545bc5d474
Since P2PKH signatures have variable lengths, we would attempt to parse P2PKH scripts as P2SH if they didn't fit the previous length constraints.
540 lines
16 KiB
Go
540 lines
16 KiB
Go
// Copyright (c) 2013-2017 The btcsuite developers
|
|
// Use of this source code is governed by an ISC
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package btcec
|
|
|
|
import (
|
|
"bytes"
|
|
"crypto/ecdsa"
|
|
"crypto/elliptic"
|
|
"crypto/hmac"
|
|
"crypto/sha256"
|
|
"errors"
|
|
"fmt"
|
|
"hash"
|
|
"math/big"
|
|
)
|
|
|
|
// Errors returned by canonicalPadding.
|
|
var (
|
|
errNegativeValue = errors.New("value may be interpreted as negative")
|
|
errExcessivelyPaddedValue = errors.New("value is excessively padded")
|
|
)
|
|
|
|
// Signature is a type representing an ecdsa signature.
|
|
type Signature struct {
|
|
R *big.Int
|
|
S *big.Int
|
|
}
|
|
|
|
var (
|
|
// Used in RFC6979 implementation when testing the nonce for correctness
|
|
one = big.NewInt(1)
|
|
|
|
// oneInitializer is used to fill a byte slice with byte 0x01. It is provided
|
|
// here to avoid the need to create it multiple times.
|
|
oneInitializer = []byte{0x01}
|
|
)
|
|
|
|
// Serialize returns the ECDSA signature in the more strict DER format. Note
|
|
// that the serialized bytes returned do not include the appended hash type
|
|
// used in Bitcoin signature scripts.
|
|
//
|
|
// encoding/asn1 is broken so we hand roll this output:
|
|
//
|
|
// 0x30 <length> 0x02 <length r> r 0x02 <length s> s
|
|
func (sig *Signature) Serialize() []byte {
|
|
// low 'S' malleability breaker
|
|
sigS := sig.S
|
|
if sigS.Cmp(S256().halfOrder) == 1 {
|
|
sigS = new(big.Int).Sub(S256().N, sigS)
|
|
}
|
|
// Ensure the encoded bytes for the r and s values are canonical and
|
|
// thus suitable for DER encoding.
|
|
rb := canonicalizeInt(sig.R)
|
|
sb := canonicalizeInt(sigS)
|
|
|
|
// total length of returned signature is 1 byte for each magic and
|
|
// length (6 total), plus lengths of r and s
|
|
length := 6 + len(rb) + len(sb)
|
|
b := make([]byte, length)
|
|
|
|
b[0] = 0x30
|
|
b[1] = byte(length - 2)
|
|
b[2] = 0x02
|
|
b[3] = byte(len(rb))
|
|
offset := copy(b[4:], rb) + 4
|
|
b[offset] = 0x02
|
|
b[offset+1] = byte(len(sb))
|
|
copy(b[offset+2:], sb)
|
|
return b
|
|
}
|
|
|
|
// Verify calls ecdsa.Verify to verify the signature of hash using the public
|
|
// key. It returns true if the signature is valid, false otherwise.
|
|
func (sig *Signature) Verify(hash []byte, pubKey *PublicKey) bool {
|
|
return ecdsa.Verify(pubKey.ToECDSA(), hash, sig.R, sig.S)
|
|
}
|
|
|
|
// IsEqual compares this Signature instance to the one passed, returning true
|
|
// if both Signatures are equivalent. A signature is equivalent to another, if
|
|
// they both have the same scalar value for R and S.
|
|
func (sig *Signature) IsEqual(otherSig *Signature) bool {
|
|
return sig.R.Cmp(otherSig.R) == 0 &&
|
|
sig.S.Cmp(otherSig.S) == 0
|
|
}
|
|
|
|
// MinSigLen is the minimum length of a DER encoded signature and is when both R
|
|
// and S are 1 byte each.
|
|
// 0x30 + <1-byte> + 0x02 + 0x01 + <byte> + 0x2 + 0x01 + <byte>
|
|
const MinSigLen = 8
|
|
|
|
func parseSig(sigStr []byte, curve elliptic.Curve, der bool) (*Signature, error) {
|
|
// Originally this code used encoding/asn1 in order to parse the
|
|
// signature, but a number of problems were found with this approach.
|
|
// Despite the fact that signatures are stored as DER, the difference
|
|
// between go's idea of a bignum (and that they have sign) doesn't agree
|
|
// with the openssl one (where they do not). The above is true as of
|
|
// Go 1.1. In the end it was simpler to rewrite the code to explicitly
|
|
// understand the format which is this:
|
|
// 0x30 <length of whole message> <0x02> <length of R> <R> 0x2
|
|
// <length of S> <S>.
|
|
|
|
signature := &Signature{}
|
|
|
|
if len(sigStr) < MinSigLen {
|
|
return nil, errors.New("malformed signature: too short")
|
|
}
|
|
// 0x30
|
|
index := 0
|
|
if sigStr[index] != 0x30 {
|
|
return nil, errors.New("malformed signature: no header magic")
|
|
}
|
|
index++
|
|
// length of remaining message
|
|
siglen := sigStr[index]
|
|
index++
|
|
|
|
// siglen should be less than the entire message and greater than
|
|
// the minimal message size.
|
|
if int(siglen+2) > len(sigStr) || int(siglen+2) < MinSigLen {
|
|
return nil, errors.New("malformed signature: bad length")
|
|
}
|
|
// trim the slice we're working on so we only look at what matters.
|
|
sigStr = sigStr[:siglen+2]
|
|
|
|
// 0x02
|
|
if sigStr[index] != 0x02 {
|
|
return nil,
|
|
errors.New("malformed signature: no 1st int marker")
|
|
}
|
|
index++
|
|
|
|
// Length of signature R.
|
|
rLen := int(sigStr[index])
|
|
// must be positive, must be able to fit in another 0x2, <len> <s>
|
|
// hence the -3. We assume that the length must be at least one byte.
|
|
index++
|
|
if rLen <= 0 || rLen > len(sigStr)-index-3 {
|
|
return nil, errors.New("malformed signature: bogus R length")
|
|
}
|
|
|
|
// Then R itself.
|
|
rBytes := sigStr[index : index+rLen]
|
|
if der {
|
|
switch err := canonicalPadding(rBytes); err {
|
|
case errNegativeValue:
|
|
return nil, errors.New("signature R is negative")
|
|
case errExcessivelyPaddedValue:
|
|
return nil, errors.New("signature R is excessively padded")
|
|
}
|
|
}
|
|
signature.R = new(big.Int).SetBytes(rBytes)
|
|
index += rLen
|
|
// 0x02. length already checked in previous if.
|
|
if sigStr[index] != 0x02 {
|
|
return nil, errors.New("malformed signature: no 2nd int marker")
|
|
}
|
|
index++
|
|
|
|
// Length of signature S.
|
|
sLen := int(sigStr[index])
|
|
index++
|
|
// S should be the rest of the string.
|
|
if sLen <= 0 || sLen > len(sigStr)-index {
|
|
return nil, errors.New("malformed signature: bogus S length")
|
|
}
|
|
|
|
// Then S itself.
|
|
sBytes := sigStr[index : index+sLen]
|
|
if der {
|
|
switch err := canonicalPadding(sBytes); err {
|
|
case errNegativeValue:
|
|
return nil, errors.New("signature S is negative")
|
|
case errExcessivelyPaddedValue:
|
|
return nil, errors.New("signature S is excessively padded")
|
|
}
|
|
}
|
|
signature.S = new(big.Int).SetBytes(sBytes)
|
|
index += sLen
|
|
|
|
// sanity check length parsing
|
|
if index != len(sigStr) {
|
|
return nil, fmt.Errorf("malformed signature: bad final length %v != %v",
|
|
index, len(sigStr))
|
|
}
|
|
|
|
// Verify also checks this, but we can be more sure that we parsed
|
|
// correctly if we verify here too.
|
|
// FWIW the ecdsa spec states that R and S must be | 1, N - 1 |
|
|
// but crypto/ecdsa only checks for Sign != 0. Mirror that.
|
|
if signature.R.Sign() != 1 {
|
|
return nil, errors.New("signature R isn't 1 or more")
|
|
}
|
|
if signature.S.Sign() != 1 {
|
|
return nil, errors.New("signature S isn't 1 or more")
|
|
}
|
|
if signature.R.Cmp(curve.Params().N) >= 0 {
|
|
return nil, errors.New("signature R is >= curve.N")
|
|
}
|
|
if signature.S.Cmp(curve.Params().N) >= 0 {
|
|
return nil, errors.New("signature S is >= curve.N")
|
|
}
|
|
|
|
return signature, nil
|
|
}
|
|
|
|
// ParseSignature parses a signature in BER format for the curve type `curve'
|
|
// into a Signature type, perfoming some basic sanity checks. If parsing
|
|
// according to the more strict DER format is needed, use ParseDERSignature.
|
|
func ParseSignature(sigStr []byte, curve elliptic.Curve) (*Signature, error) {
|
|
return parseSig(sigStr, curve, false)
|
|
}
|
|
|
|
// ParseDERSignature parses a signature in DER format for the curve type
|
|
// `curve` into a Signature type. If parsing according to the less strict
|
|
// BER format is needed, use ParseSignature.
|
|
func ParseDERSignature(sigStr []byte, curve elliptic.Curve) (*Signature, error) {
|
|
return parseSig(sigStr, curve, true)
|
|
}
|
|
|
|
// canonicalizeInt returns the bytes for the passed big integer adjusted as
|
|
// necessary to ensure that a big-endian encoded integer can't possibly be
|
|
// misinterpreted as a negative number. This can happen when the most
|
|
// significant bit is set, so it is padded by a leading zero byte in this case.
|
|
// Also, the returned bytes will have at least a single byte when the passed
|
|
// value is 0. This is required for DER encoding.
|
|
func canonicalizeInt(val *big.Int) []byte {
|
|
b := val.Bytes()
|
|
if len(b) == 0 {
|
|
b = []byte{0x00}
|
|
}
|
|
if b[0]&0x80 != 0 {
|
|
paddedBytes := make([]byte, len(b)+1)
|
|
copy(paddedBytes[1:], b)
|
|
b = paddedBytes
|
|
}
|
|
return b
|
|
}
|
|
|
|
// canonicalPadding checks whether a big-endian encoded integer could
|
|
// possibly be misinterpreted as a negative number (even though OpenSSL
|
|
// treats all numbers as unsigned), or if there is any unnecessary
|
|
// leading zero padding.
|
|
func canonicalPadding(b []byte) error {
|
|
switch {
|
|
case b[0]&0x80 == 0x80:
|
|
return errNegativeValue
|
|
case len(b) > 1 && b[0] == 0x00 && b[1]&0x80 != 0x80:
|
|
return errExcessivelyPaddedValue
|
|
default:
|
|
return nil
|
|
}
|
|
}
|
|
|
|
// hashToInt converts a hash value to an integer. There is some disagreement
|
|
// about how this is done. [NSA] suggests that this is done in the obvious
|
|
// manner, but [SECG] truncates the hash to the bit-length of the curve order
|
|
// first. We follow [SECG] because that's what OpenSSL does. Additionally,
|
|
// OpenSSL right shifts excess bits from the number if the hash is too large
|
|
// and we mirror that too.
|
|
// This is borrowed from crypto/ecdsa.
|
|
func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
|
|
orderBits := c.Params().N.BitLen()
|
|
orderBytes := (orderBits + 7) / 8
|
|
if len(hash) > orderBytes {
|
|
hash = hash[:orderBytes]
|
|
}
|
|
|
|
ret := new(big.Int).SetBytes(hash)
|
|
excess := len(hash)*8 - orderBits
|
|
if excess > 0 {
|
|
ret.Rsh(ret, uint(excess))
|
|
}
|
|
return ret
|
|
}
|
|
|
|
// recoverKeyFromSignature recovers a public key from the signature "sig" on the
|
|
// given message hash "msg". Based on the algorithm found in section 5.1.5 of
|
|
// SEC 1 Ver 2.0, page 47-48 (53 and 54 in the pdf). This performs the details
|
|
// in the inner loop in Step 1. The counter provided is actually the j parameter
|
|
// of the loop * 2 - on the first iteration of j we do the R case, else the -R
|
|
// case in step 1.6. This counter is used in the bitcoin compressed signature
|
|
// format and thus we match bitcoind's behaviour here.
|
|
func recoverKeyFromSignature(curve *KoblitzCurve, sig *Signature, msg []byte,
|
|
iter int, doChecks bool) (*PublicKey, error) {
|
|
// 1.1 x = (n * i) + r
|
|
Rx := new(big.Int).Mul(curve.Params().N,
|
|
new(big.Int).SetInt64(int64(iter/2)))
|
|
Rx.Add(Rx, sig.R)
|
|
if Rx.Cmp(curve.Params().P) != -1 {
|
|
return nil, errors.New("calculated Rx is larger than curve P")
|
|
}
|
|
|
|
// convert 02<Rx> to point R. (step 1.2 and 1.3). If we are on an odd
|
|
// iteration then 1.6 will be done with -R, so we calculate the other
|
|
// term when uncompressing the point.
|
|
Ry, err := decompressPoint(curve, Rx, iter%2 == 1)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// 1.4 Check n*R is point at infinity
|
|
if doChecks {
|
|
nRx, nRy := curve.ScalarMult(Rx, Ry, curve.Params().N.Bytes())
|
|
if nRx.Sign() != 0 || nRy.Sign() != 0 {
|
|
return nil, errors.New("n*R does not equal the point at infinity")
|
|
}
|
|
}
|
|
|
|
// 1.5 calculate e from message using the same algorithm as ecdsa
|
|
// signature calculation.
|
|
e := hashToInt(msg, curve)
|
|
|
|
// Step 1.6.1:
|
|
// We calculate the two terms sR and eG separately multiplied by the
|
|
// inverse of r (from the signature). We then add them to calculate
|
|
// Q = r^-1(sR-eG)
|
|
invr := new(big.Int).ModInverse(sig.R, curve.Params().N)
|
|
|
|
// first term.
|
|
invrS := new(big.Int).Mul(invr, sig.S)
|
|
invrS.Mod(invrS, curve.Params().N)
|
|
sRx, sRy := curve.ScalarMult(Rx, Ry, invrS.Bytes())
|
|
|
|
// second term.
|
|
e.Neg(e)
|
|
e.Mod(e, curve.Params().N)
|
|
e.Mul(e, invr)
|
|
e.Mod(e, curve.Params().N)
|
|
minuseGx, minuseGy := curve.ScalarBaseMult(e.Bytes())
|
|
|
|
// TODO: this would be faster if we did a mult and add in one
|
|
// step to prevent the jacobian conversion back and forth.
|
|
Qx, Qy := curve.Add(sRx, sRy, minuseGx, minuseGy)
|
|
|
|
return &PublicKey{
|
|
Curve: curve,
|
|
X: Qx,
|
|
Y: Qy,
|
|
}, nil
|
|
}
|
|
|
|
// SignCompact produces a compact signature of the data in hash with the given
|
|
// private key on the given koblitz curve. The isCompressed parameter should
|
|
// be used to detail if the given signature should reference a compressed
|
|
// public key or not. If successful the bytes of the compact signature will be
|
|
// returned in the format:
|
|
// <(byte of 27+public key solution)+4 if compressed >< padded bytes for signature R><padded bytes for signature S>
|
|
// where the R and S parameters are padde up to the bitlengh of the curve.
|
|
func SignCompact(curve *KoblitzCurve, key *PrivateKey,
|
|
hash []byte, isCompressedKey bool) ([]byte, error) {
|
|
sig, err := key.Sign(hash)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// bitcoind checks the bit length of R and S here. The ecdsa signature
|
|
// algorithm returns R and S mod N therefore they will be the bitsize of
|
|
// the curve, and thus correctly sized.
|
|
for i := 0; i < (curve.H+1)*2; i++ {
|
|
pk, err := recoverKeyFromSignature(curve, sig, hash, i, true)
|
|
if err == nil && pk.X.Cmp(key.X) == 0 && pk.Y.Cmp(key.Y) == 0 {
|
|
result := make([]byte, 1, 2*curve.byteSize+1)
|
|
result[0] = 27 + byte(i)
|
|
if isCompressedKey {
|
|
result[0] += 4
|
|
}
|
|
// Not sure this needs rounding but safer to do so.
|
|
curvelen := (curve.BitSize + 7) / 8
|
|
|
|
// Pad R and S to curvelen if needed.
|
|
bytelen := (sig.R.BitLen() + 7) / 8
|
|
if bytelen < curvelen {
|
|
result = append(result,
|
|
make([]byte, curvelen-bytelen)...)
|
|
}
|
|
result = append(result, sig.R.Bytes()...)
|
|
|
|
bytelen = (sig.S.BitLen() + 7) / 8
|
|
if bytelen < curvelen {
|
|
result = append(result,
|
|
make([]byte, curvelen-bytelen)...)
|
|
}
|
|
result = append(result, sig.S.Bytes()...)
|
|
|
|
return result, nil
|
|
}
|
|
}
|
|
|
|
return nil, errors.New("no valid solution for pubkey found")
|
|
}
|
|
|
|
// RecoverCompact verifies the compact signature "signature" of "hash" for the
|
|
// Koblitz curve in "curve". If the signature matches then the recovered public
|
|
// key will be returned as well as a boolen if the original key was compressed
|
|
// or not, else an error will be returned.
|
|
func RecoverCompact(curve *KoblitzCurve, signature,
|
|
hash []byte) (*PublicKey, bool, error) {
|
|
bitlen := (curve.BitSize + 7) / 8
|
|
if len(signature) != 1+bitlen*2 {
|
|
return nil, false, errors.New("invalid compact signature size")
|
|
}
|
|
|
|
iteration := int((signature[0] - 27) & ^byte(4))
|
|
|
|
// format is <header byte><bitlen R><bitlen S>
|
|
sig := &Signature{
|
|
R: new(big.Int).SetBytes(signature[1 : bitlen+1]),
|
|
S: new(big.Int).SetBytes(signature[bitlen+1:]),
|
|
}
|
|
// The iteration used here was encoded
|
|
key, err := recoverKeyFromSignature(curve, sig, hash, iteration, false)
|
|
if err != nil {
|
|
return nil, false, err
|
|
}
|
|
|
|
return key, ((signature[0] - 27) & 4) == 4, nil
|
|
}
|
|
|
|
// signRFC6979 generates a deterministic ECDSA signature according to RFC 6979 and BIP 62.
|
|
func signRFC6979(privateKey *PrivateKey, hash []byte) (*Signature, error) {
|
|
|
|
privkey := privateKey.ToECDSA()
|
|
N := S256().N
|
|
halfOrder := S256().halfOrder
|
|
k := nonceRFC6979(privkey.D, hash)
|
|
inv := new(big.Int).ModInverse(k, N)
|
|
r, _ := privkey.Curve.ScalarBaseMult(k.Bytes())
|
|
r.Mod(r, N)
|
|
|
|
if r.Sign() == 0 {
|
|
return nil, errors.New("calculated R is zero")
|
|
}
|
|
|
|
e := hashToInt(hash, privkey.Curve)
|
|
s := new(big.Int).Mul(privkey.D, r)
|
|
s.Add(s, e)
|
|
s.Mul(s, inv)
|
|
s.Mod(s, N)
|
|
|
|
if s.Cmp(halfOrder) == 1 {
|
|
s.Sub(N, s)
|
|
}
|
|
if s.Sign() == 0 {
|
|
return nil, errors.New("calculated S is zero")
|
|
}
|
|
return &Signature{R: r, S: s}, nil
|
|
}
|
|
|
|
// nonceRFC6979 generates an ECDSA nonce (`k`) deterministically according to RFC 6979.
|
|
// It takes a 32-byte hash as an input and returns 32-byte nonce to be used in ECDSA algorithm.
|
|
func nonceRFC6979(privkey *big.Int, hash []byte) *big.Int {
|
|
|
|
curve := S256()
|
|
q := curve.Params().N
|
|
x := privkey
|
|
alg := sha256.New
|
|
|
|
qlen := q.BitLen()
|
|
holen := alg().Size()
|
|
rolen := (qlen + 7) >> 3
|
|
bx := append(int2octets(x, rolen), bits2octets(hash, curve, rolen)...)
|
|
|
|
// Step B
|
|
v := bytes.Repeat(oneInitializer, holen)
|
|
|
|
// Step C (Go zeroes the all allocated memory)
|
|
k := make([]byte, holen)
|
|
|
|
// Step D
|
|
k = mac(alg, k, append(append(v, 0x00), bx...))
|
|
|
|
// Step E
|
|
v = mac(alg, k, v)
|
|
|
|
// Step F
|
|
k = mac(alg, k, append(append(v, 0x01), bx...))
|
|
|
|
// Step G
|
|
v = mac(alg, k, v)
|
|
|
|
// Step H
|
|
for {
|
|
// Step H1
|
|
var t []byte
|
|
|
|
// Step H2
|
|
for len(t)*8 < qlen {
|
|
v = mac(alg, k, v)
|
|
t = append(t, v...)
|
|
}
|
|
|
|
// Step H3
|
|
secret := hashToInt(t, curve)
|
|
if secret.Cmp(one) >= 0 && secret.Cmp(q) < 0 {
|
|
return secret
|
|
}
|
|
k = mac(alg, k, append(v, 0x00))
|
|
v = mac(alg, k, v)
|
|
}
|
|
}
|
|
|
|
// mac returns an HMAC of the given key and message.
|
|
func mac(alg func() hash.Hash, k, m []byte) []byte {
|
|
h := hmac.New(alg, k)
|
|
h.Write(m)
|
|
return h.Sum(nil)
|
|
}
|
|
|
|
// https://tools.ietf.org/html/rfc6979#section-2.3.3
|
|
func int2octets(v *big.Int, rolen int) []byte {
|
|
out := v.Bytes()
|
|
|
|
// left pad with zeros if it's too short
|
|
if len(out) < rolen {
|
|
out2 := make([]byte, rolen)
|
|
copy(out2[rolen-len(out):], out)
|
|
return out2
|
|
}
|
|
|
|
// drop most significant bytes if it's too long
|
|
if len(out) > rolen {
|
|
out2 := make([]byte, rolen)
|
|
copy(out2, out[len(out)-rolen:])
|
|
return out2
|
|
}
|
|
|
|
return out
|
|
}
|
|
|
|
// https://tools.ietf.org/html/rfc6979#section-2.3.4
|
|
func bits2octets(in []byte, curve elliptic.Curve, rolen int) []byte {
|
|
z1 := hashToInt(in, curve)
|
|
z2 := new(big.Int).Sub(z1, curve.Params().N)
|
|
if z2.Sign() < 0 {
|
|
return int2octets(z1, rolen)
|
|
}
|
|
return int2octets(z2, rolen)
|
|
}
|