lbcd/peer.go
Dave Collins 346ff6f9e2 Filter duplicate getblocks requests.
This commit adds detection and filtering for back-to-back duplicate
getblocks requests.  This is needed because the trigger for requesting
more blocks is receiving an orphan.  When the peer is further behind than
the number of blocks advertised via a single inventory message, the same
orphan block will be sent multiple times.  When the peer receives the
final inventory message, it too contains the orphan that was previously
sent.  This leads to a duplicate getblocks request that must be filtered
to prevent requesting the final series of blocks again.
2013-09-18 13:33:54 -05:00

1246 lines
37 KiB
Go

// Copyright (c) 2013 Conformal Systems LLC.
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package main
import (
"bytes"
"container/list"
"errors"
"fmt"
"github.com/conformal/btcchain"
"github.com/conformal/btcdb"
"github.com/conformal/btcutil"
"github.com/conformal/btcwire"
"github.com/conformal/go-socks"
"github.com/davecgh/go-spew/spew"
"net"
"strconv"
"sync"
"time"
)
const (
// outputBufferSize is the number of elements the output channels use.
outputBufferSize = 50
// invTrickleSize is the maximum amount of inventory to send in a single
// message when trickling inventory to remote peers.
maxInvTrickleSize = 1000
// maxKnownInventory is the maximum number of items to keep in the known
// inventory cache.
maxKnownInventory = 20000
)
// userAgent is the user agent string used to identify ourselves to other
// bitcoin peers.
var userAgent = fmt.Sprintf("/btcd:%d.%d.%d/", appMajor, appMinor, appPatch)
// zeroHash is the zero value hash (all zeros). It is defined as a convenience.
var zeroHash btcwire.ShaHash
// minUint32 is a helper function to return the minimum of two uint32s.
// This avoids a math import and the need to cast to floats.
func minUint32(a, b uint32) uint32 {
if a < b {
return a
}
return b
}
// newNetAddress attempts to extract the IP address and port from the passed
// net.Addr interface and create a bitcoin NetAddress structure using that
// information.
func newNetAddress(addr net.Addr, services btcwire.ServiceFlag) (*btcwire.NetAddress, error) {
// addr will be a net.TCPAddr when not using a proxy.
if tcpAddr, ok := addr.(*net.TCPAddr); ok {
ip := tcpAddr.IP
port := uint16(tcpAddr.Port)
na := btcwire.NewNetAddressIPPort(ip, port, services)
return na, nil
}
// addr will be a socks.ProxiedAddr when using a proxy.
if proxiedAddr, ok := addr.(*socks.ProxiedAddr); ok {
ip := net.ParseIP(proxiedAddr.Host)
if ip == nil {
ip = net.ParseIP("0.0.0.0")
}
port := uint16(proxiedAddr.Port)
na := btcwire.NewNetAddressIPPort(ip, port, services)
return na, nil
}
// For the most part, addr should be one of the two above cases, but
// to be safe, fall back to trying to parse the information from the
// address string as a last resort.
host, portStr, err := net.SplitHostPort(addr.String())
if err != nil {
return nil, err
}
ip := net.ParseIP(host)
port, err := strconv.ParseUint(portStr, 10, 16)
if err != nil {
return nil, err
}
na := btcwire.NewNetAddressIPPort(ip, uint16(port), services)
return na, nil
}
// peer provides a bitcoin peer for handling bitcoin communications.
type peer struct {
server *server
protocolVersion uint32
btcnet btcwire.BitcoinNet
services btcwire.ServiceFlag
started bool
conn net.Conn
addr string
na *btcwire.NetAddress
timeConnected time.Time
inbound bool
disconnect bool
persistent bool
versionKnown bool
knownAddresses map[string]bool
knownInventory *MruInventoryMap
knownInvMutex sync.Mutex
lastBlock int32
prevGetBlocksBegin *btcwire.ShaHash
prevGetBlocksStop *btcwire.ShaHash
prevGetBlockMutex sync.Mutex
requestQueue *list.List
invSendQueue *list.List
continueHash *btcwire.ShaHash
wg sync.WaitGroup
outputQueue chan btcwire.Message
outputInvChan chan *btcwire.InvVect
blockProcessed chan bool
quit chan bool
}
// isKnownInventory returns whether or not the peer is known to have the passed
// inventory. It is safe for concurrent access.
func (p *peer) isKnownInventory(invVect *btcwire.InvVect) bool {
p.knownInvMutex.Lock()
defer p.knownInvMutex.Unlock()
if p.knownInventory.Exists(invVect) {
return true
}
return false
}
// addKnownInventory adds the passed inventory to the cache of known inventory
// for the peer. It is safe for concurrent access.
func (p *peer) addKnownInventory(invVect *btcwire.InvVect) {
p.knownInvMutex.Lock()
defer p.knownInvMutex.Unlock()
p.knownInventory.Add(invVect)
}
// pushVersionMsg sends a version message to the connected peer using the
// current state.
func (p *peer) pushVersionMsg() error {
_, blockNum, err := p.server.db.NewestSha()
if err != nil {
return err
}
// Create a NetAddress for the local IP. Don't assume any services
// until we know otherwise.
naMe, err := newNetAddress(p.conn.LocalAddr(), 0)
if err != nil {
return err
}
// Create a NetAddress for the remote IP. Don't assume any services
// until we know otherwise.
naYou, err := newNetAddress(p.conn.RemoteAddr(), 0)
if err != nil {
return err
}
// Version message.
msg := btcwire.NewMsgVersion(naMe, naYou, p.server.nonce, userAgent,
int32(blockNum))
// XXX: bitcoind appears to always enable the full node services flag
// of the remote peer netaddress field in the version message regardless
// of whether it knows it supports it or not. Also, bitcoind sets
// the services field of the local peer to 0 regardless of support.
//
// Realistically, this should be set as follows:
// - For outgoing connections:
// - Set the local netaddress services to what the local peer
// actually supports
// - Set the remote netaddress services to 0 to indicate no services
// as they are still unknown
// - For incoming connections:
// - Set the local netaddress services to what the local peer
// actually supports
// - Set the remote netaddress services to the what was advertised by
// by the remote peer in its version message
msg.AddrYou.Services = btcwire.SFNodeNetwork
// Advertise that we're a full node.
msg.Services = btcwire.SFNodeNetwork
p.outputQueue <- msg
return nil
}
// handleVersionMsg is invoked when a peer receives a version bitcoin message
// and is used to negotiate the protocol version details as well as kick start
// the communications.
func (p *peer) handleVersionMsg(msg *btcwire.MsgVersion) {
// Detect self connections.
if msg.Nonce == p.server.nonce {
log.Debugf("[PEER] Disconnecting peer connected to self %s",
p.conn.RemoteAddr())
p.Disconnect()
return
}
// Limit to one version message per peer.
if p.versionKnown {
log.Errorf("[PEER] Only one version message per peer is allowed %s.",
p.conn.RemoteAddr())
p.Disconnect()
return
}
// Negotiate the protocol version.
p.protocolVersion = minUint32(p.protocolVersion, uint32(msg.ProtocolVersion))
p.versionKnown = true
log.Debugf("[PEER] Negotiated protocol version %d for peer %s",
p.protocolVersion, p.conn.RemoteAddr())
p.lastBlock = msg.LastBlock
// Set the supported services for the peer to what the remote peer
// advertised.
p.services = msg.Services
// Inbound connections.
if p.inbound {
// Send version.
err := p.pushVersionMsg()
if err != nil {
log.Errorf("[PEER] %v", err)
p.Disconnect()
return
}
}
// Set up a NetAddress for the peer to be used with AddrManager.
na, err := newNetAddress(p.conn.RemoteAddr(), p.services)
if err != nil {
log.Errorf("[PEER] %v", err)
p.Disconnect()
return
}
p.na = na
// Send verack.
p.outputQueue <- btcwire.NewMsgVerAck()
// Outbound connections.
if !p.inbound {
// TODO(davec): Only do this if not doing the initial block
// download and the local address is routable.
if !cfg.DisableListen {
// Advertise the local address.
na, err := newNetAddress(p.conn.LocalAddr(), p.services)
if err != nil {
log.Errorf("[PEER] %v", err)
p.Disconnect()
return
}
addresses := map[string]*btcwire.NetAddress{
NetAddressKey(na): na,
}
p.pushAddrMsg(addresses)
}
// Request known addresses if the server address manager needs
// more and the peer has a protocol version new enough to
// include a timestamp with addresses.
hasTimestamp := p.protocolVersion >= btcwire.NetAddressTimeVersion
if p.server.addrManager.NeedMoreAddresses() && hasTimestamp {
p.outputQueue <- btcwire.NewMsgGetAddr()
}
// Mark the address as a known good address.
p.server.addrManager.Good(p.na)
} else {
// A peer might not be advertising the same address that it
// actually connected from. One example of why this can happen
// is with NAT. Only add the address to the address manager if
// the addresses agree.
if NetAddressKey(&msg.AddrMe) == NetAddressKey(p.na) {
p.server.addrManager.AddAddress(p.na, p.na)
p.server.addrManager.Good(p.na)
}
}
// Signal the block manager this peer is a new sync candidate.
p.server.blockManager.newCandidates <- p
// TODO: Relay alerts.
}
// pushTxMsg sends a tx message for the provided transaction hash to the
// connected peer. An error is returned if the transaction sha is not known.
func (p *peer) pushTxMsg(sha btcwire.ShaHash) error {
// We dont deal with these for now.
return errors.New("Tx fetching not implemented")
}
// pushBlockMsg sends a block message for the provided block hash to the
// connected peer. An error is returned if the block hash is not known.
func (p *peer) pushBlockMsg(sha btcwire.ShaHash) error {
// What should this function do about the rate limiting the
// number of blocks queued for this peer?
// Current thought is have a counting mutex in the peer
// such that if > N Tx/Block requests are currently in
// the tx queue, wait until the mutex clears allowing more to be
// sent. This prevents 500 1+MB blocks from being loaded into
// memory and sit around until the output queue drains.
// Actually the outputQueue has a limit of 50 in its queue
// but still 50MB to 1.6GB(50 32MB blocks) just setting
// in memory waiting to be sent is pointless.
// I would recommend a getdata request limit of about 5
// outstanding objects.
// Should the tx complete api be a mutex or channel?
blk, err := p.server.db.FetchBlockBySha(&sha)
if err != nil {
log.Tracef("[PEER] Unable to fetch requested block sha %v: %v",
&sha, err)
return err
}
p.QueueMessage(blk.MsgBlock())
// When the peer requests the final block that was advertised in
// response to a getblocks message which requested more blocks than
// would fit into a single message, send it a new inventory message
// to trigger it to issue another getblocks message for the next
// batch of inventory.
if p.continueHash != nil && p.continueHash.IsEqual(&sha) {
hash, _, err := p.server.db.NewestSha()
if err == nil {
invMsg := btcwire.NewMsgInv()
iv := btcwire.NewInvVect(btcwire.InvVect_Block, hash)
invMsg.AddInvVect(iv)
p.QueueMessage(invMsg)
p.continueHash = nil
}
}
return nil
}
// pushGetBlocksMsg sends a getblocks message for the provided block locator
// and stop hash. It will ignore back-to-back duplicate requests.
func (p *peer) pushGetBlocksMsg(locator btcchain.BlockLocator, stopHash *btcwire.ShaHash) error {
p.prevGetBlockMutex.Lock()
defer p.prevGetBlockMutex.Unlock()
// Extract the begin hash from the block locator, if one was specified,
// to use for filtering duplicate getblocks requests.
// request.
var beginHash *btcwire.ShaHash
if len(locator) > 0 {
beginHash = locator[0]
}
// Filter duplicate getblocks requests.
if p.prevGetBlocksStop != nil && p.prevGetBlocksBegin != nil &&
beginHash != nil && stopHash.IsEqual(p.prevGetBlocksStop) &&
beginHash.IsEqual(p.prevGetBlocksBegin) {
log.Tracef("[PEER] Filtering duplicate [getblocks] with begin "+
"hash %v, stop hash %v", beginHash, stopHash)
return nil
}
// Construct the getblocks request and queue it to be sent.
msg := btcwire.NewMsgGetBlocks(stopHash)
for _, hash := range locator {
err := msg.AddBlockLocatorHash(hash)
if err != nil {
return err
}
}
p.QueueMessage(msg)
// Update the previous getblocks request information for filtering
// duplicates.
p.prevGetBlocksBegin = beginHash
p.prevGetBlocksStop = stopHash
return nil
}
// handleBlockMsg is invoked when a peer receives a block bitcoin message. It
// blocks until the bitcoin block has been fully processed.
func (p *peer) handleBlockMsg(msg *btcwire.MsgBlock, buf []byte) {
// Convert the raw MsgBlock to a btcutil.Block which
// provides some convience methods and things such as
// hash caching.
block := btcutil.NewBlockFromBlockAndBytes(msg, buf)
// Add the block to the known inventory for the peer.
hash, err := block.Sha()
if err != nil {
log.Errorf("Unable to get block hash: %v", err)
return
}
iv := btcwire.NewInvVect(btcwire.InvVect_Block, hash)
p.addKnownInventory(iv)
// Queue the block up to be handled by the block
// manager and intentionally block further receives
// until the bitcoin block is fully processed and known
// good or bad. This helps prevent a malicious peer
// from queueing up a bunch of bad blocks before
// disconnecting (or being disconnected) and wasting
// memory. Additionally, this behavior is depended on
// by at least the block acceptance test tool as the
// reference implementation processes blocks in the same
// thread and therefore blocks further messages until
// the bitcoin block has been fully processed.
p.server.blockManager.QueueBlock(block, p)
<-p.blockProcessed
}
// handleInvMsg is invoked when a peer receives an inv bitcoin message and is
// used to examine the inventory being advertised by the remote peer and react
// accordingly.
//
// NOTE: This will need to have tx handling added as well when they are
// supported.
func (p *peer) handleInvMsg(msg *btcwire.MsgInv) {
// Attempt to find the final block in the inventory list. There may
// not be one.
lastBlock := -1
invVects := msg.InvList
for i := len(invVects) - 1; i >= 0; i-- {
if invVects[i].Type == btcwire.InvVect_Block {
lastBlock = i
break
}
}
// Request the advertised inventory if we don't already have it. Also,
// request parent blocks of orphans if we receive one we already have.
// Finally, attempt to detect potential stalls due to long side chains
// we already have and request more blocks to prevent them.
chain := p.server.blockManager.blockChain
for i, iv := range invVects {
switch iv.Type {
case btcwire.InvVect_Block:
// Add the inventory to the cache of known inventory
// for the peer.
p.addKnownInventory(iv)
// Request the inventory if we don't already have it.
if !chain.HaveInventory(iv) {
// Add it to the request queue.
p.requestQueue.PushBack(iv)
continue
}
// The block is an orphan block that we already have.
// When the existing orphan was processed, it requested
// the missing parent blocks. When this scenario
// happens, it means there were more blocks missing
// than are allowed into a single inventory message. As
// a result, once this peer requested the final
// advertised block, the remote peer noticed and is now
// resending the orphan block as an available block
// to signal there are more missing blocks that need to
// be requested.
if chain.IsKnownOrphan(&iv.Hash) {
// Request blocks starting at the latest known
// up to the root of the orphan that just came
// in.
orphanRoot := chain.GetOrphanRoot(&iv.Hash)
locator, err := chain.LatestBlockLocator()
if err != nil {
log.Errorf("[PEER] Failed to get block "+
"locator for the latest block: "+
"%v", err)
continue
}
p.pushGetBlocksMsg(locator, orphanRoot)
continue
}
// We already have the final block advertised by this
// inventory message, so force a request for more. This
// should only really happen if we're on a really long
// side chain.
if i == lastBlock {
// Request blocks after this one up to the
// final one the remote peer knows about (zero
// stop hash).
locator := chain.BlockLocatorFromHash(&iv.Hash)
p.pushGetBlocksMsg(locator, &zeroHash)
}
// Ignore unsupported inventory types.
default:
continue
}
}
// Request as much as possible at once. Anything that won't fit into
// the request will be requested on the next inv message.
numRequested := 0
gdmsg := btcwire.NewMsgGetData()
for e := p.requestQueue.Front(); e != nil; e = p.requestQueue.Front() {
iv := e.Value.(*btcwire.InvVect)
gdmsg.AddInvVect(iv)
p.requestQueue.Remove(e)
numRequested++
if numRequested >= btcwire.MaxInvPerMsg {
break
}
}
if len(gdmsg.InvList) > 0 {
p.QueueMessage(gdmsg)
}
}
// handleGetData is invoked when a peer receives a getdata bitcoin message and
// is used to deliver block and transaction information.
func (p *peer) handleGetDataMsg(msg *btcwire.MsgGetData) {
notFound := btcwire.NewMsgNotFound()
out:
for _, iv := range msg.InvList {
var err error
switch iv.Type {
case btcwire.InvVect_Tx:
err = p.pushTxMsg(iv.Hash)
case btcwire.InvVect_Block:
err = p.pushBlockMsg(iv.Hash)
default:
log.Warnf("[PEER] Unknown type in inventory request %d",
iv.Type)
break out
}
if err != nil {
notFound.AddInvVect(iv)
}
}
if len(notFound.InvList) != 0 {
p.QueueMessage(notFound)
}
}
// handleGetBlocksMsg is invoked when a peer receives a getdata bitcoin message.
func (p *peer) handleGetBlocksMsg(msg *btcwire.MsgGetBlocks) {
// Return all block hashes to the latest one (up to max per message) if
// no stop hash was specified.
// Attempt to find the ending index of the stop hash if specified.
endIdx := btcdb.AllShas
if !msg.HashStop.IsEqual(&zeroHash) {
block, err := p.server.db.FetchBlockBySha(&msg.HashStop)
if err == nil {
endIdx = block.Height() + 1
}
}
// Find the most recent known block based on the block locator.
// Use the block after the genesis block if no other blocks in the
// provided locator are known. This does mean the client will start
// over with the genesis block if unknown block locators are provided.
// This mirrors the behavior in the reference implementation.
startIdx := int64(1)
for _, hash := range msg.BlockLocatorHashes {
block, err := p.server.db.FetchBlockBySha(hash)
if err == nil {
// Start with the next hash since we know this one.
startIdx = block.Height() + 1
break
}
}
// Don't attempt to fetch more than we can put into a single message.
autoContinue := false
if endIdx-startIdx > btcwire.MaxBlocksPerMsg {
endIdx = startIdx + btcwire.MaxBlocksPerMsg
autoContinue = true
}
// Generate inventory message.
//
// The FetchBlockBySha call is limited to a maximum number of hashes
// per invocation. Since the maximum number of inventory per message
// might be larger, call it multiple times with the appropriate indices
// as needed.
invMsg := btcwire.NewMsgInv()
for start := startIdx; start < endIdx; {
// Fetch the inventory from the block database.
hashList, err := p.server.db.FetchHeightRange(start, endIdx)
if err != nil {
log.Warnf("[PEER] Block lookup failed: %v", err)
return
}
// The database did not return any further hashes. Break out of
// the loop now.
if len(hashList) == 0 {
break
}
// Add block inventory to the message.
for _, hash := range hashList {
hashCopy := hash
iv := btcwire.NewInvVect(btcwire.InvVect_Block, &hashCopy)
invMsg.AddInvVect(iv)
}
start += int64(len(hashList))
}
// Send the inventory message if there is anything to send.
if len(invMsg.InvList) > 0 {
invListLen := len(invMsg.InvList)
if autoContinue && invListLen == btcwire.MaxBlocksPerMsg {
// Intentionally use a copy of the final hash so there
// is not a reference into the inventory slice which
// would prevent the entire slice from being eligible
// for GC as soon as it's sent.
continueHash := invMsg.InvList[invListLen-1].Hash
p.continueHash = &continueHash
}
p.QueueMessage(invMsg)
}
}
// handleGetBlocksMsg is invoked when a peer receives a getheaders bitcoin
// message.
func (p *peer) handleGetHeadersMsg(msg *btcwire.MsgGetHeaders) {
// Attempt to look up the height of the provided stop hash.
endIdx := btcdb.AllShas
block, err := p.server.db.FetchBlockBySha(&msg.HashStop)
if err == nil {
endIdx = block.Height() + 1
}
// There are no block locators so a specific header is being requested
// as identified by the stop hash.
if len(msg.BlockLocatorHashes) == 0 {
// No blocks with the stop hash were found so there is nothing
// to do. Just return. This behavior mirrors the reference
// implementation.
if endIdx == btcdb.AllShas {
return
}
// Send the requested block header.
headersMsg := btcwire.NewMsgHeaders()
hdr := block.MsgBlock().Header // copy
hdr.TxnCount = 0
headersMsg.AddBlockHeader(&hdr)
p.QueueMessage(headersMsg)
return
}
// Find the most recent known block based on the block locator.
// Use the block after the genesis block if no other blocks in the
// provided locator are known. This does mean the client will start
// over with the genesis block if unknown block locators are provided.
// This mirrors the behavior in the reference implementation.
startIdx := int64(1)
for _, hash := range msg.BlockLocatorHashes {
block, err := p.server.db.FetchBlockBySha(hash)
if err == nil {
// Start with the next hash since we know this one.
startIdx = block.Height() + 1
break
}
}
// Don't attempt to fetch more than we can put into a single message.
if endIdx-startIdx > btcwire.MaxBlockHeadersPerMsg {
endIdx = startIdx + btcwire.MaxBlockHeadersPerMsg
}
// Generate headers message and send it.
//
// The FetchBlockBySha call is limited to a maximum number of hashes
// per invocation. Since the maximum number of headers per message
// might be larger, call it multiple times with the appropriate indices
// as needed.
headersMsg := btcwire.NewMsgHeaders()
for start := startIdx; start < endIdx; {
// Fetch the inventory from the block database.
hashList, err := p.server.db.FetchHeightRange(start, endIdx)
if err != nil {
log.Warnf("[PEER] Header lookup failed: %v", err)
return
}
// The database did not return any further hashes. Break out of
// the loop now.
if len(hashList) == 0 {
break
}
// Add headers to the message.
for _, hash := range hashList {
block, err := p.server.db.FetchBlockBySha(&hash)
if err != nil {
log.Warnf("[PEER] Lookup of known block hash "+
"failed: %v", err)
continue
}
hdr := block.MsgBlock().Header // copy
hdr.TxnCount = 0
headersMsg.AddBlockHeader(&hdr)
}
// Start at the next block header after the latest one on the
// next loop iteration.
start += int64(len(hashList))
}
p.QueueMessage(headersMsg)
}
// handleGetAddrMsg is invoked when a peer receives a getaddr bitcoin message
// and is used to provide the peer with known addresses from the address
// manager.
func (p *peer) handleGetAddrMsg(msg *btcwire.MsgGetAddr) {
// Get the current known addresses from the address manager.
addrCache := p.server.addrManager.AddressCache()
// Push the addresses.
err := p.pushAddrMsg(addrCache)
if err != nil {
log.Errorf("[PEER] %v", err)
p.Disconnect()
return
}
}
// pushAddrMsg sends one, or more, addr message(s) to the connected peer using
// the provided addresses.
func (p *peer) pushAddrMsg(addresses map[string]*btcwire.NetAddress) error {
// Nothing to send.
if len(addresses) == 0 {
return nil
}
numAdded := 0
msg := btcwire.NewMsgAddr()
for _, na := range addresses {
// Filter addresses the peer already knows about.
if p.knownAddresses[NetAddressKey(na)] {
continue
}
// Add the address to the message.
err := msg.AddAddress(na)
if err != nil {
return err
}
numAdded++
// Split into multiple messages as needed.
if numAdded > 0 && numAdded%btcwire.MaxAddrPerMsg == 0 {
p.outputQueue <- msg
msg.ClearAddresses()
}
}
// Send message with remaining addresses if needed.
if numAdded%btcwire.MaxAddrPerMsg != 0 {
p.outputQueue <- msg
}
return nil
}
// handleAddrMsg is invoked when a peer receives an addr bitcoin message and
// is used to notify the server about advertised addresses.
func (p *peer) handleAddrMsg(msg *btcwire.MsgAddr) {
// Ignore old style addresses which don't include a timestamp.
if p.protocolVersion < btcwire.NetAddressTimeVersion {
return
}
// A message that has no addresses is invalid.
if len(msg.AddrList) == 0 {
log.Errorf("[PEER] Command [%s] from %s does not contain any addresses",
msg.Command(), p.conn.RemoteAddr())
p.Disconnect()
return
}
for _, na := range msg.AddrList {
// Don't add more address if we're disconnecting.
if p.disconnect {
return
}
// Set the timestamp to 5 days ago if it's more than 24 hours
// in the future so this address is one of the first to be
// removed when space is needed.
now := time.Now()
if na.Timestamp.After(now.Add(time.Minute * 10)) {
na.Timestamp = now.Add(-1 * time.Hour * 24 * 5)
}
// Add address to known addresses for this peer.
p.knownAddresses[NetAddressKey(na)] = true
}
// Add addresses to server address manager. The address manager handles
// the details of things such as preventing duplicate addresses, max
// addresses, and last seen updates.
p.server.addrManager.AddAddresses(msg.AddrList, p.na)
}
// handlePingMsg is invoked when a peer receives a ping bitcoin message. For
// recent clients (protocol version > BIP0031Version), it replies with a pong
// message. For older clients, it does nothing and anything other than failure
// is considered a successful ping.
func (p *peer) handlePingMsg(msg *btcwire.MsgPing) {
// Only Reply with pong is message comes from a new enough client.
if p.protocolVersion > btcwire.BIP0031Version {
// Include nonce from ping so pong can be identified.
p.outputQueue <- btcwire.NewMsgPong(msg.Nonce)
}
}
// readMessage reads the next bitcoin message from the peer with logging.
func (p *peer) readMessage() (msg btcwire.Message, buf []byte, err error) {
msg, buf, err = btcwire.ReadMessage(p.conn, p.protocolVersion, p.btcnet)
if err != nil {
return
}
log.Debugf("[PEER] Received command [%v] from %s", msg.Command(),
p.conn.RemoteAddr())
// Use closures to log expensive operations so they are only run when
// the logging level requires it.
log.Tracef("%v", newLogClosure(func() string {
return "[PEER] " + spew.Sdump(msg)
}))
log.Tracef("%v", newLogClosure(func() string {
return "[PEER] " + spew.Sdump(buf)
}))
return
}
// writeMessage sends a bitcoin Message to the peer with logging.
func (p *peer) writeMessage(msg btcwire.Message) {
// Don't do anything if we're disconnecting.
if p.disconnect == true {
return
}
log.Debugf("[PEER] Sending command [%v] to %s", msg.Command(),
p.conn.RemoteAddr())
// Use closures to log expensive operations so they are only run when the
// logging level requires it.
log.Tracef("%v", newLogClosure(func() string {
return "[PEER] msg" + spew.Sdump(msg)
}))
log.Tracef("%v", newLogClosure(func() string {
var buf bytes.Buffer
err := btcwire.WriteMessage(&buf, msg, p.protocolVersion, p.btcnet)
if err != nil {
return err.Error()
}
return "[PEER] " + spew.Sdump(buf.Bytes())
}))
// Write the message to the peer.
err := btcwire.WriteMessage(p.conn, msg, p.protocolVersion, p.btcnet)
if err != nil {
p.Disconnect()
log.Errorf("[PEER] %v", err)
return
}
}
// isAllowedByRegression returns whether or not the passed error is allowed by
// regression tests without disconnecting the peer. In particular, regression
// tests need to be allowed to send malformed messages without the peer being
// disconnected.
func (p *peer) isAllowedByRegression(err error) bool {
// Don't allow the error if it's not specifically a malformed message
// error.
if _, ok := err.(*btcwire.MessageError); !ok {
return false
}
// Don't allow the error if it's not coming from localhost or the
// hostname can't be determined for some reason.
host, _, err := net.SplitHostPort(p.conn.RemoteAddr().String())
if err != nil {
return false
}
if host != "127.0.0.1" && host != "localhost" {
return false
}
// Allowed if all checks passed.
return true
}
// inHandler handles all incoming messages for the peer. It must be run as a
// goroutine.
func (p *peer) inHandler() {
out:
for !p.disconnect {
rmsg, buf, err := p.readMessage()
if err != nil {
// In order to allow regression tests with malformed
// messages, don't disconnect the peer when we're in
// regression test mode and the error is one of the
// allowed errors.
if cfg.RegressionTest && p.isAllowedByRegression(err) {
log.Errorf("[PEER] %v", err)
continue
}
// Only log the error if we're not forcibly disconnecting.
if !p.disconnect {
log.Errorf("[PEER] %v", err)
}
break out
}
// Ensure version message comes first.
if _, ok := rmsg.(*btcwire.MsgVersion); !ok && !p.versionKnown {
log.Errorf("[PEER] A version message must precede all others")
break out
}
// Handle each supported message type.
markConnected := false
switch msg := rmsg.(type) {
case *btcwire.MsgVersion:
p.handleVersionMsg(msg)
markConnected = true
case *btcwire.MsgVerAck:
// Do nothing.
case *btcwire.MsgGetAddr:
p.handleGetAddrMsg(msg)
case *btcwire.MsgAddr:
p.handleAddrMsg(msg)
markConnected = true
case *btcwire.MsgPing:
p.handlePingMsg(msg)
markConnected = true
case *btcwire.MsgPong:
// Don't do anything, but could try to work out network
// timing or similar.
case *btcwire.MsgAlert:
p.server.BroadcastMessage(msg, p)
case *btcwire.MsgBlock:
p.handleBlockMsg(msg, buf)
case *btcwire.MsgInv:
p.handleInvMsg(msg)
markConnected = true
case *btcwire.MsgGetData:
p.handleGetDataMsg(msg)
markConnected = true
case *btcwire.MsgGetBlocks:
p.handleGetBlocksMsg(msg)
case *btcwire.MsgGetHeaders:
p.handleGetHeadersMsg(msg)
default:
log.Debugf("[PEER] Received unhandled message of type %v: Fix Me",
rmsg.Command())
}
// Mark the address as currently connected and working as of
// now if one of the messages that trigger
if markConnected && !p.disconnect {
if p.na == nil {
log.Warnf("we're getting stuff before we " +
"got a version message. that's bad")
continue
}
p.server.addrManager.Connected(p.na)
}
}
// Ensure connection is closed and notify server and block manager that
// the peer is done.
p.Disconnect()
p.server.donePeers <- p
p.server.blockManager.donePeers <- p
p.quit <- true
p.wg.Done()
log.Tracef("[PEER] Peer input handler done for %s", p.conn.RemoteAddr())
}
// outHandler handles all outgoing messages for the peer. It must be run as a
// goroutine. It uses a buffered channel to serialize output messages while
// allowing the sender to continue running asynchronously.
func (p *peer) outHandler() {
trickleTicker := time.NewTicker(time.Second * 10)
out:
for {
select {
case msg := <-p.outputQueue:
p.writeMessage(msg)
case iv := <-p.outputInvChan:
p.invSendQueue.PushBack(iv)
case <-trickleTicker.C:
// Don't send anything if we're disconnecting or there
// is no queued inventory.
if p.disconnect || p.invSendQueue.Len() == 0 {
continue
}
// Create and send as many inv messages as needed to
// drain the inventory send queue.
invMsg := btcwire.NewMsgInv()
for e := p.invSendQueue.Front(); e != nil; e = p.invSendQueue.Front() {
iv := p.invSendQueue.Remove(e).(*btcwire.InvVect)
// Don't send inventory that became known after
// the initial check.
if p.isKnownInventory(iv) {
continue
}
invMsg.AddInvVect(iv)
if len(invMsg.InvList) >= maxInvTrickleSize {
p.writeMessage(invMsg)
invMsg = btcwire.NewMsgInv()
}
// Add the inventory that is being relayed to
// the known inventory for the peer.
p.addKnownInventory(iv)
}
if len(invMsg.InvList) > 0 {
p.writeMessage(invMsg)
}
case <-p.quit:
break out
}
}
p.wg.Done()
log.Tracef("[PEER] Peer output handler done for %s", p.conn.RemoteAddr())
}
// QueueMessage adds the passed bitcoin message to the peer send queue. It
// uses a buffered channel to communicate with the output handler goroutine so
// it is automatically rate limited and safe for concurrent access.
func (p *peer) QueueMessage(msg btcwire.Message) {
p.outputQueue <- msg
}
// QueueInventory adds the passed inventory to the inventory send queue which
// might not be sent right away, rather it is trickled to the peer in batches.
// Inventory that the peer is already known to have is ignored. It is safe for
// concurrent access.
func (p *peer) QueueInventory(invVect *btcwire.InvVect) {
// Don't add the inventory to the send queue if the peer is
// already known to have it.
if p.isKnownInventory(invVect) {
return
}
p.outputInvChan <- invVect
}
// Start begins processing input and output messages. It also sends the initial
// version message for outbound connections to start the negotiation process.
func (p *peer) Start() error {
// Already started?
if p.started {
return nil
}
log.Tracef("[PEER] Starting peer %s", p.conn.RemoteAddr())
// Send an initial version message if this is an outbound connection.
if !p.inbound {
err := p.pushVersionMsg()
if err != nil {
log.Errorf("[PEER] %v", err)
p.conn.Close()
return err
}
}
// Start processing input and output.
go p.inHandler()
go p.outHandler()
p.wg.Add(2)
p.started = true
return nil
}
// Disconnect disconnects the peer by closing the connection. It also sets
// a flag so the impending shutdown can be detected.
func (p *peer) Disconnect() {
p.disconnect = true
if p.conn != nil {
p.conn.Close()
}
}
// Shutdown gracefully shuts down the peer by disconnecting it and waiting for
// all goroutines to finish.
func (p *peer) Shutdown() {
log.Tracef("[PEER] Shutdown peer %s", p.addr)
p.Disconnect()
p.wg.Wait()
}
// newPeerBase returns a new base bitcoin peer for the provided server and
// inbound flag. This is used by the newInboundPeer and newOutboundPeer
// functions to perform base setup needed by both types of peers.
func newPeerBase(s *server, inbound bool) *peer {
p := peer{
server: s,
protocolVersion: btcwire.ProtocolVersion,
btcnet: s.btcnet,
services: btcwire.SFNodeNetwork,
timeConnected: time.Now(),
inbound: inbound,
knownAddresses: make(map[string]bool),
knownInventory: NewMruInventoryMap(maxKnownInventory),
requestQueue: list.New(),
invSendQueue: list.New(),
outputQueue: make(chan btcwire.Message, outputBufferSize),
outputInvChan: make(chan *btcwire.InvVect, outputBufferSize),
blockProcessed: make(chan bool, 1),
quit: make(chan bool),
}
return &p
}
// newPeer returns a new inbound bitcoin peer for the provided server and
// connection. Use Start to begin processing incoming and outgoing messages.
func newInboundPeer(s *server, conn net.Conn) *peer {
p := newPeerBase(s, true)
p.conn = conn
p.addr = conn.RemoteAddr().String()
return p
}
// newOutbountPeer returns a new outbound bitcoin peer for the provided server and
// address and connects to it asynchronously. If the connection is successful
// then the peer will also be started.
func newOutboundPeer(s *server, addr string, persistent bool) *peer {
p := newPeerBase(s, false)
p.addr = addr
p.persistent = persistent
// Setup p.na with a temporary address that we are connecting to with
// faked up service flags. We will replace this with the real one after
// version negotiation is successful. The only failure case here would
// be if the string was incomplete for connection so can't be split
// into address and port, and thus this would be invalid anyway. In
// which case we return nil to be handled by the caller. This must be
// done before we fork off the goroutine because as soon as this
// function returns the peer must have a valid netaddress.
ip, portStr, err := net.SplitHostPort(addr)
if err != nil {
log.Errorf("Tried to create a new outbound peer with invalid "+
"address %s: %v", addr, err)
return nil
}
port, err := strconv.ParseUint(portStr, 10, 16)
if err != nil {
log.Errorf("Tried to create a new outbound peer with invalid "+
"port %s: %v", portStr, err)
return nil
}
p.na = btcwire.NewNetAddressIPPort(net.ParseIP(ip), uint16(port), 0)
p.wg.Add(1)
go func() {
// Select which dial method to call depending on whether or
// not a proxy is configured. Also, add proxy information to
// logged address if needed.
dial := net.Dial
faddr := addr
if cfg.Proxy != "" {
proxy := &socks.Proxy{
Addr: cfg.Proxy,
Username: cfg.ProxyUser,
Password: cfg.ProxyPass,
}
dial = proxy.Dial
faddr = fmt.Sprintf("%s via proxy %s", addr, cfg.Proxy)
}
// Attempt to connect to the peer. If the connection fails and
// this is a persistent connection, retry after the retry
// interval.
for !s.shutdown {
log.Debugf("[SRVR] Attempting to connect to %s", faddr)
conn, err := dial("tcp", addr)
if err != nil {
log.Errorf("[SRVR] Failed to connect to %s: %v",
faddr, err)
if !persistent {
p.server.donePeers <- p
p.wg.Done()
return
}
log.Infof("[SRVR] Retrying connection to %s "+
"in %s", faddr, connectionRetryInterval)
time.Sleep(connectionRetryInterval)
continue
}
// While we were sleeping trying to connect, the server
// may have scheduled a shutdown. In that case ditch
// the peer immediately.
if !s.shutdown {
p.server.addrManager.Attempt(p.na)
// Connection was successful so log it and start peer.
log.Infof("[SRVR] Connected to %s", conn.RemoteAddr())
p.conn = conn
p.Start()
} else {
p.server.donePeers <- p
}
// We are done here, Start() will have grabbed
// additional waitgroup entries if we are not shutting
// down.
p.wg.Done()
return
}
}()
return p
}