txPool.cfg.Policy.RejectReplacement = true
coinbase := ctx.addCoinbaseTx(1)
// Create a replaceable parent that spends the
// coinbase output.
coinbaseOut := txOutToSpendableOut(coinbase, 0)
outs := []spendableOutput{coinbaseOut}
parent := ctx.addSignedTx(outs, 1, 0, true, false)
parentOut := txOutToSpendableOut(parent, 0)
outs = []spendableOutput{parentOut}
ctx.addSignedTx(outs, 1, 0, false, false)
// Create another transaction that spends the
// same coinbase output. Since the original
// spender of this output, all of its spends
// should also be conflicts.
outs = []spendableOutput{coinbaseOut}
tx, err := ctx.harness.CreateSignedTx(
outs, 2, 0, false,
)
if err != nil {
ctx.t.Fatalf("unable to create "+
"transaction: %v", err)
}
return tx
},
isReplacement: false,
},
{
// Transactions that double spend inputs and signal
// replacement are valid as long as the mempool's policy
// accepts them.
name: "replacement double spend",
setup: func(ctx *testContext) *btcutil.Tx {
coinbase := ctx.addCoinbaseTx(1)
// Create a replaceable parent that spends the
// coinbase output.
coinbaseOut := txOutToSpendableOut(coinbase, 0)
outs := []spendableOutput{coinbaseOut}
parent := ctx.addSignedTx(outs, 1, 0, true, false)
parentOut := txOutToSpendableOut(parent, 0)
outs = []spendableOutput{parentOut}
ctx.addSignedTx(outs, 1, 0, false, false)
// Create another transaction that spends the
// same coinbase output. Since the original
// spender of this output, all of its spends
// should also be conflicts.
outs = []spendableOutput{coinbaseOut}
tx, err := ctx.harness.CreateSignedTx(
outs, 2, 0, false,
)
if err != nil {
ctx.t.Fatalf("unable to create "+
"transaction: %v", err)
}
return tx
},
isReplacement: true,
},
}
for _, testCase := range testCases {
success := t.Run(testCase.name, func(t *testing.T) {
// We'll start each test by creating our mempool
// harness.
harness, _, err := newPoolHarness(&chaincfg.MainNetParams)
if err != nil {
t.Fatalf("unable to create test pool: %v", err)
}
ctx := &testContext{t, harness}
// Each test includes a setup method, which will set up
// its required dependencies. The transaction returned
// is the one we'll be querying for the expected
// conflicts.
tx := testCase.setup(ctx)
// Ensure that the mempool properly detected the double
// spend unless this is a replacement transaction.
isReplacement, err :=
ctx.harness.txPool.checkPoolDoubleSpend(tx)
if testCase.isReplacement && err != nil {
t.Fatalf("expected no error for replacement "+
"transaction, got: %v", err)
}
if isReplacement && !testCase.isReplacement {
t.Fatalf("expected replacement transaction")
}
if !isReplacement && testCase.isReplacement {
t.Fatalf("expected non-replacement transaction")
}
})
if !success {
break
}
}
}
// TestConflicts ensures that the mempool can properly detect conflicts when
// processing new incoming transactions.
func TestConflicts(t *testing.T) {
t.Parallel()
testCases := []struct {
name string
// setup sets up the required dependencies for each test. It
// returns the transaction we'll check for conflicts and its
// expected unique conflicts.
setup func(ctx *testContext) (*btcutil.Tx, []*btcutil.Tx)
}{
{
// Create a transaction that would introduce no
// conflicts in the mempool. This is done by not
// spending any outputs that are currently being spent
// within the mempool.
name: "no conflicts",
setup: func(ctx *testContext) (*btcutil.Tx, []*btcutil.Tx) {
coinbase := ctx.addCoinbaseTx(1)
coinbaseOut := txOutToSpendableOut(coinbase, 0)
outs := []spendableOutput{coinbaseOut}
parent := ctx.addSignedTx(outs, 1, 0, false, false)
parentOut := txOutToSpendableOut(parent, 0)
outs = []spendableOutput{parentOut}
tx, err := ctx.harness.CreateSignedTx(
outs, 2, 0, false,
)
if err != nil {
ctx.t.Fatalf("unable to create "+
"transaction: %v", err)
}
return tx, nil
},
},
{
// Create a transaction that would introduce two
// conflicts in the mempool by spending two outputs
// which are each already being spent by a different
// transaction within the mempool.
name: "conflicts",
setup: func(ctx *testContext) (*btcutil.Tx, []*btcutil.Tx) {
coinbase1 := ctx.addCoinbaseTx(1)
coinbaseOut1 := txOutToSpendableOut(coinbase1, 0)
outs := []spendableOutput{coinbaseOut1}
conflict1 := ctx.addSignedTx(
outs, 1, 0, false, false,
)
coinbase2 := ctx.addCoinbaseTx(1)
coinbaseOut2 := txOutToSpendableOut(coinbase2, 0)
outs = []spendableOutput{coinbaseOut2}
conflict2 := ctx.addSignedTx(
outs, 1, 0, false, false,
)
// Create a transaction that spends both
// coinbase outputs that were spent above.
outs = []spendableOutput{coinbaseOut1, coinbaseOut2}
tx, err := ctx.harness.CreateSignedTx(
outs, 1, 0, false,
)
if err != nil {
ctx.t.Fatalf("unable to create "+
"transaction: %v", err)
}
return tx, []*btcutil.Tx{conflict1, conflict2}
},
},
{
// Create a transaction that would introduce two
// conflicts in the mempool by spending an output
// already being spent in the mempool by a different
// transaction. The second conflict stems from spending
// the transaction that spends the original spender of
// the output, i.e., a descendant of the original
// spender.
name: "descendant conflicts",
setup: func(ctx *testContext) (*btcutil.Tx, []*btcutil.Tx) {
coinbase := ctx.addCoinbaseTx(1)
// Create a replaceable parent that spends the
// coinbase output.
coinbaseOut := txOutToSpendableOut(coinbase, 0)
outs := []spendableOutput{coinbaseOut}
parent := ctx.addSignedTx(outs, 1, 0, false, false)
parentOut := txOutToSpendableOut(parent, 0)
outs = []spendableOutput{parentOut}
child := ctx.addSignedTx(outs, 1, 0, false, false)
// Create another transaction that spends the
// same coinbase output. Since the original
// spender of this output has descendants, they
// should also be conflicts.
outs = []spendableOutput{coinbaseOut}
tx, err := ctx.harness.CreateSignedTx(
outs, 2, 0, false,
)
if err != nil {
ctx.t.Fatalf("unable to create "+
"transaction: %v", err)
}
return tx, []*btcutil.Tx{parent, child}
},
},
}
for _, testCase := range testCases {
success := t.Run(testCase.name, func(t *testing.T) {
// We'll start each test by creating our mempool
// harness.
harness, _, err := newPoolHarness(&chaincfg.MainNetParams)
if err != nil {
t.Fatalf("unable to create test pool: %v", err)
}
ctx := &testContext{t, harness}
// Each test includes a setup method, which will set up
// its required dependencies. The transaction returned
// is the one we'll be querying for the expected
// conflicts.
tx, conflicts := testCase.setup(ctx)
// Assert the expected conflicts are returned.
txConflicts := ctx.harness.txPool.txConflicts(tx)
if len(txConflicts) != len(conflicts) {
ctx.t.Fatalf("expected %d conflicts, got %d",
len(conflicts), len(txConflicts))
}
for _, conflict := range conflicts {
conflictHash := *conflict.Hash()
if _, ok := txConflicts[conflictHash]; !ok {
ctx.t.Fatalf("expected %v to be found "+
"as a conflict", conflictHash)
}
}
})
if !success {
break
}
}
}
// TestAncestorsDescendants ensures that we can properly retrieve the
// unconfirmed ancestors and descendants of a transaction.
func TestAncestorsDescendants(t *testing.T) {
t.Parallel()
// We'll start the test by initializing our mempool harness.
harness, outputs, err := newPoolHarness(&chaincfg.MainNetParams)
if err != nil {
t.Fatalf("unable to create test pool: %v", err)
}
ctx := &testContext{t, harness}
// We'll be creating the following chain of unconfirmed transactions:
//
// B ----
// / \
// A E
// \ /
// C -- D
//
// where B and C spend A, D spends C, and E spends B and D. We set up a
// chain like so to properly detect ancestors and descendants past a
// single parent/child.
aInputs := outputs[:1]
a := ctx.addSignedTx(aInputs, 2, 0, false, false)
bInputs := []spendableOutput{txOutToSpendableOut(a, 0)}
b := ctx.addSignedTx(bInputs, 1, 0, false, false)
cInputs := []spendableOutput{txOutToSpendableOut(a, 1)}
c := ctx.addSignedTx(cInputs, 1, 0, false, false)
dInputs := []spendableOutput{txOutToSpendableOut(c, 0)}
d := ctx.addSignedTx(dInputs, 1, 0, false, false)
eInputs := []spendableOutput{
txOutToSpendableOut(b, 0), txOutToSpendableOut(d, 0),
}
e := ctx.addSignedTx(eInputs, 1, 0, false, false)
// We'll be querying for the ancestors of E. We should expect to see all
// of the transactions that it depends on.
expectedAncestors := map[chainhash.Hash]struct{}{
*a.Hash(): {}, *b.Hash(): {},
*c.Hash(): {}, *d.Hash(): {},
}
ancestors := ctx.harness.txPool.txAncestors(e, nil)
if len(ancestors) != len(expectedAncestors) {
ctx.t.Fatalf("expected %d ancestors, got %d",
len(expectedAncestors), len(ancestors))
}
for ancestorHash := range ancestors {
if _, ok := expectedAncestors[ancestorHash]; !ok {
ctx.t.Fatalf("found unexpected ancestor %v",
ancestorHash)
}
}
// Then, we'll query for the descendants of A. We should expect to see
// all of the transactions that depend on it.
expectedDescendants := map[chainhash.Hash]struct{}{
*b.Hash(): {}, *c.Hash(): {},
*d.Hash(): {}, *e.Hash(): {},
}
descendants := ctx.harness.txPool.txDescendants(a, nil)
if len(descendants) != len(expectedDescendants) {
ctx.t.Fatalf("expected %d descendants, got %d",
len(expectedDescendants), len(descendants))
}
for descendantHash := range descendants {
if _, ok := expectedDescendants[descendantHash]; !ok {
ctx.t.Fatalf("found unexpected descendant %v",
descendantHash)
}
}
}
// TestRBF tests the different cases required for a transaction to properly
// replace its conflicts given that they all signal replacement.
func TestRBF(t *testing.T) {
t.Parallel()
const defaultFee = btcutil.SatoshiPerBitcoin
testCases := []struct {
name string
setup func(ctx *testContext) (*btcutil.Tx, []*btcutil.Tx)
err string
}{
{
// A transaction cannot replace another if it doesn't
// signal replacement.
name: "non-replaceable parent",
setup: func(ctx *testContext) (*btcutil.Tx, []*btcutil.Tx) {
coinbase := ctx.addCoinbaseTx(1)
// Create a transaction that spends the coinbase
// output and doesn't signal for replacement.
coinbaseOut := txOutToSpendableOut(coinbase, 0)
outs := []spendableOutput{coinbaseOut}
ctx.addSignedTx(outs, 1, defaultFee, false, false)
// Attempting to create another transaction that
// spends the same output should fail since the
// original transaction spending it doesn't
// signal replacement.
tx, err := ctx.harness.CreateSignedTx(
outs, 2, defaultFee, false,
)
if err != nil {
ctx.t.Fatalf("unable to create "+
"transaction: %v", err)
}
return tx, nil
},
err: "already spent by transaction",
},
{
// A transaction cannot replace another if we don't
// allow accepting replacement transactions.
name: "reject replacement policy",
setup: func(ctx *testContext) (*btcutil.Tx, []*btcutil.Tx) {
ctx.harness.txPool.cfg.Policy.RejectReplacement = true
coinbase := ctx.addCoinbaseTx(1)
// Create a transaction that spends the coinbase
// output and doesn't signal for replacement.
coinbaseOut := txOutToSpendableOut(coinbase, 0)
outs := []spendableOutput{coinbaseOut}
ctx.addSignedTx(outs, 1, defaultFee, true, false)
// Attempting to create another transaction that
// spends the same output should fail since the
// original transaction spending it doesn't
// signal replacement.
tx, err := ctx.harness.CreateSignedTx(
outs, 2, defaultFee, false,
)
if err != nil {
ctx.t.Fatalf("unable to create "+
"transaction: %v", err)
}
return tx, nil
},
err: "already spent by transaction",
},
{
// A transaction cannot replace another if doing so
// would cause more than 100 transactions being
// replaced.
name: "exceeds maximum conflicts",
setup: func(ctx *testContext) (*btcutil.Tx, []*btcutil.Tx) {
const numDescendants = 100
coinbaseOuts := make(
[]spendableOutput, numDescendants,
)
for i := 0; i < numDescendants; i++ {
tx := ctx.addCoinbaseTx(1)
coinbaseOuts[i] = txOutToSpendableOut(tx, 0)
}
parent := ctx.addSignedTx(
coinbaseOuts, numDescendants,
defaultFee, true, false,
)
// We'll then spend each output of the parent
// transaction with a distinct transaction.
for i := uint32(0); i < numDescendants; i++ {
out := txOutToSpendableOut(parent, i)
outs := []spendableOutput{out}
ctx.addSignedTx(
outs, 1, defaultFee, false, false,
)
}
// We'll then create a replacement transaction
// by spending one of the coinbase outputs.
// Replacing the original spender of the
// coinbase output would evict the maximum
// number of transactions from the mempool,
// however, so we should reject it.
tx, err := ctx.harness.CreateSignedTx(
coinbaseOuts[:1], 1, defaultFee, false,
)
if err != nil {
ctx.t.Fatalf("unable to create "+
"transaction: %v", err)
}
return tx, nil
},
err: "evicts more transactions than permitted",
},
{
// A transaction cannot replace another if the
// replacement ends up spending an output that belongs
// to one of the transactions it replaces.
name: "replacement spends parent transaction",
setup: func(ctx *testContext) (*btcutil.Tx, []*btcutil.Tx) {
coinbase := ctx.addCoinbaseTx(1)
// Create a transaction that spends the coinbase
// output and signals replacement.
coinbaseOut := txOutToSpendableOut(coinbase, 0)
outs := []spendableOutput{coinbaseOut}
parent := ctx.addSignedTx(
outs, 1, defaultFee, true, false,
)
// Attempting to create another transaction that
// spends it, but also replaces it, should be
// invalid.
parentOut := txOutToSpendableOut(parent, 0)
outs = []spendableOutput{coinbaseOut, parentOut}
tx, err := ctx.harness.CreateSignedTx(
outs, 2, defaultFee, false,
)
if err != nil {
ctx.t.Fatalf("unable to create "+
"transaction: %v", err)
}
return tx, nil
},
err: "spends parent transaction",
},
{
// A transaction cannot replace another if it has a
// lower fee rate than any of the transactions it
// intends to replace.
name: "insufficient fee rate",
setup: func(ctx *testContext) (*btcutil.Tx, []*btcutil.Tx) {
coinbase1 := ctx.addCoinbaseTx(1)
coinbase2 := ctx.addCoinbaseTx(1)
// We'll create two transactions that each spend
// one of the coinbase outputs. The first will
// have a higher fee rate than the second.
coinbaseOut1 := txOutToSpendableOut(coinbase1, 0)
outs := []spendableOutput{coinbaseOut1}
ctx.addSignedTx(outs, 1, defaultFee*2, true, false)
coinbaseOut2 := txOutToSpendableOut(coinbase2, 0)
outs = []spendableOutput{coinbaseOut2}
ctx.addSignedTx(outs, 1, defaultFee, true, false)
// We'll then create the replacement transaction
// by spending the coinbase outputs. It will be
// an invalid one however, since it won't have a
// higher fee rate than the first transaction.
outs = []spendableOutput{coinbaseOut1, coinbaseOut2}
tx, err := ctx.harness.CreateSignedTx(
outs, 1, defaultFee*2, false,
)
if err != nil {
ctx.t.Fatalf("unable to create "+
"transaction: %v", err)
}
return tx, nil
},
err: "insufficient fee rate",
},
{
// A transaction cannot replace another if it doesn't
// have an absolute greater than the transactions its
// replacing _plus_ the replacement transaction's
// minimum relay fee.
name: "insufficient absolute fee",
setup: func(ctx *testContext) (*btcutil.Tx, []*btcutil.Tx) {
coinbase := ctx.addCoinbaseTx(1)
// We'll create a transaction with two outputs
// and the default fee.
coinbaseOut := txOutToSpendableOut(coinbase, 0)
outs := []spendableOutput{coinbaseOut}
ctx.addSignedTx(outs, 2, defaultFee, true, false)
// We'll create a replacement transaction with
// one output, which should cause the
// transaction's absolute fee to be lower than
// the above's, so it'll be invalid.
tx, err := ctx.harness.CreateSignedTx(
outs, 1, defaultFee, false,
)
if err != nil {
ctx.t.Fatalf("unable to create "+
"transaction: %v", err)
}
return tx, nil
},
err: "insufficient absolute fee",
},
{
// A transaction cannot replace another if it introduces
// a new unconfirmed input that was not already in any
// of the transactions it's directly replacing.
name: "spends new unconfirmed input",
setup: func(ctx *testContext) (*btcutil.Tx, []*btcutil.Tx) {
coinbase1 := ctx.addCoinbaseTx(1)
coinbase2 := ctx.addCoinbaseTx(1)
// We'll create two unconfirmed transactions
// from our coinbase transactions.
coinbaseOut1 := txOutToSpendableOut(coinbase1, 0)
outs := []spendableOutput{coinbaseOut1}
ctx.addSignedTx(outs, 1, defaultFee, true, false)
coinbaseOut2 := txOutToSpendableOut(coinbase2, 0)
outs = []spendableOutput{coinbaseOut2}
newTx := ctx.addSignedTx(
outs, 1, defaultFee, false, false,
)
// We should not be able to accept a replacement
// transaction that spends an unconfirmed input
// that was not previously included.
newTxOut := txOutToSpendableOut(newTx, 0)
outs = []spendableOutput{coinbaseOut1, newTxOut}
tx, err := ctx.harness.CreateSignedTx(
outs, 1, defaultFee*2, false,
)
if err != nil {
ctx.t.Fatalf("unable to create "+
"transaction: %v", err)
}
return tx, nil
},
err: "spends new unconfirmed input",
},
{
// A transaction can replace another with a higher fee.
name: "higher fee",
setup: func(ctx *testContext) (*btcutil.Tx, []*btcutil.Tx) {
coinbase := ctx.addCoinbaseTx(1)
// Create a transaction that we'll directly
// replace.
coinbaseOut := txOutToSpendableOut(coinbase, 0)
outs := []spendableOutput{coinbaseOut}
parent := ctx.addSignedTx(
outs, 1, defaultFee, true, false,
)
// Spend the parent transaction to create a
// descendant that will be indirectly replaced.
parentOut := txOutToSpendableOut(parent, 0)
outs = []spendableOutput{parentOut}
child := ctx.addSignedTx(
outs, 1, defaultFee, false, false,
)
// The replacement transaction should replace
// both transactions above since it has a higher
// fee and doesn't violate any other conditions
// within the RBF policy.
outs = []spendableOutput{coinbaseOut}
tx, err := ctx.harness.CreateSignedTx(
outs, 1, defaultFee*3, false,
)
if err != nil {
ctx.t.Fatalf("unable to create "+
"transaction: %v", err)
}
return tx, []*btcutil.Tx{parent, child}
},
err: "",
},
{
// A transaction that doesn't signal replacement, can
// be replaced if the parent signals replacement.
name: "inherited replacement",
setup: func(ctx *testContext) (*btcutil.Tx, []*btcutil.Tx) {
coinbase := ctx.addCoinbaseTx(1)
// Create an initial parent transaction that
// marks replacement, we won't be replacing
// this directly however.
coinbaseOut := txOutToSpendableOut(coinbase, 0)
outs := []spendableOutput{coinbaseOut}
parent := ctx.addSignedTx(
outs, 1, defaultFee, true, false,
)
// Now create a transaction that spends that
// parent transaction, which is marked as NOT
// being RBF-able.
parentOut := txOutToSpendableOut(parent, 0)
parentOuts := []spendableOutput{parentOut}
childNoReplace := ctx.addSignedTx(
parentOuts, 1, defaultFee, false, false,
)
// Now we'll create another transaction that
// replaces the *child* only. This should work
// as the parent has been marked for RBF, even
// though the child hasn't.
respendOuts := []spendableOutput{parentOut}
childReplace, err := ctx.harness.CreateSignedTx(
respendOuts, 1, defaultFee*3, false,
)
if err != nil {
ctx.t.Fatalf("unable to create child tx: %v", err)
}
return childReplace, []*btcutil.Tx{childNoReplace}
},
err: "",
},
}
for _, testCase := range testCases {
success := t.Run(testCase.name, func(t *testing.T) {
// We'll start each test by creating our mempool
// harness.
harness, _, err := newPoolHarness(&chaincfg.MainNetParams)
if err != nil {
t.Fatalf("unable to create test pool: %v", err)
}
// We'll enable relay priority to ensure we can properly
// test fees between replacement transactions and the
// transactions it replaces.
harness.txPool.cfg.Policy.DisableRelayPriority = false
// Each test includes a setup method, which will set up
// its required dependencies. The transaction returned
// is the intended replacement, which should replace the
// expected list of transactions.
ctx := &testContext{t, harness}
replacementTx, replacedTxs := testCase.setup(ctx)
// Attempt to process the replacement transaction. If
// it's not a valid one, we should see the error
// expected by the test.
_, err = ctx.harness.txPool.ProcessTransaction(
replacementTx, false, false, 0,
)
if testCase.err == "" && err != nil {
ctx.t.Fatalf("expected no error when "+
"processing replacement transaction, "+
"got: %v", err)
}
if testCase.err != "" && err == nil {
ctx.t.Fatalf("expected error when processing "+
"replacement transaction: %v",
testCase.err)
}
if testCase.err != "" && err != nil {
if !strings.Contains(err.Error(), testCase.err) {
ctx.t.Fatalf("expected error: %v\n"+
"got: %v", testCase.err, err)
}
}
// If the replacement transaction is valid, we'll check
// that it has been included in the mempool and its
// conflicts have been removed. Otherwise, the conflicts
// should remain in the mempool.
valid := testCase.err == ""
for _, tx := range replacedTxs {
testPoolMembership(ctx, tx, false, !valid)
}
testPoolMembership(ctx, replacementTx, false, valid)
})
if !success {
break
}
}
}