285 lines
10 KiB
Go
285 lines
10 KiB
Go
// Copyright (c) 2013 Conformal Systems LLC.
|
|
// Use of this source code is governed by an ISC
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package btcchain
|
|
|
|
import (
|
|
"fmt"
|
|
"github.com/conformal/btcwire"
|
|
"math/big"
|
|
"time"
|
|
)
|
|
|
|
const (
|
|
// targetTimespan is the desired amount of time that should elapse
|
|
// before block difficulty requirement is examined to determine how
|
|
// it should be changed in order to maintain the desired block
|
|
// generation rate.
|
|
targetTimespan = time.Hour * 24 * 14
|
|
|
|
// targetSpacing is the desired amount of time to generate each block.
|
|
targetSpacing = time.Minute * 10
|
|
|
|
// blocksPerRetarget is the number of blocks between each difficulty
|
|
// retarget. It is calculated based on the desired block generation
|
|
// rate.
|
|
blocksPerRetarget = int64(targetTimespan / targetSpacing)
|
|
|
|
// retargetAdjustmentFactor is the adjustment factor used to limit
|
|
// the minimum and maximum amount of adjustment that can occur between
|
|
// difficulty retargets.
|
|
retargetAdjustmentFactor = 4
|
|
|
|
// minRetargetTimespan is the minimum amount of adjustment that can
|
|
// occur between difficulty retargets. It equates to 25% of the
|
|
// previous difficulty.
|
|
minRetargetTimespan = int64(targetTimespan / retargetAdjustmentFactor)
|
|
|
|
// maxRetargetTimespan is the maximum amount of adjustment that can
|
|
// occur between difficulty retargets. It equates to 400% of the
|
|
// previous difficulty.
|
|
maxRetargetTimespan = int64(targetTimespan * retargetAdjustmentFactor)
|
|
)
|
|
|
|
var (
|
|
// bigOne is 1 represented as a big.Int. It is defined here to avoid
|
|
// the overhead of creating it multiple times.
|
|
bigOne = big.NewInt(1)
|
|
|
|
// oneLsh256 is 1 shifted left 256 bits. It is defined here to avoid
|
|
// the overhead of creating it multiple times.
|
|
oneLsh256 = new(big.Int).Lsh(bigOne, 256)
|
|
|
|
// powLimit is the highest proof of work value a bitcoin block can have.
|
|
// It is the value 2^224 - 1.
|
|
powLimit = new(big.Int).Sub(new(big.Int).Lsh(bigOne, 224), bigOne)
|
|
)
|
|
|
|
// ShaHashToBig converts a btcwire.ShaHash into a big.Int that can be used to
|
|
// perform math comparisons.
|
|
func ShaHashToBig(hash *btcwire.ShaHash) *big.Int {
|
|
// A ShaHash is in little-endian, but the big package wants the bytes
|
|
// in big-endian. Reverse them. ShaHash.Bytes makes a copy, so it
|
|
// is safe to modify the returned buffer.
|
|
buf := hash.Bytes()
|
|
blen := len(buf)
|
|
for i := 0; i < blen/2; i++ {
|
|
buf[i], buf[blen-1-i] = buf[blen-1-i], buf[i]
|
|
}
|
|
|
|
return new(big.Int).SetBytes(buf)
|
|
}
|
|
|
|
// CompactToBig converts a compact representation of a whole number N to an
|
|
// unsigned 32-bit number. The representation is similar to IEEE754 floating
|
|
// point numbers.
|
|
//
|
|
// Like IEEE754 floating point, there are three basic components: the sign,
|
|
// the exponent, and the mantissa. They are broken out as follows:
|
|
//
|
|
// * the most significant 8 bits represent the unsigned base 256 exponent
|
|
// * bit 23 (the 24th bit) represents the sign bit
|
|
// * the least significant 23 bits represent the mantissa
|
|
//
|
|
// -------------------------------------------------
|
|
// | Exponent | Sign | Mantissa |
|
|
// -------------------------------------------------
|
|
// | 8 bits [31-24] | 1 bit [23] | 23 bits [22-00] |
|
|
// -------------------------------------------------
|
|
//
|
|
// The formula to calculate N is:
|
|
// N = (-1^sign) * mantissa * 256^(exponent-3)
|
|
//
|
|
// This compact form is only used in bitcoin to encode unsigned 256-bit numbers
|
|
// which represent difficulty targets, thus there really is not a need for a
|
|
// sign bit, but it is implemented here to stay consistent with bitcoind.
|
|
func CompactToBig(compact uint32) *big.Int {
|
|
// Extract the mantissa, sign bit, and exponent.
|
|
mantissa := compact & 0x007fffff
|
|
isNegative := compact&0x00800000 != 0
|
|
exponent := uint(compact >> 24)
|
|
|
|
// Since the base for the exponent is 256, the exponent can be treated
|
|
// as the number of bytes to represent the full 256-bit number. So,
|
|
// treat the exponent as the number of bytes and shift the mantissa
|
|
// right or left accordingly. This is equivalent to:
|
|
// N = mantissa * 256^(exponent-3)
|
|
var bn *big.Int
|
|
if exponent <= 3 {
|
|
mantissa >>= 8 * (3 - exponent)
|
|
bn = big.NewInt(int64(mantissa))
|
|
} else {
|
|
bn = big.NewInt(int64(mantissa))
|
|
bn.Lsh(bn, 8*(exponent-3))
|
|
}
|
|
|
|
// Make it negative if the sign bit is set.
|
|
if isNegative {
|
|
bn = bn.Neg(bn)
|
|
}
|
|
|
|
return bn
|
|
}
|
|
|
|
// BigToCompact converts a whole number N to a compact representation using
|
|
// an unsigned 32-bit number. The compact representation only provides 23 bits
|
|
// of precision, so values larger than (2^23 - 1) only encode the most
|
|
// significant digits of the number. See CompactToBig for details.
|
|
func BigToCompact(n *big.Int) uint32 {
|
|
// No need to do any work if it's zero.
|
|
if n.Sign() == 0 {
|
|
return 0
|
|
}
|
|
|
|
// Since the base for the exponent is 256, the exponent can be treated
|
|
// as the number of bytes. So, shift the number right or left
|
|
// accordingly. This is equivalent to:
|
|
// mantissa = mantissa / 256^(exponent-3)
|
|
var mantissa uint32
|
|
exponent := uint(len(n.Bytes()))
|
|
if exponent <= 3 {
|
|
mantissa = uint32(n.Bits()[0])
|
|
mantissa <<= 8 * (3 - exponent)
|
|
} else {
|
|
// Use a copy to avoid modifying the caller's original number.
|
|
tn := new(big.Int).Set(n)
|
|
mantissa = uint32(tn.Rsh(tn, 8*(exponent-3)).Bits()[0])
|
|
}
|
|
|
|
// When the mantissa already has the sign bit set, the number is too
|
|
// large to fit into the available 23-bits, so divide the number by 256
|
|
// and increment the exponent accordingly.
|
|
if mantissa&0x00800000 != 0 {
|
|
mantissa >>= 8
|
|
exponent++
|
|
}
|
|
|
|
// Pack the exponent, sign bit, and mantissa into an unsigned 32-bit
|
|
// int and return it.
|
|
compact := uint32(exponent<<24) | mantissa
|
|
if n.Sign() < 0 {
|
|
compact |= 0x00800000
|
|
}
|
|
return compact
|
|
}
|
|
|
|
// calcWork calculates a work value from difficulty bits. Bitcoin increases
|
|
// the difficulty for generating a block by decreasing the value which the
|
|
// generated hash must be less than. This difficulty target is stored in each
|
|
// block header using a compact representation as described in the documenation
|
|
// for CompactToBig. The main chain is selected by choosing the chain that has
|
|
// the most proof of work (highest difficulty). Since a lower target difficulty
|
|
// value equates to higher actual difficulty, the work value which will be
|
|
// accumulated must be the inverse of the difficulty. Also, in order to avoid
|
|
// potential division by zero and really small floating point numbers, add 1 to
|
|
// the denominator and multiply the numerator by 2^256.
|
|
func calcWork(bits uint32) *big.Rat {
|
|
// (1 << 256) / (difficultyNum + 1)
|
|
difficultyNum := CompactToBig(bits)
|
|
denominator := new(big.Int).Add(difficultyNum, bigOne)
|
|
return new(big.Rat).SetFrac(oneLsh256, denominator)
|
|
}
|
|
|
|
// calcEasiestDifficulty calculates the easiest possible difficulty that a block
|
|
// can have given starting difficulty bits and a duration. It is mainly used to
|
|
// verify that claimed proof of work by a block is sane as compared to a
|
|
// known good checkpoint.
|
|
func calcEasiestDifficulty(bits uint32, duration time.Duration) uint32 {
|
|
// Convert types used in the calculations below.
|
|
durationVal := int64(duration)
|
|
adjustmentFactor := big.NewInt(retargetAdjustmentFactor)
|
|
|
|
// TODO(davec): Testnet has special rules.
|
|
|
|
// Since easier difficulty equates to higher numbers, the easiest
|
|
// difficulty for a given duration is the largest value possible given
|
|
// the number of retargets for the duration and starting difficulty
|
|
// multiplied by the max adjustment factor.
|
|
newTarget := CompactToBig(bits)
|
|
for durationVal > 0 && newTarget.Cmp(powLimit) < 0 {
|
|
newTarget.Mul(newTarget, adjustmentFactor)
|
|
durationVal -= maxRetargetTimespan
|
|
}
|
|
|
|
// Limit new value to the proof of work limit.
|
|
if newTarget.Cmp(powLimit) > 0 {
|
|
newTarget.Set(powLimit)
|
|
}
|
|
|
|
return BigToCompact(newTarget)
|
|
}
|
|
|
|
// calcNextRequiredDifficulty calculates the required difficulty for the block
|
|
// after the passed previous block node based on the difficulty retarget rules.
|
|
func (b *BlockChain) calcNextRequiredDifficulty(lastNode *blockNode) (uint32, error) {
|
|
// Genesis block.
|
|
if lastNode == nil {
|
|
return BigToCompact(powLimit), nil
|
|
}
|
|
|
|
// Return the previous block's difficulty requirements if this block
|
|
// is not at a difficulty retarget interval.
|
|
if (lastNode.height+1)%blocksPerRetarget != 0 {
|
|
// TODO(davec): Testnet has special rules.
|
|
return lastNode.bits, nil
|
|
}
|
|
|
|
// Get the block node at the previous retarget (targetTimespan days
|
|
// worth of blocks).
|
|
firstNode := lastNode
|
|
for i := int64(0); i < blocksPerRetarget-1 && firstNode != nil; i++ {
|
|
// Get the previous block node. This function is used over
|
|
// simply accessing firstNode.parent directly as it will
|
|
// dynamically create previous block nodes as needed. This
|
|
// helps allow only the pieces of the chain that are needed
|
|
// to remain in memory.
|
|
var err error
|
|
firstNode, err = b.getPrevNodeFromNode(firstNode)
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
}
|
|
|
|
if firstNode == nil {
|
|
return 0, fmt.Errorf("unable to obtain previous retarget block")
|
|
}
|
|
|
|
// Limit the amount of adjustment that can occur to the previous
|
|
// difficulty.
|
|
actualTimespan := lastNode.timestamp.UnixNano() - firstNode.timestamp.UnixNano()
|
|
adjustedTimespan := actualTimespan
|
|
if actualTimespan < minRetargetTimespan {
|
|
adjustedTimespan = minRetargetTimespan
|
|
} else if actualTimespan > maxRetargetTimespan {
|
|
adjustedTimespan = maxRetargetTimespan
|
|
}
|
|
|
|
// Calculate new target difficulty as:
|
|
// currentDifficulty * (adjustedTimespan / targetTimespan)
|
|
// The result uses integer division which means it will be slightly
|
|
// rounded down. Bitcoind also uses integer division to calculate this
|
|
// result.
|
|
oldTarget := CompactToBig(lastNode.bits)
|
|
newTarget := new(big.Int).Mul(oldTarget, big.NewInt(adjustedTimespan))
|
|
newTarget.Div(newTarget, big.NewInt(int64(targetTimespan)))
|
|
|
|
// Limit new value to the proof of work limit.
|
|
if newTarget.Cmp(powLimit) > 0 {
|
|
newTarget.Set(powLimit)
|
|
}
|
|
|
|
// Log new target difficulty and return it. The new target logging is
|
|
// intentionally converting the bits back to a number instead of using
|
|
// newTarget since conversion to the compact representation loses
|
|
// precision.
|
|
newTargetBits := BigToCompact(newTarget)
|
|
log.Debugf("Difficulty retarget at block height %d", lastNode.height+1)
|
|
log.Debugf("Old target %08x (%064x)", lastNode.bits, oldTarget)
|
|
log.Debugf("New target %08x (%064x)", newTargetBits, CompactToBig(newTargetBits))
|
|
log.Debugf("Actual timespan %v, adjusted timespan %v, target timespan %v",
|
|
time.Duration(actualTimespan), time.Duration(adjustedTimespan),
|
|
targetTimespan)
|
|
|
|
return newTargetBits, nil
|
|
}
|