lbcd/blockchain/checkpoints.go
Dave Collins 491acd4ca6 blockchain: Rework to use new db interface.
This commit is the first stage of several that are planned to convert
the blockchain package into a concurrent safe package that will
ultimately allow support for multi-peer download and concurrent chain
processing.  The goal is to update btcd proper after each step so it can
take advantage of the enhancements as they are developed.

In addition to the aforementioned benefit, this staged approach has been
chosen since it is absolutely critical to maintain consensus.
Separating the changes into several stages makes it easier for reviewers
to logically follow what is happening and therefore helps prevent
consensus bugs.  Naturally there are significant automated tests to help
prevent consensus issues as well.

The main focus of this stage is to convert the blockchain package to use
the new database interface and implement the chain-related functionality
which it no longer handles.  It also aims to improve efficiency in
various areas by making use of the new database and chain capabilities.

The following is an overview of the chain changes:

- Update to use the new database interface
- Add chain-related functionality that the old database used to handle
  - Main chain structure and state
  - Transaction spend tracking
- Implement a new pruned unspent transaction output (utxo) set
  - Provides efficient direct access to the unspent transaction outputs
  - Uses a domain specific compression algorithm that understands the
    standard transaction scripts in order to significantly compress them
  - Removes reliance on the transaction index and paves the way toward
    eventually enabling block pruning
- Modify the New function to accept a Config struct instead of
  inidividual parameters
- Replace the old TxStore type with a new UtxoViewpoint type that makes
  use of the new pruned utxo set
- Convert code to treat the new UtxoViewpoint as a rolling view that is
  used between connects and disconnects to improve efficiency
- Make best chain state always set when the chain instance is created
  - Remove now unnecessary logic for dealing with unset best state
- Make all exported functions concurrent safe
  - Currently using a single chain state lock as it provides a straight
    forward and easy to review path forward however this can be improved
    with more fine grained locking
- Optimize various cases where full blocks were being loaded when only
  the header is needed to help reduce the I/O load
- Add the ability for callers to get a snapshot of the current best
  chain stats in a concurrent safe fashion
  - Does not block callers while new blocks are being processed
- Make error messages that reference transaction outputs consistently
  use <transaction hash>:<output index>
- Introduce a new AssertError type an convert internal consistency
  checks to use it
- Update tests and examples to reflect the changes
- Add a full suite of tests to ensure correct functionality of the new
  code

The following is an overview of the btcd changes:

- Update to use the new database and chain interfaces
- Temporarily remove all code related to the transaction index
- Temporarily remove all code related to the address index
- Convert all code that uses transaction stores to use the new utxo
  view
- Rework several calls that required the block manager for safe
  concurrency to use the chain package directly now that it is
  concurrent safe
- Change all calls to obtain the best hash to use the new best state
  snapshot capability from the chain package
- Remove workaround for limits on fetching height ranges since the new
  database interface no longer imposes them
- Correct the gettxout RPC handler to return the best chain hash as
  opposed the hash the txout was found in
- Optimize various RPC handlers:
  - Change several of the RPC handlers to use the new chain snapshot
    capability to avoid needlessly loading data
  - Update several handlers to use new functionality to avoid accessing
    the block manager so they are able to return the data without
    blocking when the server is busy processing blocks
  - Update non-verbose getblock to avoid deserialization and
    serialization overhead
  - Update getblockheader to request the block height directly from
    chain and only load the header
  - Update getdifficulty to use the new cached data from chain
  - Update getmininginfo to use the new cached data from chain
  - Update non-verbose getrawtransaction to avoid deserialization and
    serialization overhead
  - Update gettxout to use the new utxo store versus loading
    full transactions using the transaction index

The following is an overview of the utility changes:
- Update addblock to use the new database and chain interfaces
- Update findcheckpoint to use the new database and chain interfaces
- Remove the dropafter utility which is no longer supported

NOTE: The transaction index and address index will be reimplemented in
another commit.
2016-04-11 16:47:27 -05:00

334 lines
10 KiB
Go

// Copyright (c) 2013-2016 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package blockchain
import (
"fmt"
"github.com/btcsuite/btcd/chaincfg"
database "github.com/btcsuite/btcd/database2"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
)
// CheckpointConfirmations is the number of blocks before the end of the current
// best block chain that a good checkpoint candidate must be.
const CheckpointConfirmations = 2016
// newShaHashFromStr converts the passed big-endian hex string into a
// wire.ShaHash. It only differs from the one available in wire in that
// it ignores the error since it will only (and must only) be called with
// hard-coded, and therefore known good, hashes.
func newShaHashFromStr(hexStr string) *wire.ShaHash {
sha, _ := wire.NewShaHashFromStr(hexStr)
return sha
}
// DisableCheckpoints provides a mechanism to disable validation against
// checkpoints which you DO NOT want to do in production. It is provided only
// for debug purposes.
//
// This function is safe for concurrent access.
func (b *BlockChain) DisableCheckpoints(disable bool) {
b.chainLock.Lock()
b.noCheckpoints = disable
b.chainLock.Unlock()
}
// Checkpoints returns a slice of checkpoints (regardless of whether they are
// already known). When checkpoints are disabled or there are no checkpoints
// for the active network, it will return nil.
//
// This function is safe for concurrent access.
func (b *BlockChain) Checkpoints() []chaincfg.Checkpoint {
b.chainLock.RLock()
defer b.chainLock.RUnlock()
if b.noCheckpoints || len(b.chainParams.Checkpoints) == 0 {
return nil
}
return b.chainParams.Checkpoints
}
// latestCheckpoint returns the most recent checkpoint (regardless of whether it
// is already known). When checkpoints are disabled or there are no checkpoints
// for the active network, it will return nil.
//
// This function MUST be called with the chain state lock held (for reads).
func (b *BlockChain) latestCheckpoint() *chaincfg.Checkpoint {
if b.noCheckpoints || len(b.chainParams.Checkpoints) == 0 {
return nil
}
checkpoints := b.chainParams.Checkpoints
return &checkpoints[len(checkpoints)-1]
}
// LatestCheckpoint returns the most recent checkpoint (regardless of whether it
// is already known). When checkpoints are disabled or there are no checkpoints
// for the active network, it will return nil.
//
// This function is safe for concurrent access.
func (b *BlockChain) LatestCheckpoint() *chaincfg.Checkpoint {
b.chainLock.RLock()
checkpoint := b.latestCheckpoint()
b.chainLock.RUnlock()
return checkpoint
}
// verifyCheckpoint returns whether the passed block height and hash combination
// match the hard-coded checkpoint data. It also returns true if there is no
// checkpoint data for the passed block height.
//
// This function MUST be called with the chain lock held (for reads).
func (b *BlockChain) verifyCheckpoint(height int32, hash *wire.ShaHash) bool {
if b.noCheckpoints || len(b.chainParams.Checkpoints) == 0 {
return true
}
// Nothing to check if there is no checkpoint data for the block height.
checkpoint, exists := b.checkpointsByHeight[height]
if !exists {
return true
}
if !checkpoint.Hash.IsEqual(hash) {
return false
}
log.Infof("Verified checkpoint at height %d/block %s", checkpoint.Height,
checkpoint.Hash)
return true
}
// findPreviousCheckpoint finds the most recent checkpoint that is already
// available in the downloaded portion of the block chain and returns the
// associated block. It returns nil if a checkpoint can't be found (this should
// really only happen for blocks before the first checkpoint).
//
// This function MUST be called with the chain lock held (for reads).
func (b *BlockChain) findPreviousCheckpoint() (*btcutil.Block, error) {
if b.noCheckpoints || len(b.chainParams.Checkpoints) == 0 {
return nil, nil
}
// No checkpoints.
checkpoints := b.chainParams.Checkpoints
numCheckpoints := len(checkpoints)
if numCheckpoints == 0 {
return nil, nil
}
// Perform the initial search to find and cache the latest known
// checkpoint if the best chain is not known yet or we haven't already
// previously searched.
if b.checkpointBlock == nil && b.nextCheckpoint == nil {
// Loop backwards through the available checkpoints to find one
// that is already available.
checkpointIndex := -1
err := b.db.View(func(dbTx database.Tx) error {
for i := numCheckpoints - 1; i >= 0; i-- {
if dbMainChainHasBlock(dbTx, checkpoints[i].Hash) {
checkpointIndex = i
break
}
}
return nil
})
if err != nil {
return nil, err
}
// No known latest checkpoint. This will only happen on blocks
// before the first known checkpoint. So, set the next expected
// checkpoint to the first checkpoint and return the fact there
// is no latest known checkpoint block.
if checkpointIndex == -1 {
b.nextCheckpoint = &checkpoints[0]
return nil, nil
}
// Cache the latest known checkpoint block for future lookups.
checkpoint := checkpoints[checkpointIndex]
err = b.db.View(func(dbTx database.Tx) error {
block, err := dbFetchBlockByHash(dbTx, checkpoint.Hash)
if err != nil {
return err
}
b.checkpointBlock = block
// Set the next expected checkpoint block accordingly.
b.nextCheckpoint = nil
if checkpointIndex < numCheckpoints-1 {
b.nextCheckpoint = &checkpoints[checkpointIndex+1]
}
return nil
})
if err != nil {
return nil, err
}
return b.checkpointBlock, nil
}
// At this point we've already searched for the latest known checkpoint,
// so when there is no next checkpoint, the current checkpoint lockin
// will always be the latest known checkpoint.
if b.nextCheckpoint == nil {
return b.checkpointBlock, nil
}
// When there is a next checkpoint and the height of the current best
// chain does not exceed it, the current checkpoint lockin is still
// the latest known checkpoint.
if b.bestNode.height < b.nextCheckpoint.Height {
return b.checkpointBlock, nil
}
// We've reached or exceeded the next checkpoint height. Note that
// once a checkpoint lockin has been reached, forks are prevented from
// any blocks before the checkpoint, so we don't have to worry about the
// checkpoint going away out from under us due to a chain reorganize.
// Cache the latest known checkpoint block for future lookups. Note
// that if this lookup fails something is very wrong since the chain
// has already passed the checkpoint which was verified as accurate
// before inserting it.
err := b.db.View(func(tx database.Tx) error {
block, err := dbFetchBlockByHash(tx, b.nextCheckpoint.Hash)
if err != nil {
return err
}
b.checkpointBlock = block
return nil
})
if err != nil {
return nil, err
}
// Set the next expected checkpoint.
checkpointIndex := -1
for i := numCheckpoints - 1; i >= 0; i-- {
if checkpoints[i].Hash.IsEqual(b.nextCheckpoint.Hash) {
checkpointIndex = i
break
}
}
b.nextCheckpoint = nil
if checkpointIndex != -1 && checkpointIndex < numCheckpoints-1 {
b.nextCheckpoint = &checkpoints[checkpointIndex+1]
}
return b.checkpointBlock, nil
}
// isNonstandardTransaction determines whether a transaction contains any
// scripts which are not one of the standard types.
func isNonstandardTransaction(tx *btcutil.Tx) bool {
// Check all of the output public key scripts for non-standard scripts.
for _, txOut := range tx.MsgTx().TxOut {
scriptClass := txscript.GetScriptClass(txOut.PkScript)
if scriptClass == txscript.NonStandardTy {
return true
}
}
return false
}
// IsCheckpointCandidate returns whether or not the passed block is a good
// checkpoint candidate.
//
// The factors used to determine a good checkpoint are:
// - The block must be in the main chain
// - The block must be at least 'CheckpointConfirmations' blocks prior to the
// current end of the main chain
// - The timestamps for the blocks before and after the checkpoint must have
// timestamps which are also before and after the checkpoint, respectively
// (due to the median time allowance this is not always the case)
// - The block must not contain any strange transaction such as those with
// nonstandard scripts
//
// The intent is that candidates are reviewed by a developer to make the final
// decision and then manually added to the list of checkpoints for a network.
//
// This function is safe for concurrent access.
func (b *BlockChain) IsCheckpointCandidate(block *btcutil.Block) (bool, error) {
b.chainLock.RLock()
defer b.chainLock.RUnlock()
// Checkpoints must be enabled.
if b.noCheckpoints {
return false, fmt.Errorf("checkpoints are disabled")
}
var isCandidate bool
err := b.db.View(func(dbTx database.Tx) error {
// A checkpoint must be in the main chain.
blockHeight, err := dbFetchHeightByHash(dbTx, block.Sha())
if err != nil {
// Only return an error if it's not due to the block not
// being in the main chain.
if !isNotInMainChainErr(err) {
return err
}
return nil
}
// Ensure the height of the passed block and the entry for the
// block in the main chain match. This should always be the
// case unless the caller provided an invalid block.
if blockHeight != block.Height() {
return fmt.Errorf("passed block height of %d does not "+
"match the main chain height of %d",
block.Height(), blockHeight)
}
// A checkpoint must be at least CheckpointConfirmations blocks
// before the end of the main chain.
mainChainHeight := b.bestNode.height
if blockHeight > (mainChainHeight - CheckpointConfirmations) {
return nil
}
// Get the previous block header.
prevHash := &block.MsgBlock().Header.PrevBlock
prevHeader, err := dbFetchHeaderByHash(dbTx, prevHash)
if err != nil {
return err
}
// Get the next block header.
nextHeader, err := dbFetchHeaderByHeight(dbTx, blockHeight+1)
if err != nil {
return err
}
// A checkpoint must have timestamps for the block and the
// blocks on either side of it in order (due to the median time
// allowance this is not always the case).
prevTime := prevHeader.Timestamp
curTime := block.MsgBlock().Header.Timestamp
nextTime := nextHeader.Timestamp
if prevTime.After(curTime) || nextTime.Before(curTime) {
return nil
}
// A checkpoint must have transactions that only contain
// standard scripts.
for _, tx := range block.Transactions() {
if isNonstandardTransaction(tx) {
return nil
}
}
// All of the checks passed, so the block is a candidate.
isCandidate = true
return nil
})
return isCandidate, err
}