lbcd/btcec/gensecp256k1.go
Dave Collins f6a437d4c9 btcec: Optimize pre-computed table load.
This commit modifies the pre-computed table used to optimize the secp256k1
scalar multiplication to a string instead of a byte slice.  This change
makes the compile more efficient since the Go compiler internally
represents bytes slices inefficiently.

This reduces the memory needed to compile btcec to 3MB versus the previous
40MB before this change.

In addition, it modifies the code which loads the pre-computed table to
deserialize directly into the table instead of into locals that are then
copied.

Fixes #297.
2015-02-12 00:29:45 -06:00

204 lines
5.8 KiB
Go

// Copyright (c) 2014-2015 Conformal Systems LLC.
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
// This file is ignored during the regular build due to the following build tag.
// This build tag is set during go generate.
// +build gensecp256k1
package btcec
// References:
// [GECC]: Guide to Elliptic Curve Cryptography (Hankerson, Menezes, Vanstone)
import (
"encoding/binary"
"math/big"
)
// secp256k1BytePoints are dummy points used so the code which generates the
// real values can compile.
var secp256k1BytePoints = ""
// getDoublingPoints returns all the possible G^(2^i) for i in
// 0..n-1 where n is the curve's bit size (256 in the case of secp256k1)
// the coordinates are recorded as Jacobian coordinates.
func (curve *KoblitzCurve) getDoublingPoints() [][3]fieldVal {
doublingPoints := make([][3]fieldVal, curve.BitSize)
// initialize px, py, pz to the Jacobian coordinates for the base point
px, py := curve.bigAffineToField(curve.Gx, curve.Gy)
pz := new(fieldVal).SetInt(1)
for i := 0; i < curve.BitSize; i++ {
doublingPoints[i] = [3]fieldVal{*px, *py, *pz}
// P = 2*P
curve.doubleJacobian(px, py, pz, px, py, pz)
}
return doublingPoints
}
// SerializedBytePoints returns a serialized byte slice which contains all of
// the possible points per 8-bit window. This is used to when generating
// secp256k1.go.
func (curve *KoblitzCurve) SerializedBytePoints() []byte {
doublingPoints := curve.getDoublingPoints()
// Segregate the bits into byte-sized windows
serialized := make([]byte, curve.byteSize*256*3*10*4)
offset := 0
for byteNum := 0; byteNum < curve.byteSize; byteNum++ {
// Grab the 8 bits that make up this byte from doublingPoints.
startingBit := 8 * (curve.byteSize - byteNum - 1)
computingPoints := doublingPoints[startingBit : startingBit+8]
// Compute all points in this window and serialize them.
for i := 0; i < 256; i++ {
px, py, pz := new(fieldVal), new(fieldVal), new(fieldVal)
for j := 0; j < 8; j++ {
if i>>uint(j)&1 == 1 {
curve.addJacobian(px, py, pz, &computingPoints[j][0],
&computingPoints[j][1], &computingPoints[j][2], px, py, pz)
}
}
for i := 0; i < 10; i++ {
binary.LittleEndian.PutUint32(serialized[offset:], px.n[i])
offset += 4
}
for i := 0; i < 10; i++ {
binary.LittleEndian.PutUint32(serialized[offset:], py.n[i])
offset += 4
}
for i := 0; i < 10; i++ {
binary.LittleEndian.PutUint32(serialized[offset:], pz.n[i])
offset += 4
}
}
}
return serialized
}
// sqrt returns the square root of the provided big integer using Newton's
// method. It's only compiled and used during generation of pre-computed
// values, so speed is not a huge concern.
func sqrt(n *big.Int) *big.Int {
// Initial guess = 2^(log_2(n)/2)
guess := big.NewInt(2)
guess.Exp(guess, big.NewInt(int64(n.BitLen()/2)), nil)
// Now refine using Newton's method.
big2 := big.NewInt(2)
prevGuess := big.NewInt(0)
for {
prevGuess.Set(guess)
guess.Add(guess, new(big.Int).Div(n, guess))
guess.Div(guess, big2)
if guess.Cmp(prevGuess) == 0 {
break
}
}
return guess
}
// EndomorphismVectors runs the first 3 steps of algorithm 3.74 from [GECC] to
// generate the linearly independent vectors needed to generate a balanced
// length-two representation of a multiplier such that k = k1 + k2λ (mod N) and
// returns them. Since the values will always be the same given the fact that N
// and λ are fixed, the final results can be accelerated by storing the
// precomputed values with the curve.
func (curve *KoblitzCurve) EndomorphismVectors() (a1, b1, a2, b2 *big.Int) {
bigMinus1 := big.NewInt(-1)
// This section uses an extended Euclidean algorithm to generate a
// sequence of equations:
// s[i] * N + t[i] * λ = r[i]
nSqrt := sqrt(curve.N)
u, v := new(big.Int).Set(curve.N), new(big.Int).Set(curve.lambda)
x1, y1 := big.NewInt(1), big.NewInt(0)
x2, y2 := big.NewInt(0), big.NewInt(1)
q, r := new(big.Int), new(big.Int)
qu, qx1, qy1 := new(big.Int), new(big.Int), new(big.Int)
s, t := new(big.Int), new(big.Int)
ri, ti := new(big.Int), new(big.Int)
a1, b1, a2, b2 = new(big.Int), new(big.Int), new(big.Int), new(big.Int)
found, oneMore := false, false
for u.Sign() != 0 {
// q = v/u
q.Div(v, u)
// r = v - q*u
qu.Mul(q, u)
r.Sub(v, qu)
// s = x2 - q*x1
qx1.Mul(q, x1)
s.Sub(x2, qx1)
// t = y2 - q*y1
qy1.Mul(q, y1)
t.Sub(y2, qy1)
// v = u, u = r, x2 = x1, x1 = s, y2 = y1, y1 = t
v.Set(u)
u.Set(r)
x2.Set(x1)
x1.Set(s)
y2.Set(y1)
y1.Set(t)
// As soon as the remainder is less than the sqrt of n, the
// values of a1 and b1 are known.
if !found && r.Cmp(nSqrt) < 0 {
// When this condition executes ri and ti represent the
// r[i] and t[i] values such that i is the greatest
// index for which r >= sqrt(n). Meanwhile, the current
// r and t values are r[i+1] and t[i+1], respectively.
// a1 = r[i+1], b1 = -t[i+1]
a1.Set(r)
b1.Mul(t, bigMinus1)
found = true
oneMore = true
// Skip to the next iteration so ri and ti are not
// modified.
continue
} else if oneMore {
// When this condition executes ri and ti still
// represent the r[i] and t[i] values while the current
// r and t are r[i+2] and t[i+2], respectively.
// sum1 = r[i]^2 + t[i]^2
rSquared := new(big.Int).Mul(ri, ri)
tSquared := new(big.Int).Mul(ti, ti)
sum1 := new(big.Int).Add(rSquared, tSquared)
// sum2 = r[i+2]^2 + t[i+2]^2
r2Squared := new(big.Int).Mul(r, r)
t2Squared := new(big.Int).Mul(t, t)
sum2 := new(big.Int).Add(r2Squared, t2Squared)
// if (r[i]^2 + t[i]^2) <= (r[i+2]^2 + t[i+2]^2)
if sum1.Cmp(sum2) <= 0 {
// a2 = r[i], b2 = -t[i]
a2.Set(ri)
b2.Mul(ti, bigMinus1)
} else {
// a2 = r[i+2], b2 = -t[i+2]
a2.Set(r)
b2.Mul(t, bigMinus1)
}
// All done.
break
}
ri.Set(r)
ti.Set(t)
}
return a1, b1, a2, b2
}