lbcd/database2/internal/treap/mutable_test.go
Dave Collins af3ed803f5 database: Major redesign of database package.
This commit contains a complete redesign and rewrite of the database
package that approaches things in a vastly different manner than the
previous version.  This is the first part of several stages that will be
needed to ultimately make use of this new package.

Some of the reason for this were discussed in #255, however a quick
summary is as follows:

- The previous database could only contain blocks on the main chain and
  reorgs required deleting the blocks from the database.  This made it
  impossible to store orphans and could make external RPC calls for
  information about blocks during the middle of a reorg fail.
- The previous database interface forced a high level of bitcoin-specific
  intelligence such as spend tracking into each backend driver.
- The aforementioned point led to making it difficult to implement new
  backend drivers due to the need to repeat a lot of non-trivial logic
  which is better handled at a higher layer, such as the blockchain
  package.
- The old database stored all blocks in leveldb.  This made it extremely
  inefficient to do things such as lookup headers and individual
  transactions since the entire block had to be loaded from leveldb (which
  entails it doing data copies) to get access.

In order to address all of these concerns, and others not mentioned, the
database interface has been redesigned as follows:

- Two main categories of functionality are provided: block storage and
  metadata storage
- All block storage and metadata storage are done via read-only and
  read-write MVCC transactions with both manual and managed modes
  - Support for multiple concurrent readers and a single writer
  - Readers use a snapshot and therefore are not blocked by the writer
- Some key properties of the block storage and retrieval API:
  - It is generic and does NOT contain additional bitcoin logic such spend
    tracking and block linking
  - Provides access to the raw serialized bytes so deserialization is not
    forced for callers that don't need it
  - Support for fetching headers via independent functions which allows
    implementations to provide significant optimizations
  - Ability to efficiently retrieve arbitrary regions of blocks
    (transactions, scripts, etc)
- A rich metadata storage API is provided:
  - Key/value with arbitrary data
  - Support for buckets and nested buckets
  - Bucket iteration through a couple of different mechanisms
  - Cursors for efficient and direct key seeking
- Supports registration of backend database implementations
- Comprehensive test coverage
- Provides strong documentation with example usage

This commit also contains an implementation of the previously discussed
interface named ffldb (flat file plus leveldb metadata backend).  Here
is a quick overview:

- Highly optimized for read performance with consistent write performance
  regardless of database size
- All blocks are stored in flat files on the file system
- Bulk block region fetching is optimized to perform linear reads which
  improves performance on spindle disks
- Anti-corruption mechanisms:
  - Flat files contain full block checksums to quickly an easily detect
    database corruption without needing to do expensive merkle root
    calculations
  - Metadata checksums
  - Open reconciliation
- Extensive test coverage:
  - Comprehensive blackbox interface testing
  - Whitebox testing which uses intimate knowledge to exercise uncommon
    failure paths such as deleting files out from under the database
  - Corruption tests (replacing random data in the files)

In addition, this commit also contains a new tool under the new database
directory named dbtool which provides a few basic commands for testing the
database.  It is designed around commands, so it could be useful to expand
on in the future.

Finally, this commit addresses the following issues:

- Adds support for and therefore closes #255
- Fixes #199
- Fixes #201
- Implements and closes #256
- Obsoletes and closes #257
- Closes #247 once the required chain and btcd modifications are in place
  to make use of this new code
2016-02-03 11:42:04 -06:00

468 lines
13 KiB
Go

// Copyright (c) 2015-2016 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package treap
import (
"bytes"
"crypto/sha256"
"testing"
)
// TestMutableEmpty ensures calling functions on an empty mutable treap works as
// expected.
func TestMutableEmpty(t *testing.T) {
t.Parallel()
// Ensure the treap length is the expected value.
testTreap := NewMutable()
if gotLen := testTreap.Len(); gotLen != 0 {
t.Fatalf("Len: unexpected length - got %d, want %d", gotLen, 0)
}
// Ensure the reported size is 0.
if gotSize := testTreap.Size(); gotSize != 0 {
t.Fatalf("Size: unexpected byte size - got %d, want 0",
gotSize)
}
// Ensure there are no errors with requesting keys from an empty treap.
key := serializeUint32(0)
if gotVal := testTreap.Has(key); gotVal != false {
t.Fatalf("Has: unexpected result - got %v, want false", gotVal)
}
if gotVal := testTreap.Get(key); gotVal != nil {
t.Fatalf("Get: unexpected result - got %x, want nil", gotVal)
}
// Ensure there are no panics when deleting keys from an empty treap.
testTreap.Delete(key)
// Ensure the number of keys iterated by ForEach on an empty treap is
// zero.
var numIterated int
testTreap.ForEach(func(k, v []byte) bool {
numIterated++
return true
})
if numIterated != 0 {
t.Fatalf("ForEach: unexpected iterate count - got %d, want 0",
numIterated)
}
}
// TestMutableReset ensures that resetting an existing mutable treap works as
// expected.
func TestMutableReset(t *testing.T) {
t.Parallel()
// Insert a few keys.
numItems := 10
testTreap := NewMutable()
for i := 0; i < numItems; i++ {
key := serializeUint32(uint32(i))
testTreap.Put(key, key)
}
// Reset it.
testTreap.Reset()
// Ensure the treap length is now 0.
if gotLen := testTreap.Len(); gotLen != 0 {
t.Fatalf("Len: unexpected length - got %d, want %d", gotLen, 0)
}
// Ensure the reported size is now 0.
if gotSize := testTreap.Size(); gotSize != 0 {
t.Fatalf("Size: unexpected byte size - got %d, want 0",
gotSize)
}
// Ensure the treap no longer has any of the keys.
for i := 0; i < numItems; i++ {
key := serializeUint32(uint32(i))
// Ensure the treap no longer has the key.
if testTreap.Has(key) {
t.Fatalf("Has #%d: key %q is in treap", i, key)
}
// Get the key that no longer exists from the treap and ensure
// it is nil.
if gotVal := testTreap.Get(key); gotVal != nil {
t.Fatalf("Get #%d: unexpected value - got %x, want nil",
i, gotVal)
}
}
// Ensure the number of keys iterated by ForEach is zero.
var numIterated int
testTreap.ForEach(func(k, v []byte) bool {
numIterated++
return true
})
if numIterated != 0 {
t.Fatalf("ForEach: unexpected iterate count - got %d, want 0",
numIterated)
}
}
// TestMutableSequential ensures that putting keys into a mutable treap in
// sequential order works as expected.
func TestMutableSequential(t *testing.T) {
t.Parallel()
// Insert a bunch of sequential keys while checking several of the treap
// functions work as expected.
expectedSize := uint64(0)
numItems := 1000
testTreap := NewMutable()
for i := 0; i < numItems; i++ {
key := serializeUint32(uint32(i))
testTreap.Put(key, key)
// Ensure the treap length is the expected value.
if gotLen := testTreap.Len(); gotLen != i+1 {
t.Fatalf("Len #%d: unexpected length - got %d, want %d",
i, gotLen, i+1)
}
// Ensure the treap has the key.
if !testTreap.Has(key) {
t.Fatalf("Has #%d: key %q is not in treap", i, key)
}
// Get the key from the treap and ensure it is the expected
// value.
if gotVal := testTreap.Get(key); !bytes.Equal(gotVal, key) {
t.Fatalf("Get #%d: unexpected value - got %x, want %x",
i, gotVal, key)
}
// Ensure the expected size is reported.
expectedSize += (nodeFieldsSize + 8)
if gotSize := testTreap.Size(); gotSize != expectedSize {
t.Fatalf("Size #%d: unexpected byte size - got %d, "+
"want %d", i, gotSize, expectedSize)
}
}
// Ensure the all keys are iterated by ForEach in order.
var numIterated int
testTreap.ForEach(func(k, v []byte) bool {
wantKey := serializeUint32(uint32(numIterated))
// Ensure the key is as expected.
if !bytes.Equal(k, wantKey) {
t.Fatalf("ForEach #%d: unexpected key - got %x, want %x",
numIterated, k, wantKey)
}
// Ensure the value is as expected.
if !bytes.Equal(v, wantKey) {
t.Fatalf("ForEach #%d: unexpected value - got %x, want %x",
numIterated, v, wantKey)
}
numIterated++
return true
})
// Ensure all items were iterated.
if numIterated != numItems {
t.Fatalf("ForEach: unexpected iterate count - got %d, want %d",
numIterated, numItems)
}
// Delete the keys one-by-one while checking several of the treap
// functions work as expected.
for i := 0; i < numItems; i++ {
key := serializeUint32(uint32(i))
testTreap.Delete(key)
// Ensure the treap length is the expected value.
if gotLen := testTreap.Len(); gotLen != numItems-i-1 {
t.Fatalf("Len #%d: unexpected length - got %d, want %d",
i, gotLen, numItems-i-1)
}
// Ensure the treap no longer has the key.
if testTreap.Has(key) {
t.Fatalf("Has #%d: key %q is in treap", i, key)
}
// Get the key that no longer exists from the treap and ensure
// it is nil.
if gotVal := testTreap.Get(key); gotVal != nil {
t.Fatalf("Get #%d: unexpected value - got %x, want nil",
i, gotVal)
}
// Ensure the expected size is reported.
expectedSize -= (nodeFieldsSize + 8)
if gotSize := testTreap.Size(); gotSize != expectedSize {
t.Fatalf("Size #%d: unexpected byte size - got %d, "+
"want %d", i, gotSize, expectedSize)
}
}
}
// TestMutableReverseSequential ensures that putting keys into a mutable treap
// in reverse sequential order works as expected.
func TestMutableReverseSequential(t *testing.T) {
t.Parallel()
// Insert a bunch of sequential keys while checking several of the treap
// functions work as expected.
expectedSize := uint64(0)
numItems := 1000
testTreap := NewMutable()
for i := 0; i < numItems; i++ {
key := serializeUint32(uint32(numItems - i - 1))
testTreap.Put(key, key)
// Ensure the treap length is the expected value.
if gotLen := testTreap.Len(); gotLen != i+1 {
t.Fatalf("Len #%d: unexpected length - got %d, want %d",
i, gotLen, i+1)
}
// Ensure the treap has the key.
if !testTreap.Has(key) {
t.Fatalf("Has #%d: key %q is not in treap", i, key)
}
// Get the key from the treap and ensure it is the expected
// value.
if gotVal := testTreap.Get(key); !bytes.Equal(gotVal, key) {
t.Fatalf("Get #%d: unexpected value - got %x, want %x",
i, gotVal, key)
}
// Ensure the expected size is reported.
expectedSize += (nodeFieldsSize + 8)
if gotSize := testTreap.Size(); gotSize != expectedSize {
t.Fatalf("Size #%d: unexpected byte size - got %d, "+
"want %d", i, gotSize, expectedSize)
}
}
// Ensure the all keys are iterated by ForEach in order.
var numIterated int
testTreap.ForEach(func(k, v []byte) bool {
wantKey := serializeUint32(uint32(numIterated))
// Ensure the key is as expected.
if !bytes.Equal(k, wantKey) {
t.Fatalf("ForEach #%d: unexpected key - got %x, want %x",
numIterated, k, wantKey)
}
// Ensure the value is as expected.
if !bytes.Equal(v, wantKey) {
t.Fatalf("ForEach #%d: unexpected value - got %x, want %x",
numIterated, v, wantKey)
}
numIterated++
return true
})
// Ensure all items were iterated.
if numIterated != numItems {
t.Fatalf("ForEach: unexpected iterate count - got %d, want %d",
numIterated, numItems)
}
// Delete the keys one-by-one while checking several of the treap
// functions work as expected.
for i := 0; i < numItems; i++ {
// Intentionally use the reverse order they were inserted here.
key := serializeUint32(uint32(i))
testTreap.Delete(key)
// Ensure the treap length is the expected value.
if gotLen := testTreap.Len(); gotLen != numItems-i-1 {
t.Fatalf("Len #%d: unexpected length - got %d, want %d",
i, gotLen, numItems-i-1)
}
// Ensure the treap no longer has the key.
if testTreap.Has(key) {
t.Fatalf("Has #%d: key %q is in treap", i, key)
}
// Get the key that no longer exists from the treap and ensure
// it is nil.
if gotVal := testTreap.Get(key); gotVal != nil {
t.Fatalf("Get #%d: unexpected value - got %x, want nil",
i, gotVal)
}
// Ensure the expected size is reported.
expectedSize -= (nodeFieldsSize + 8)
if gotSize := testTreap.Size(); gotSize != expectedSize {
t.Fatalf("Size #%d: unexpected byte size - got %d, "+
"want %d", i, gotSize, expectedSize)
}
}
}
// TestMutableUnordered ensures that putting keys into a mutable treap in no
// paritcular order works as expected.
func TestMutableUnordered(t *testing.T) {
t.Parallel()
// Insert a bunch of out-of-order keys while checking several of the
// treap functions work as expected.
expectedSize := uint64(0)
numItems := 1000
testTreap := NewMutable()
for i := 0; i < numItems; i++ {
// Hash the serialized int to generate out-of-order keys.
hash := sha256.Sum256(serializeUint32(uint32(i)))
key := hash[:]
testTreap.Put(key, key)
// Ensure the treap length is the expected value.
if gotLen := testTreap.Len(); gotLen != i+1 {
t.Fatalf("Len #%d: unexpected length - got %d, want %d",
i, gotLen, i+1)
}
// Ensure the treap has the key.
if !testTreap.Has(key) {
t.Fatalf("Has #%d: key %q is not in treap", i, key)
}
// Get the key from the treap and ensure it is the expected
// value.
if gotVal := testTreap.Get(key); !bytes.Equal(gotVal, key) {
t.Fatalf("Get #%d: unexpected value - got %x, want %x",
i, gotVal, key)
}
// Ensure the expected size is reported.
expectedSize += nodeFieldsSize + uint64(len(key)+len(key))
if gotSize := testTreap.Size(); gotSize != expectedSize {
t.Fatalf("Size #%d: unexpected byte size - got %d, "+
"want %d", i, gotSize, expectedSize)
}
}
// Delete the keys one-by-one while checking several of the treap
// functions work as expected.
for i := 0; i < numItems; i++ {
// Hash the serialized int to generate out-of-order keys.
hash := sha256.Sum256(serializeUint32(uint32(i)))
key := hash[:]
testTreap.Delete(key)
// Ensure the treap length is the expected value.
if gotLen := testTreap.Len(); gotLen != numItems-i-1 {
t.Fatalf("Len #%d: unexpected length - got %d, want %d",
i, gotLen, numItems-i-1)
}
// Ensure the treap no longer has the key.
if testTreap.Has(key) {
t.Fatalf("Has #%d: key %q is in treap", i, key)
}
// Get the key that no longer exists from the treap and ensure
// it is nil.
if gotVal := testTreap.Get(key); gotVal != nil {
t.Fatalf("Get #%d: unexpected value - got %x, want nil",
i, gotVal)
}
// Ensure the expected size is reported.
expectedSize -= (nodeFieldsSize + 64)
if gotSize := testTreap.Size(); gotSize != expectedSize {
t.Fatalf("Size #%d: unexpected byte size - got %d, "+
"want %d", i, gotSize, expectedSize)
}
}
}
// TestMutableDuplicatePut ensures that putting a duplicate key into a mutable
// treap updates the existing value.
func TestMutableDuplicatePut(t *testing.T) {
t.Parallel()
key := serializeUint32(0)
val := []byte("testval")
// Put the key twice with the second put being the expected final value.
testTreap := NewMutable()
testTreap.Put(key, key)
testTreap.Put(key, val)
// Ensure the key still exists and is the new value.
if gotVal := testTreap.Has(key); gotVal != true {
t.Fatalf("Has: unexpected result - got %v, want false", gotVal)
}
if gotVal := testTreap.Get(key); !bytes.Equal(gotVal, val) {
t.Fatalf("Get: unexpected result - got %x, want %x", gotVal, val)
}
// Ensure the expected size is reported.
expectedSize := uint64(nodeFieldsSize + len(key) + len(val))
if gotSize := testTreap.Size(); gotSize != expectedSize {
t.Fatalf("Size: unexpected byte size - got %d, want %d",
gotSize, expectedSize)
}
}
// TestMutableNilValue ensures that putting a nil value into a mutable treap
// results in a key being added with an empty byte slice.
func TestMutableNilValue(t *testing.T) {
t.Parallel()
key := serializeUint32(0)
// Put the key with a nil value.
testTreap := NewMutable()
testTreap.Put(key, nil)
// Ensure the key exists and is an empty byte slice.
if gotVal := testTreap.Has(key); gotVal != true {
t.Fatalf("Has: unexpected result - got %v, want false", gotVal)
}
if gotVal := testTreap.Get(key); gotVal == nil {
t.Fatalf("Get: unexpected result - got nil, want empty slice")
}
if gotVal := testTreap.Get(key); len(gotVal) != 0 {
t.Fatalf("Get: unexpected result - got %x, want empty slice",
gotVal)
}
}
// TestMutableForEachStopIterator ensures that returning false from the ForEach
// callback of a mutable treap stops iteration early.
func TestMutableForEachStopIterator(t *testing.T) {
t.Parallel()
// Insert a few keys.
numItems := 10
testTreap := NewMutable()
for i := 0; i < numItems; i++ {
key := serializeUint32(uint32(i))
testTreap.Put(key, key)
}
// Ensure ForEach exits early on false return by caller.
var numIterated int
testTreap.ForEach(func(k, v []byte) bool {
numIterated++
if numIterated == numItems/2 {
return false
}
return true
})
if numIterated != numItems/2 {
t.Fatalf("ForEach: unexpected iterate count - got %d, want %d",
numIterated, numItems/2)
}
}