lbcd/validate.go
2013-07-19 08:50:13 -05:00

877 lines
30 KiB
Go

// Copyright (c) 2013 Conformal Systems LLC.
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package btcchain
import (
"encoding/binary"
"fmt"
"github.com/conformal/btcdb"
"github.com/conformal/btcscript"
"github.com/conformal/btcutil"
"github.com/conformal/btcwire"
"math"
"time"
)
const (
// satoshiPerBitcoin is the number of satoshi in one bitcoin (1 BTC).
satoshiPerBitcoin int64 = 1e8
// maxSatoshi is the maximum transaction amount allowed in satoshi.
maxSatoshi int64 = 21e6 * satoshiPerBitcoin
// maxSigOpsPerBlock is the maximum number of signature operations
// allowed for a block. It is a fraction of the max block payload size.
maxSigOpsPerBlock = btcwire.MaxBlockPayload / 50
// lockTimeThreshold is the number below which a lock time is
// interpreted to be a block number. Since an average of one block
// is generated per 10 minutes, this allows blocks for about 9,512
// years. However, if the field is interpreted as a timestamp, given
// the lock time is a uint32, the max is sometime around 2106.
lockTimeThreshold uint32 = 5e8 // Tue Nov 5 00:53:20 1985 UTC
// minCoinbaseScriptLen is the minimum length a coinbase script can be.
minCoinbaseScriptLen = 2
// maxCoinbaseScriptLen is the maximum length a coinbase script can be.
maxCoinbaseScriptLen = 100
// medianTimeBlocks is the number of previous blocks which should be
// used to calculate the median time used to validate block timestamps.
medianTimeBlocks = 11
// serializedHeightVersion is the block version which changed block
// coinbases to start with the serialized block height.
serializedHeightVersion = 2
// baseSubsidy is the starting subsidy amount for mined blocks. This
// value is halved every subsidyHalvingInterval blocks.
baseSubsidy = 50 * satoshiPerBitcoin
// subsidyHalvingInterval is the interval of blocks at which the
// baseSubsidy is continually halved. See calcBlockSubsidy for more
// details.
subsidyHalvingInterval = 210000
)
var (
// coinbaseMaturity is the number of blocks required before newly
// mined bitcoins (coinbase transactions) can be spent. This is a
// variable as opposed to a constant because the tests need the ability
// to modify it.
coinbaseMaturity int64 = 100
// zeroHash is the zero value for a btcwire.ShaHash and is defined as
// a package level variable to avoid the need to create a new instance
// every time a check is needed.
zeroHash = &btcwire.ShaHash{}
// block91842Hash is one of the two nodes which violate the rules
// set forth in BIP0030. It is defined as a package level variable to
// avoid the need to create a new instance every time a check is needed.
block91842Hash = newShaHashFromStr("00000000000a4d0a398161ffc163c503763b1f4360639393e0e4c8e300e0caec")
// block91880Hash is one of the two nodes which violate the rules
// set forth in BIP0030. It is defined as a package level variable to
// avoid the need to create a new instance every time a check is needed.
block91880Hash = newShaHashFromStr("00000000000743f190a18c5577a3c2d2a1f610ae9601ac046a38084ccb7cd721")
)
// isNullOutpoint determines whether or not a previous transaction output point
// is set.
func isNullOutpoint(outpoint *btcwire.OutPoint) bool {
if outpoint.Index == math.MaxUint32 && outpoint.Hash.IsEqual(zeroHash) {
return true
}
return false
}
// isCoinBase determines whether or not a transaction is a coinbase. A coinbase
// is a special transaction created by miners that has no inputs. This is
// represented in the block chain by a transaction with a single input that has
// a previous output transaction index set to the maximum value along with a
// zero hash.
func isCoinBase(msgTx *btcwire.MsgTx) bool {
// A coin base must only have one transaction input.
if len(msgTx.TxIn) != 1 {
return false
}
// The previous output of a coin base must have a max value index and
// a zero hash.
prevOut := msgTx.TxIn[0].PreviousOutpoint
if prevOut.Index != math.MaxUint32 || !prevOut.Hash.IsEqual(zeroHash) {
return false
}
return true
}
// isFinalized determines whether or not a transaction is finalized.
func isFinalizedTransaction(msgTx *btcwire.MsgTx, blockHeight int64, blockTime time.Time) bool {
// Lock time of zero means the transaction is finalized.
lockTime := msgTx.LockTime
if lockTime == 0 {
return true
}
// The lock time field of a transaction is either a block height at
// which the transaction is finalized or a timestamp depending on if the
// value is before the lockTimeThreshold. When it is under the
// threshold it is a block height.
blockTimeOrHeight := int64(0)
if lockTime < lockTimeThreshold {
blockTimeOrHeight = blockHeight
} else {
blockTimeOrHeight = blockTime.Unix()
}
if int64(lockTime) < blockTimeOrHeight {
return true
}
// At this point, the transaction's lock time hasn't occured yet, but
// the transaction might still be finalized if the sequence number
// for all transaction inputs is maxed out.
for _, txIn := range msgTx.TxIn {
if txIn.Sequence != math.MaxUint32 {
return false
}
}
return true
}
// isBIP0030Node returns whether or not the passed node represents one of the
// two blocks that violate the BIP0030 rule which prevents transactions from
// overwriting old ones.
func isBIP0030Node(node *blockNode) bool {
if node.height == 91842 && node.hash.IsEqual(block91842Hash) {
return true
}
if node.height == 91880 && node.hash.IsEqual(block91880Hash) {
return true
}
return false
}
// calcBlockSubsidy returns the subsidy amount a block at the provided height
// should have. This is mainly used for determining how much the coinbase for
// newly generated blocks awards as well as validating the coinbase for blocks
// has the expected value.
//
// The subsidy is halved every subsidyHalvingInterval blocks. Mathematically
// this is: baseSubsidy / 2^(height/subsidyHalvingInterval)
//
// At the target block generation rate this is approximately every 4
// years.
func calcBlockSubsidy(height int64) int64 {
// Equivalent to: baseSubsidy / 2^(height/subsidyHalvingInterval)
return baseSubsidy >> uint(height/subsidyHalvingInterval)
}
// checkTransactionSanity performs some preliminary checks on a transaction to
// ensure it is sane. These checks are context free.
func checkTransactionSanity(tx *btcwire.MsgTx) error {
// A transaction must have at least one input.
if len(tx.TxIn) == 0 {
return RuleError("transaction has no inputs")
}
// A transaction must have at least one output.
if len(tx.TxOut) == 0 {
return RuleError("transaction has no outputs")
}
// NOTE: bitcoind does size limits checking here, but the size limits
// have already been checked by btcwire for incoming transactions.
// Also, btcwire checks the size limits on send too, so there is no need
// to double check it here.
// Ensure the transaction amounts are in range. Each transaction
// output must not be negative or more than the max allowed per
// transaction. Also, the total of all outputs must abide by the same
// restrictions. All amounts in a transaction are in a unit value known
// as a satoshi. One bitcoin is a quantity of satoshi as defined by the
// satoshiPerBitcoin constant.
var totalSatoshi int64
for _, txOut := range tx.TxOut {
satoshi := txOut.Value
if satoshi < 0 {
str := fmt.Sprintf("transaction output has negative "+
"value of %v", satoshi)
return RuleError(str)
}
if satoshi > maxSatoshi {
str := fmt.Sprintf("transaction output value of %v is "+
"higher than max allowed value of %v", satoshi,
maxSatoshi)
return RuleError(str)
}
// TODO(davec): No need to check < 0 here as satoshi is
// guaranteed to be positive per the above check. Also need
// to add overflow checks.
totalSatoshi += satoshi
if totalSatoshi < 0 {
str := fmt.Sprintf("total value of all transaction "+
"outputs has negative value of %v", totalSatoshi)
return RuleError(str)
}
if totalSatoshi > maxSatoshi {
str := fmt.Sprintf("total value of all transaction "+
"outputs is %v which is higher than max "+
"allowed value of %v", totalSatoshi, maxSatoshi)
return RuleError(str)
}
}
// Check for duplicate transaction inputs.
existingTxOut := make(map[string]bool)
for _, txIn := range tx.TxIn {
prevOut := &txIn.PreviousOutpoint
key := fmt.Sprintf("%v%v", prevOut.Hash, prevOut.Index)
if _, exists := existingTxOut[key]; exists {
return RuleError("transaction contains duplicate outpoint")
}
existingTxOut[key] = true
}
// Coinbase script length must be between min and max length.
if isCoinBase(tx) {
slen := len(tx.TxIn[0].SignatureScript)
if slen < minCoinbaseScriptLen || slen > maxCoinbaseScriptLen {
str := fmt.Sprintf("coinbase transaction script length "+
"of %d is out of range (min: %d, max: %d)",
slen, minCoinbaseScriptLen, maxCoinbaseScriptLen)
return RuleError(str)
}
} else {
// Previous transaction outputs referenced by the inputs to this
// transaction must not be null.
for _, txIn := range tx.TxIn {
prevOut := &txIn.PreviousOutpoint
if isNullOutpoint(prevOut) {
return RuleError("transaction input refers to " +
"previous output that is null")
}
}
}
return nil
}
// checkProofOfWork ensures the block header bits which indicate the target
// difficulty is in min/max range and that the block hash is less than the
// target difficulty as claimed.
func checkProofOfWork(block *btcutil.Block) error {
// The target difficulty must be larger than zero.
header := block.MsgBlock().Header
target := CompactToBig(header.Bits)
if target.Sign() <= 0 {
str := fmt.Sprintf("block target difficulty of %064x is too low",
target)
return RuleError(str)
}
// The target difficulty must be less than the maximum allowed.
if target.Cmp(powLimit) > 0 {
str := fmt.Sprintf("block target difficulty of %064x is "+
"higher than max of %064x", target, powLimit)
return RuleError(str)
}
// The block hash must be less than the claimed target.
blockHash, err := block.Sha()
if err != nil {
return err
}
hashNum := ShaHashToBig(blockHash)
if hashNum.Cmp(target) > 0 {
str := fmt.Sprintf("block hash of %064x is higher than "+
"expected max of %064x", hashNum, target)
return RuleError(str)
}
return nil
}
// countSigOps returns the number of signature operations for all transaction
// input and output scripts in the provided transaction. This uses the
// quicker, but imprecise, signature operation counting mechanism from
// btcscript.
func countSigOps(msgTx *btcwire.MsgTx, isCoinBaseTx bool) (int, error) {
// Choose the starting transaction input based on whether this is a
// coinbase transaction since the coinbase input script should not be
// executed.
txIns := msgTx.TxIn
if isCoinBaseTx {
txIns = txIns[1:]
}
// Accumulate the number of signature operations in all transaction
// inputs (except the first input if this is a coinbase transaction).
totalSigOps := 0
for _, txIn := range txIns {
numSigOps, err := btcscript.GetSigOpCount(txIn.SignatureScript)
if err != nil {
return 0, err
}
totalSigOps += numSigOps
}
// Accumulate the number of signature operations in all transaction
// outputs.
for _, txOut := range msgTx.TxOut {
numSigOps, err := btcscript.GetSigOpCount(txOut.PkScript)
if err != nil {
return 0, err
}
totalSigOps += numSigOps
}
return totalSigOps, nil
}
// countP2SHSigOps returns the number of signature operations for all input
// transactions which are of the pay-to-script-hash type. This uses the
// precise, signature operation counting mechanism from btcscript which requires
// access to the input transaction scripts.
func countP2SHSigOps(msgTx *btcwire.MsgTx, isCoinBaseTx bool, txStore map[btcwire.ShaHash]*txData) (int, error) {
// Coinbase transactions have no interesting inputs.
if isCoinBaseTx {
return 0, nil
}
// TODO(davec): Need to pass the cached version in.
txHash, err := msgTx.TxSha(btcwire.ProtocolVersion)
if err != nil {
return 0, err
}
// Accumulate the number of signature operations in all transaction
// inputs.
totalSigOps := 0
for _, txIn := range msgTx.TxIn {
// Ensure the referenced input transaction is available.
txInHash := &txIn.PreviousOutpoint.Hash
originTx, exists := txStore[*txInHash]
if !exists {
return 0, fmt.Errorf("unable to find input transaction "+
"%v referenced from transaction %v", txHash,
txInHash)
}
// Ensure the output index in the referenced transaction is
// available.
originTxIndex := txIn.PreviousOutpoint.Index
if originTxIndex >= uint32(len(originTx.tx.TxOut)) {
return 0, fmt.Errorf("out of bounds input index %d in "+
"transaction %v referenced from transaction %v",
originTxIndex, txInHash, txHash)
}
// We're only interested in pay-to-script-hash types, so skip
// this input if it's not one.
pkScript := originTx.tx.TxOut[originTxIndex].PkScript
if !btcscript.IsPayToScriptHash(pkScript) {
continue
}
// Count the precise number of signature operations in the
// referenced public key script.
sigScript := txIn.SignatureScript
numSigOps, err := btcscript.GetPreciseSigOpCount(sigScript,
pkScript, true)
if err != nil {
return 0, err
}
// We could potentially overflow the accumulator so check for
// overflow.
lastSigOps := totalSigOps
totalSigOps += numSigOps
if totalSigOps < lastSigOps {
return 0, fmt.Errorf("the public key script from "+
"output index %d in transaction %v contains "+
"too many signature operations - overflow",
originTxIndex, txInHash)
}
}
return totalSigOps, nil
}
// checkBlockSanity performs some preliminary checks on a block to ensure it is
// sane before continuing with block processing. These checks are context free.
func checkBlockSanity(block *btcutil.Block) error {
// NOTE: bitcoind does size limits checking here, but the size limits
// have already been checked by btcwire for incoming blocks. Also,
// btcwire checks the size limits on send too, so there is no need
// to double check it here.
// Ensure the proof of work bits in the block header is in min/max range
// and the block hash is less than the target value described by the
// bits.
err := checkProofOfWork(block)
if err != nil {
return err
}
// Ensure the block time is not more than 2 hours in the future.
msgBlock := block.MsgBlock()
header := &msgBlock.Header
if header.Timestamp.After(time.Now().Add(time.Hour * 2)) {
str := fmt.Sprintf("block timestamp of %v is too far in the "+
"future", header.Timestamp)
return RuleError(str)
}
// A block must have at least one transaction.
transactions := msgBlock.Transactions
if len(transactions) == 0 {
return RuleError("block does not contain any transactions")
}
// The first transaction in a block must be a coinbase.
if !isCoinBase(transactions[0]) {
return RuleError("first transaction in block is not a coinbase")
}
// A block must not have more than one coinbase.
for _, tx := range transactions[1:] {
if isCoinBase(tx) {
return RuleError("block contains more than one coinbase")
}
}
// Do some preliminary checks on each transaction to ensure they are
// sane before continuing.
for _, tx := range transactions {
err := checkTransactionSanity(tx)
if err != nil {
return err
}
}
// Build merkle tree and ensure the calculated merkle root matches the
// entry in the block header. This also has the effect of caching all
// of the transaction hashes in the block to speed up future hash
// checks. Bitcoind builds the tree here and checks the merkle root
// after the following checks, but there is no reason not to check the
// merkle root matches here.
merkles := BuildMerkleTreeStore(block)
calculatedMerkleRoot := merkles[len(merkles)-1]
if !header.MerkleRoot.IsEqual(calculatedMerkleRoot) {
str := fmt.Sprintf("block merkle root is invalid - got %v, "+
"want %v", calculatedMerkleRoot, header.MerkleRoot)
return RuleError(str)
}
// Check for duplicate transactions. This check will be fairly quick
// since the transaction hashes are already cached due to building the
// merkle tree above.
existingTxHashes := make(map[btcwire.ShaHash]bool)
txShas, err := block.TxShas()
if err != nil {
return err
}
for _, hash := range txShas {
if _, exists := existingTxHashes[*hash]; exists {
str := fmt.Sprintf("block contains duplicate "+
"transaction %v", hash)
return RuleError(str)
}
existingTxHashes[*hash] = true
}
// The number of signature operations must be less than the maximum
// allowed per block.
totalSigOps := 0
for i, tx := range transactions {
// Since the first (and only the first) transaction has already
// been verified above to be a coinbase transaction, use i == 0
// as an optimization for the flag to countSigOps for whether
// or not the transaction is a coinbase transaction rather than
// having to do a full coinbase check again.
numSigOps, err := countSigOps(tx, i == 0)
if err != nil {
return err
}
// We could potentially overflow the accumulator so check for
// overflow.
lastSigOps := totalSigOps
totalSigOps += numSigOps
if totalSigOps < lastSigOps || totalSigOps > maxSigOpsPerBlock {
str := fmt.Sprintf("block contains too many signature "+
"operations - got %v, max %v", totalSigOps,
maxSigOpsPerBlock)
return RuleError(str)
}
}
return nil
}
// checkSerializedHeight checks if the signature script in the passed
// transaction starts with the serialized block height of wantHeight.
func checkSerializedHeight(coinbaseTx *btcwire.MsgTx, wantHeight int64) error {
sigScript := coinbaseTx.TxIn[0].SignatureScript
if len(sigScript) < 4 {
str := "the coinbase signature script for blocks of " +
"version %d or greater must start with the " +
"serialized block height"
str = fmt.Sprintf(str, serializedHeightVersion)
return RuleError(str)
}
serializedHeightBytes := make([]byte, 4, 4)
copy(serializedHeightBytes, sigScript[1:4])
serializedHeight := binary.LittleEndian.Uint32(serializedHeightBytes)
if int64(serializedHeight) != wantHeight {
str := fmt.Sprintf("the coinbase signature script serialized "+
"block height is %d when %d was expected",
serializedHeight, wantHeight)
return RuleError(str)
}
return nil
}
// isTransactionSpent returns whether or not the provided transaction is fully
// spent. A fully spent transaction is one where all outputs have been spent.
func isTransactionSpent(tx *txData) bool {
for _, isOutputSpent := range tx.spent {
if !isOutputSpent {
return false
}
}
return true
}
// checkBIP0030 ensures blocks do not contain duplicate transactions which
// 'overwrite' older transactions that are not fully spent. This prevents an
// attack where a coinbase and all of its dependent transactions could be
// duplicated to effectively revert the overwritten transactions to a single
// confirmation thereby making them vulnerable to a double spend.
//
// For more details, see https://en.bitcoin.it/wiki/BIP_0030 and
// http://r6.ca/blog/20120206T005236Z.html.
func (b *BlockChain) checkBIP0030(node *blockNode, block *btcutil.Block) error {
// Attempt to fetch duplicate transactions for all of the transactions
// in this block from the point of view of the parent node.
fetchList, err := block.TxShas()
if err != nil {
return nil
}
txResults, err := b.fetchTxList(node, fetchList)
if err != nil {
return err
}
// Examine the resulting data about the requested transactions.
for _, txD := range txResults {
switch txD.err {
// A duplicate transaction was not found. This is the most
// common case.
case btcdb.TxShaMissing:
continue
// A duplicate transaction was found. This is only allowed if
// the duplicate transaction is fully spent.
case nil:
if !isTransactionSpent(txD) {
str := fmt.Sprintf("tried to overwrite "+
"transaction %v at block height %d "+
"that is not fully spent", txD.hash,
txD.blockHeight)
return RuleError(str)
}
// Some other unexpected error occurred. Return it now.
default:
return txD.err
}
}
return nil
}
// checkTransactionInputs performs a series of checks on the inputs to a
// transaction to ensure they are valid. An example of some of the checks
// include verifying all inputs exist, ensuring the coinbase seasoning
// requirements are met, validating all values and fees are in the legal range
// and the total output amount doesn't exceed the input amount, and verifying
// the signatures to prove the spender was the owner of the bitcoins and
// therefore allowed to spend them. As it checks the inputs, it also calculates
// the total fees for the transaction and returns that value.
func checkTransactionInputs(tx *btcwire.MsgTx, txHeight int64, txStore map[btcwire.ShaHash]*txData) (int64, error) {
// Coinbase transactions have no inputs.
if isCoinBase(tx) {
return 0, nil
}
// TODO(davec): Need to pass the cached version in.
txHash, err := tx.TxSha(btcwire.ProtocolVersion)
if err != nil {
return 0, err
}
var totalSatoshiIn int64
for _, txIn := range tx.TxIn {
// Ensure the input is available.
txInHash := &txIn.PreviousOutpoint.Hash
originTx, exists := txStore[*txInHash]
if !exists {
str := fmt.Sprintf("unable to find input transaction "+
"%v for transaction %v", txHash, txInHash)
return 0, RuleError(str)
}
// Ensure the transaction is not spending coins which have not
// yet reached the required coinbase maturity.
if isCoinBase(originTx.tx) {
originHeight := originTx.blockHeight
blocksSincePrev := txHeight - originHeight
if blocksSincePrev < coinbaseMaturity {
str := fmt.Sprintf("tried to spend coinbase "+
"transaction %v from height %v at "+
"height %v before required maturity "+
"of %v blocks", txHash, originHeight,
txHeight, coinbaseMaturity)
return 0, RuleError(str)
}
}
// Ensure the transaction is not double spending coins.
originTxIndex := txIn.PreviousOutpoint.Index
if originTxIndex >= uint32(len(originTx.spent)) {
return 0, fmt.Errorf("out of bounds input index %d in "+
"transaction %v referenced from transaction %v",
originTxIndex, txInHash, txHash)
}
if originTx.spent[originTxIndex] {
str := fmt.Sprintf("transaction %v tried to double "+
"spend coins from transaction %v", txHash,
txInHash)
return 0, RuleError(str)
}
// Ensure the transaction amounts are in range. Each of the
// output values of the input transactions must not be negative
// or more than the max allowed per transaction. All amounts in
// a transaction are in a unit value known as a satoshi. One
// bitcoin is a quantity of satoshi as defined by the
// satoshiPerBitcoin constant.
originTxSatoshi := originTx.tx.TxOut[originTxIndex].Value
if originTxSatoshi < 0 {
str := fmt.Sprintf("transaction output has negative "+
"value of %v", originTxSatoshi)
return 0, RuleError(str)
}
if originTxSatoshi > maxSatoshi {
str := fmt.Sprintf("transaction output value of %v is "+
"higher than max allowed value of %v",
originTxSatoshi, maxSatoshi)
return 0, RuleError(str)
}
// The total of all outputs must not be more than the max
// allowed per transaction. Also, we could potentially overflow
// the accumulator so check for overflow.
lastSatoshiIn := totalSatoshiIn
totalSatoshiIn += originTxSatoshi
if totalSatoshiIn < lastSatoshiIn || totalSatoshiIn > maxSatoshi {
str := fmt.Sprintf("total value of all transaction "+
"inputs is %v which is higher than max "+
"allowed value of %v", totalSatoshiIn,
maxSatoshi)
return 0, RuleError(str)
}
}
// Calculate the total output amount for this transaction. It is safe
// to ignore overflow and out of range errors here because those error
// conditions would have already been caught by checkTransactionSanity.
var totalSatoshiOut int64
for _, txOut := range tx.TxOut {
totalSatoshiOut += txOut.Value
}
// Ensure the transaction does not spend more than its inputs.
if totalSatoshiIn < totalSatoshiOut {
str := fmt.Sprintf("total value of all transaction inputs for "+
"transaction %v is %v which is less than the amount "+
"spent of %v", txHash, totalSatoshiIn, totalSatoshiOut)
return 0, RuleError(str)
}
// NOTE: bitcoind checks if the transaction fees are < 0 here, but that
// is an impossible condition because of the check above that ensures
// the inputs are >= the outputs.
txFeeInSatoshi := totalSatoshiIn - totalSatoshiOut
return txFeeInSatoshi, nil
}
// checkConnectBlock performs several checks to confirm connecting the passed
// block to the main chain (including whatever reorganization might be necessary
// to get this node to the main chain) does not violate any rules.
func (b *BlockChain) checkConnectBlock(node *blockNode, block *btcutil.Block) error {
// If the side chain blocks end up in the database, a call to
// checkBlockSanity should be done here in case a previous version
// allowed a block that is no longer valid. However, since the
// implementation only currently uses memory for the side chain blocks,
// it isn't currently necessary.
// TODO(davec): Keep a flag if this has already been done to avoid
// multiple runs.
// The coinbase for the Genesis block is not spendable, so just return
// now.
if node.hash.IsEqual(&btcwire.GenesisHash) {
return nil
}
// BIP0030 added a rule to prevent blocks which contain duplicate
// transactions that 'overwrite' older transactions which are not fully
// spent. See the documentation for checkBIP0030 for more details.
//
// There are two blocks in the chain which violate this
// rule, so the check must be skipped for those blocks. The
// isBIP0030Node function is used to determine if this block is one
// of the two blocks that must be skipped.
enforceBIP0030 := !isBIP0030Node(node)
if enforceBIP0030 {
err := b.checkBIP0030(node, block)
if err != nil {
return err
}
}
// Request a map that contains all input transactions for the block from
// the point of view of its position within the block chain. These
// transactions are needed for verification of things such as
// transaction inputs, counting pay-to-script-hashes, and scripts.
txInputStore, err := b.fetchInputTransactions(node, block)
if err != nil {
return err
}
// BIP0016 describes a pay-to-script-hash type that is considered a
// "standard" type. The rules for this BIP only apply to transactions
// after the timestmap defined by btcscript.Bip16Activation. See
// https://en.bitcoin.it/wiki/BIP_0016 for more details.
enforceBIP0016 := false
if node.timestamp.After(btcscript.Bip16Activation) {
enforceBIP0016 = true
}
// The number of signature operations must be less than the maximum
// allowed per block. Note that the preliminary sanity checks on a
// block also include a check similar to this one, but this check
// expands the count to include a precise count of pay-to-script-hash
// signature operations in each of the input transaction public key
// scripts.
transactions := block.MsgBlock().Transactions
totalSigOps := 0
for i, tx := range transactions {
// Since the first (and only the first) transaction has already
// been verified to be a coinbase transaction, use i == 0
// as an optimization for the flag to countSigOps for whether
// or not the transaction is a coinbase transaction rather than
// having to do a full coinbase check again.
numsigOps, err := countSigOps(tx, i == 0)
if err != nil {
return err
}
if enforceBIP0016 {
numP2SHSigOps, err := countP2SHSigOps(tx, i == 0,
txInputStore)
if err != nil {
return err
}
numsigOps += numP2SHSigOps
}
// Check for overflow or going over the limits. We have to do
// this on every loop to avoid overflow.
lastSigops := totalSigOps
totalSigOps += numsigOps
if totalSigOps < lastSigops || totalSigOps > maxSigOpsPerBlock {
str := fmt.Sprintf("block contains too many "+
"signature operations - got %v, max %v",
totalSigOps, maxSigOpsPerBlock)
return RuleError(str)
}
}
// Perform several checks on the inputs for each transaction. Also
// accumulate the total fees. This could technically be combined with
// the loop above instead of running another loop over the transactions,
// but by separating it we can avoid running the more expensive (though
// still relatively cheap as compared to running the scripts) checks
// against all the inputs when the signature operations are out of
// bounds.
var totalFees int64
for _, tx := range transactions {
txFee, err := checkTransactionInputs(tx, node.height, txInputStore)
if err != nil {
return err
}
// Sum the total fees and ensure we don't overflow the
// accumulator.
lastTotalFees := totalFees
totalFees += txFee
if totalFees < lastTotalFees {
return RuleError("total fees for block overflows " +
"accumulator")
}
}
// The total output values of the coinbase transaction must not exceed
// the expected subsidy value plus total transaction fees gained from
// mining the block. It is safe to ignore overflow and out of range
// errors here because those error conditions would have already been
// caught by checkTransactionSanity.
var totalSatoshiOut int64
for _, txOut := range transactions[0].TxOut {
totalSatoshiOut += txOut.Value
}
expectedSatoshiOut := calcBlockSubsidy(node.height) + totalFees
if totalSatoshiOut > expectedSatoshiOut {
str := fmt.Sprintf("coinbase transaction for block pays %v "+
"which is more than expected value of %v",
totalSatoshiOut, expectedSatoshiOut)
return RuleError(str)
}
// Don't run scripts if this node is before the latest known good
// checkpoint since the validity is verified via the checkpoints (all
// transactions are included in the merkle root hash and any changes
// will therefore be detected by the next checkpoint). This is a huge
// optimization because running the scripts is the most time consuming
// portion of block handling.
checkpoint := b.LatestCheckpoint()
runScripts := !b.noVerify
if checkpoint != nil && node.height <= checkpoint.Height {
runScripts = false
}
// Now that the inexpensive checks are done and have passed, verify the
// transactions are actually allowed to spend the coins by running the
// expensive ECDSA signature check scripts. Doing this last helps
// prevent CPU exhaustion attacks.
if runScripts {
err := checkBlockScripts(block, txInputStore)
if err != nil {
return err
}
}
return nil
}