lbcd/txscript/example_test.go
Olaoluwa Osuntokun 0029905d43 Integrate a valid ECDSA signature cache into btcd
Introduce an ECDSA signature verification into btcd in order to
mitigate a certain DoS attack and as a performance optimization.

The benefits of SigCache are two fold. Firstly, usage of SigCache
mitigates a DoS attack wherein an attacker causes a victim's client to
hang due to worst-case behavior triggered while processing attacker
crafted invalid transactions. A detailed description of the mitigated
DoS attack can be found here: https://bitslog.wordpress.com/2013/01/23/fixed-bitcoin-vulnerability-explanation-why-the-signature-cache-is-a-dos-protection/
Secondly, usage of the SigCache introduces a signature verification
optimization which speeds up the validation of transactions within a
block, if they've already been seen and verified within the mempool.

The server itself manages the sigCache instance. The blockManager and
txMempool respectively now receive pointers to the created sigCache
instance. All read (sig triplet existence) operations on the sigCache
will not block unless a separate goroutine is adding an entry (writing)
to the sigCache. GetBlockTemplate generation now also utilizes the
sigCache in order to avoid unnecessarily double checking signatures
when generating a template after previously accepting a txn to the
mempool. Consequently, the CPU miner now also employs the same
optimization.

The maximum number of entries for the sigCache has been introduced as a
config parameter in order to allow users to configure the amount of
memory consumed by this new additional caching.
2015-10-08 17:31:42 -07:00

181 lines
5.8 KiB
Go

// Copyright (c) 2014-2015 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package txscript_test
import (
"encoding/hex"
"fmt"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
)
// This example demonstrates creating a script which pays to a bitcoin address.
// It also prints the created script hex and uses the DisasmString function to
// display the disassembled script.
func ExamplePayToAddrScript() {
// Parse the address to send the coins to into a btcutil.Address
// which is useful to ensure the accuracy of the address and determine
// the address type. It is also required for the upcoming call to
// PayToAddrScript.
addressStr := "12gpXQVcCL2qhTNQgyLVdCFG2Qs2px98nV"
address, err := btcutil.DecodeAddress(addressStr, &chaincfg.MainNetParams)
if err != nil {
fmt.Println(err)
return
}
// Create a public key script that pays to the address.
script, err := txscript.PayToAddrScript(address)
if err != nil {
fmt.Println(err)
return
}
fmt.Printf("Script Hex: %x\n", script)
disasm, err := txscript.DisasmString(script)
if err != nil {
fmt.Println(err)
return
}
fmt.Println("Script Disassembly:", disasm)
// Output:
// Script Hex: 76a914128004ff2fcaf13b2b91eb654b1dc2b674f7ec6188ac
// Script Disassembly: OP_DUP OP_HASH160 128004ff2fcaf13b2b91eb654b1dc2b674f7ec61 OP_EQUALVERIFY OP_CHECKSIG
}
// This example demonstrates extracting information from a standard public key
// script.
func ExampleExtractPkScriptAddrs() {
// Start with a standard pay-to-pubkey-hash script.
scriptHex := "76a914128004ff2fcaf13b2b91eb654b1dc2b674f7ec6188ac"
script, err := hex.DecodeString(scriptHex)
if err != nil {
fmt.Println(err)
return
}
// Extract and print details from the script.
scriptClass, addresses, reqSigs, err := txscript.ExtractPkScriptAddrs(
script, &chaincfg.MainNetParams)
if err != nil {
fmt.Println(err)
return
}
fmt.Println("Script Class:", scriptClass)
fmt.Println("Addresses:", addresses)
fmt.Println("Required Signatures:", reqSigs)
// Output:
// Script Class: pubkeyhash
// Addresses: [12gpXQVcCL2qhTNQgyLVdCFG2Qs2px98nV]
// Required Signatures: 1
}
// This example demonstrates manually creating and signing a redeem transaction.
func ExampleSignTxOutput() {
// Ordinarily the private key would come from whatever storage mechanism
// is being used, but for this example just hard code it.
privKeyBytes, err := hex.DecodeString("22a47fa09a223f2aa079edf85a7c2" +
"d4f8720ee63e502ee2869afab7de234b80c")
if err != nil {
fmt.Println(err)
return
}
privKey, pubKey := btcec.PrivKeyFromBytes(btcec.S256(), privKeyBytes)
pubKeyHash := btcutil.Hash160(pubKey.SerializeCompressed())
addr, err := btcutil.NewAddressPubKeyHash(pubKeyHash,
&chaincfg.MainNetParams)
if err != nil {
fmt.Println(err)
return
}
// For this example, create a fake transaction that represents what
// would ordinarily be the real transaction that is being spent. It
// contains a single output that pays to address in the amount of 1 BTC.
originTx := wire.NewMsgTx()
prevOut := wire.NewOutPoint(&wire.ShaHash{}, ^uint32(0))
txIn := wire.NewTxIn(prevOut, []byte{txscript.OP_0, txscript.OP_0})
originTx.AddTxIn(txIn)
pkScript, err := txscript.PayToAddrScript(addr)
if err != nil {
fmt.Println(err)
return
}
txOut := wire.NewTxOut(100000000, pkScript)
originTx.AddTxOut(txOut)
originTxHash := originTx.TxSha()
// Create the transaction to redeem the fake transaction.
redeemTx := wire.NewMsgTx()
// Add the input(s) the redeeming transaction will spend. There is no
// signature script at this point since it hasn't been created or signed
// yet, hence nil is provided for it.
prevOut = wire.NewOutPoint(&originTxHash, 0)
txIn = wire.NewTxIn(prevOut, nil)
redeemTx.AddTxIn(txIn)
// Ordinarily this would contain that actual destination of the funds,
// but for this example don't bother.
txOut = wire.NewTxOut(0, nil)
redeemTx.AddTxOut(txOut)
// Sign the redeeming transaction.
lookupKey := func(a btcutil.Address) (*btcec.PrivateKey, bool, error) {
// Ordinarily this function would involve looking up the private
// key for the provided address, but since the only thing being
// signed in this example uses the address associated with the
// private key from above, simply return it with the compressed
// flag set since the address is using the associated compressed
// public key.
//
// NOTE: If you want to prove the code is actually signing the
// transaction properly, uncomment the following line which
// intentionally returns an invalid key to sign with, which in
// turn will result in a failure during the script execution
// when verifying the signature.
//
// privKey.D.SetInt64(12345)
//
return privKey, true, nil
}
// Notice that the script database parameter is nil here since it isn't
// used. It must be specified when pay-to-script-hash transactions are
// being signed.
sigScript, err := txscript.SignTxOutput(&chaincfg.MainNetParams,
redeemTx, 0, originTx.TxOut[0].PkScript, txscript.SigHashAll,
txscript.KeyClosure(lookupKey), nil, nil)
if err != nil {
fmt.Println(err)
return
}
redeemTx.TxIn[0].SignatureScript = sigScript
// Prove that the transaction has been validly signed by executing the
// script pair.
flags := txscript.ScriptBip16 | txscript.ScriptVerifyDERSignatures |
txscript.ScriptStrictMultiSig |
txscript.ScriptDiscourageUpgradableNops
vm, err := txscript.NewEngine(originTx.TxOut[0].PkScript, redeemTx, 0,
flags, nil)
if err != nil {
fmt.Println(err)
return
}
if err := vm.Execute(); err != nil {
fmt.Println(err)
return
}
fmt.Println("Transaction successfully signed")
// Output:
// Transaction successfully signed
}