lbcd/database/interface.go
Roy Lee 45627c7a6a [lbry] rename btcd to lbcd
Co-authored-by: Brannon King <countprimes@gmail.com>
2022-05-23 23:53:30 -07:00

467 lines
21 KiB
Go

// Copyright (c) 2015-2016 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
// Parts of this interface were inspired heavily by the excellent boltdb project
// at https://github.com/boltdb/bolt by Ben B. Johnson.
package database
import (
"github.com/lbryio/lbcd/chaincfg/chainhash"
btcutil "github.com/lbryio/lbcutil"
)
// Cursor represents a cursor over key/value pairs and nested buckets of a
// bucket.
//
// Note that open cursors are not tracked on bucket changes and any
// modifications to the bucket, with the exception of Cursor.Delete, invalidates
// the cursor. After invalidation, the cursor must be repositioned, or the keys
// and values returned may be unpredictable.
type Cursor interface {
// Bucket returns the bucket the cursor was created for.
Bucket() Bucket
// Delete removes the current key/value pair the cursor is at without
// invalidating the cursor.
//
// The interface contract guarantees at least the following errors will
// be returned (other implementation-specific errors are possible):
// - ErrIncompatibleValue if attempted when the cursor points to a
// nested bucket
// - ErrTxNotWritable if attempted against a read-only transaction
// - ErrTxClosed if the transaction has already been closed
Delete() error
// First positions the cursor at the first key/value pair and returns
// whether or not the pair exists.
First() bool
// Last positions the cursor at the last key/value pair and returns
// whether or not the pair exists.
Last() bool
// Next moves the cursor one key/value pair forward and returns whether
// or not the pair exists.
Next() bool
// Prev moves the cursor one key/value pair backward and returns whether
// or not the pair exists.
Prev() bool
// Seek positions the cursor at the first key/value pair that is greater
// than or equal to the passed seek key. Returns whether or not the
// pair exists.
Seek(seek []byte) bool
// Key returns the current key the cursor is pointing to.
Key() []byte
// Value returns the current value the cursor is pointing to. This will
// be nil for nested buckets.
Value() []byte
}
// Bucket represents a collection of key/value pairs.
type Bucket interface {
// Bucket retrieves a nested bucket with the given key. Returns nil if
// the bucket does not exist.
Bucket(key []byte) Bucket
// CreateBucket creates and returns a new nested bucket with the given
// key.
//
// The interface contract guarantees at least the following errors will
// be returned (other implementation-specific errors are possible):
// - ErrBucketExists if the bucket already exists
// - ErrBucketNameRequired if the key is empty
// - ErrIncompatibleValue if the key is otherwise invalid for the
// particular implementation
// - ErrTxNotWritable if attempted against a read-only transaction
// - ErrTxClosed if the transaction has already been closed
CreateBucket(key []byte) (Bucket, error)
// CreateBucketIfNotExists creates and returns a new nested bucket with
// the given key if it does not already exist.
//
// The interface contract guarantees at least the following errors will
// be returned (other implementation-specific errors are possible):
// - ErrBucketNameRequired if the key is empty
// - ErrIncompatibleValue if the key is otherwise invalid for the
// particular implementation
// - ErrTxNotWritable if attempted against a read-only transaction
// - ErrTxClosed if the transaction has already been closed
CreateBucketIfNotExists(key []byte) (Bucket, error)
// DeleteBucket removes a nested bucket with the given key. This also
// includes removing all nested buckets and keys under the bucket being
// deleted.
//
// The interface contract guarantees at least the following errors will
// be returned (other implementation-specific errors are possible):
// - ErrBucketNotFound if the specified bucket does not exist
// - ErrTxNotWritable if attempted against a read-only transaction
// - ErrTxClosed if the transaction has already been closed
DeleteBucket(key []byte) error
// ForEach invokes the passed function with every key/value pair in the
// bucket. This does not include nested buckets or the key/value pairs
// within those nested buckets.
//
// WARNING: It is not safe to mutate data while iterating with this
// method. Doing so may cause the underlying cursor to be invalidated
// and return unexpected keys and/or values.
//
// The interface contract guarantees at least the following errors will
// be returned (other implementation-specific errors are possible):
// - ErrTxClosed if the transaction has already been closed
//
// NOTE: The slices returned by this function are only valid during a
// transaction. Attempting to access them after a transaction has ended
// results in undefined behavior. Additionally, the slices must NOT
// be modified by the caller. These constraints prevent additional data
// copies and allows support for memory-mapped database implementations.
ForEach(func(k, v []byte) error) error
// ForEachBucket invokes the passed function with the key of every
// nested bucket in the current bucket. This does not include any
// nested buckets within those nested buckets.
//
// WARNING: It is not safe to mutate data while iterating with this
// method. Doing so may cause the underlying cursor to be invalidated
// and return unexpected keys and/or values.
//
// The interface contract guarantees at least the following errors will
// be returned (other implementation-specific errors are possible):
// - ErrTxClosed if the transaction has already been closed
//
// NOTE: The keys returned by this function are only valid during a
// transaction. Attempting to access them after a transaction has ended
// results in undefined behavior. This constraint prevents additional
// data copies and allows support for memory-mapped database
// implementations.
ForEachBucket(func(k []byte) error) error
// Cursor returns a new cursor, allowing for iteration over the bucket's
// key/value pairs and nested buckets in forward or backward order.
//
// You must seek to a position using the First, Last, or Seek functions
// before calling the Next, Prev, Key, or Value functions. Failure to
// do so will result in the same return values as an exhausted cursor,
// which is false for the Prev and Next functions and nil for Key and
// Value functions.
Cursor() Cursor
// Writable returns whether or not the bucket is writable.
Writable() bool
// Put saves the specified key/value pair to the bucket. Keys that do
// not already exist are added and keys that already exist are
// overwritten.
//
// The interface contract guarantees at least the following errors will
// be returned (other implementation-specific errors are possible):
// - ErrKeyRequired if the key is empty
// - ErrIncompatibleValue if the key is the same as an existing bucket
// - ErrTxNotWritable if attempted against a read-only transaction
// - ErrTxClosed if the transaction has already been closed
//
// NOTE: The slices passed to this function must NOT be modified by the
// caller. This constraint prevents the requirement for additional data
// copies and allows support for memory-mapped database implementations.
Put(key, value []byte) error
// Get returns the value for the given key. Returns nil if the key does
// not exist in this bucket. An empty slice is returned for keys that
// exist but have no value assigned.
//
// NOTE: The value returned by this function is only valid during a
// transaction. Attempting to access it after a transaction has ended
// results in undefined behavior. Additionally, the value must NOT
// be modified by the caller. These constraints prevent additional data
// copies and allows support for memory-mapped database implementations.
Get(key []byte) []byte
// Delete removes the specified key from the bucket. Deleting a key
// that does not exist does not return an error.
//
// The interface contract guarantees at least the following errors will
// be returned (other implementation-specific errors are possible):
// - ErrKeyRequired if the key is empty
// - ErrIncompatibleValue if the key is the same as an existing bucket
// - ErrTxNotWritable if attempted against a read-only transaction
// - ErrTxClosed if the transaction has already been closed
Delete(key []byte) error
}
// BlockRegion specifies a particular region of a block identified by the
// specified hash, given an offset and length.
type BlockRegion struct {
Hash *chainhash.Hash
Offset uint32
Len uint32
}
// Tx represents a database transaction. It can either by read-only or
// read-write. The transaction provides a metadata bucket against which all
// read and writes occur.
//
// As would be expected with a transaction, no changes will be saved to the
// database until it has been committed. The transaction will only provide a
// view of the database at the time it was created. Transactions should not be
// long running operations.
type Tx interface {
// Metadata returns the top-most bucket for all metadata storage.
Metadata() Bucket
// StoreBlock stores the provided block into the database. There are no
// checks to ensure the block connects to a previous block, contains
// double spends, or any additional functionality such as transaction
// indexing. It simply stores the block in the database.
//
// The interface contract guarantees at least the following errors will
// be returned (other implementation-specific errors are possible):
// - ErrBlockExists when the block hash already exists
// - ErrTxNotWritable if attempted against a read-only transaction
// - ErrTxClosed if the transaction has already been closed
//
// Other errors are possible depending on the implementation.
StoreBlock(block *btcutil.Block) error
// HasBlock returns whether or not a block with the given hash exists
// in the database.
//
// The interface contract guarantees at least the following errors will
// be returned (other implementation-specific errors are possible):
// - ErrTxClosed if the transaction has already been closed
//
// Other errors are possible depending on the implementation.
HasBlock(hash *chainhash.Hash) (bool, error)
// HasBlocks returns whether or not the blocks with the provided hashes
// exist in the database.
//
// The interface contract guarantees at least the following errors will
// be returned (other implementation-specific errors are possible):
// - ErrTxClosed if the transaction has already been closed
//
// Other errors are possible depending on the implementation.
HasBlocks(hashes []chainhash.Hash) ([]bool, error)
// FetchBlockHeader returns the raw serialized bytes for the block
// header identified by the given hash. The raw bytes are in the format
// returned by Serialize on a wire.BlockHeader.
//
// It is highly recommended to use this function (or FetchBlockHeaders)
// to obtain block headers over the FetchBlockRegion(s) functions since
// it provides the backend drivers the freedom to perform very specific
// optimizations which can result in significant speed advantages when
// working with headers.
//
// The interface contract guarantees at least the following errors will
// be returned (other implementation-specific errors are possible):
// - ErrBlockNotFound if the requested block hash does not exist
// - ErrTxClosed if the transaction has already been closed
// - ErrCorruption if the database has somehow become corrupted
//
// NOTE: The data returned by this function is only valid during a
// database transaction. Attempting to access it after a transaction
// has ended results in undefined behavior. This constraint prevents
// additional data copies and allows support for memory-mapped database
// implementations.
FetchBlockHeader(hash *chainhash.Hash) ([]byte, error)
// FetchBlockHeaders returns the raw serialized bytes for the block
// headers identified by the given hashes. The raw bytes are in the
// format returned by Serialize on a wire.BlockHeader.
//
// It is highly recommended to use this function (or FetchBlockHeader)
// to obtain block headers over the FetchBlockRegion(s) functions since
// it provides the backend drivers the freedom to perform very specific
// optimizations which can result in significant speed advantages when
// working with headers.
//
// Furthermore, depending on the specific implementation, this function
// can be more efficient for bulk loading multiple block headers than
// loading them one-by-one with FetchBlockHeader.
//
// The interface contract guarantees at least the following errors will
// be returned (other implementation-specific errors are possible):
// - ErrBlockNotFound if any of the request block hashes do not exist
// - ErrTxClosed if the transaction has already been closed
// - ErrCorruption if the database has somehow become corrupted
//
// NOTE: The data returned by this function is only valid during a
// database transaction. Attempting to access it after a transaction
// has ended results in undefined behavior. This constraint prevents
// additional data copies and allows support for memory-mapped database
// implementations.
FetchBlockHeaders(hashes []chainhash.Hash) ([][]byte, error)
// FetchBlock returns the raw serialized bytes for the block identified
// by the given hash. The raw bytes are in the format returned by
// Serialize on a wire.MsgBlock.
//
// The interface contract guarantees at least the following errors will
// be returned (other implementation-specific errors are possible):
// - ErrBlockNotFound if the requested block hash does not exist
// - ErrTxClosed if the transaction has already been closed
// - ErrCorruption if the database has somehow become corrupted
//
// NOTE: The data returned by this function is only valid during a
// database transaction. Attempting to access it after a transaction
// has ended results in undefined behavior. This constraint prevents
// additional data copies and allows support for memory-mapped database
// implementations.
FetchBlock(hash *chainhash.Hash) ([]byte, error)
// FetchBlocks returns the raw serialized bytes for the blocks
// identified by the given hashes. The raw bytes are in the format
// returned by Serialize on a wire.MsgBlock.
//
// The interface contract guarantees at least the following errors will
// be returned (other implementation-specific errors are possible):
// - ErrBlockNotFound if the any of the requested block hashes do not
// exist
// - ErrTxClosed if the transaction has already been closed
// - ErrCorruption if the database has somehow become corrupted
//
// NOTE: The data returned by this function is only valid during a
// database transaction. Attempting to access it after a transaction
// has ended results in undefined behavior. This constraint prevents
// additional data copies and allows support for memory-mapped database
// implementations.
FetchBlocks(hashes []chainhash.Hash) ([][]byte, error)
// FetchBlockRegion returns the raw serialized bytes for the given
// block region.
//
// For example, it is possible to directly extract Bitcoin transactions
// and/or scripts from a block with this function. Depending on the
// backend implementation, this can provide significant savings by
// avoiding the need to load entire blocks.
//
// The raw bytes are in the format returned by Serialize on a
// wire.MsgBlock and the Offset field in the provided BlockRegion is
// zero-based and relative to the start of the block (byte 0).
//
// The interface contract guarantees at least the following errors will
// be returned (other implementation-specific errors are possible):
// - ErrBlockNotFound if the requested block hash does not exist
// - ErrBlockRegionInvalid if the region exceeds the bounds of the
// associated block
// - ErrTxClosed if the transaction has already been closed
// - ErrCorruption if the database has somehow become corrupted
//
// NOTE: The data returned by this function is only valid during a
// database transaction. Attempting to access it after a transaction
// has ended results in undefined behavior. This constraint prevents
// additional data copies and allows support for memory-mapped database
// implementations.
FetchBlockRegion(region *BlockRegion) ([]byte, error)
// FetchBlockRegions returns the raw serialized bytes for the given
// block regions.
//
// For example, it is possible to directly extract Bitcoin transactions
// and/or scripts from various blocks with this function. Depending on
// the backend implementation, this can provide significant savings by
// avoiding the need to load entire blocks.
//
// The raw bytes are in the format returned by Serialize on a
// wire.MsgBlock and the Offset fields in the provided BlockRegions are
// zero-based and relative to the start of the block (byte 0).
//
// The interface contract guarantees at least the following errors will
// be returned (other implementation-specific errors are possible):
// - ErrBlockNotFound if any of the requested block hashed do not
// exist
// - ErrBlockRegionInvalid if one or more region exceed the bounds of
// the associated block
// - ErrTxClosed if the transaction has already been closed
// - ErrCorruption if the database has somehow become corrupted
//
// NOTE: The data returned by this function is only valid during a
// database transaction. Attempting to access it after a transaction
// has ended results in undefined behavior. This constraint prevents
// additional data copies and allows support for memory-mapped database
// implementations.
FetchBlockRegions(regions []BlockRegion) ([][]byte, error)
// ******************************************************************
// Methods related to both atomic metadata storage and block storage.
// ******************************************************************
// Commit commits all changes that have been made to the metadata or
// block storage. Depending on the backend implementation this could be
// to a cache that is periodically synced to persistent storage or
// directly to persistent storage. In any case, all transactions which
// are started after the commit finishes will include all changes made
// by this transaction. Calling this function on a managed transaction
// will result in a panic.
Commit() error
// Rollback undoes all changes that have been made to the metadata or
// block storage. Calling this function on a managed transaction will
// result in a panic.
Rollback() error
}
// DB provides a generic interface that is used to store bitcoin blocks and
// related metadata. This interface is intended to be agnostic to the actual
// mechanism used for backend data storage. The RegisterDriver function can be
// used to add a new backend data storage method.
//
// This interface is divided into two distinct categories of functionality.
//
// The first category is atomic metadata storage with bucket support. This is
// accomplished through the use of database transactions.
//
// The second category is generic block storage. This functionality is
// intentionally separate because the mechanism used for block storage may or
// may not be the same mechanism used for metadata storage. For example, it is
// often more efficient to store the block data as flat files while the metadata
// is kept in a database. However, this interface aims to be generic enough to
// support blocks in the database too, if needed by a particular backend.
type DB interface {
// Type returns the database driver type the current database instance
// was created with.
Type() string
// Begin starts a transaction which is either read-only or read-write
// depending on the specified flag. Multiple read-only transactions
// can be started simultaneously while only a single read-write
// transaction can be started at a time. The call will block when
// starting a read-write transaction when one is already open.
//
// NOTE: The transaction must be closed by calling Rollback or Commit on
// it when it is no longer needed. Failure to do so can result in
// unclaimed memory and/or inablity to close the database due to locks
// depending on the specific database implementation.
Begin(writable bool) (Tx, error)
// View invokes the passed function in the context of a managed
// read-only transaction. Any errors returned from the user-supplied
// function are returned from this function.
//
// Calling Rollback or Commit on the transaction passed to the
// user-supplied function will result in a panic.
View(fn func(tx Tx) error) error
// Update invokes the passed function in the context of a managed
// read-write transaction. Any errors returned from the user-supplied
// function will cause the transaction to be rolled back and are
// returned from this function. Otherwise, the transaction is committed
// when the user-supplied function returns a nil error.
//
// Calling Rollback or Commit on the transaction passed to the
// user-supplied function will result in a panic.
Update(fn func(tx Tx) error) error
// Close cleanly shuts down the database and syncs all data. It will
// block until all database transactions have been finalized (rolled
// back or committed).
Close() error
}