cfc2a4cc76
This commit adds the new standard script type for empty, but data carrying and provably prunable transaction scripts. Closes #2. ok @owainga
1192 lines
36 KiB
Go
1192 lines
36 KiB
Go
// Copyright (c) 2013 Conformal Systems LLC.
|
|
// Use of this source code is governed by an ISC
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package btcscript
|
|
|
|
import (
|
|
"bytes"
|
|
"crypto/ecdsa"
|
|
"crypto/rand"
|
|
"encoding/binary"
|
|
"errors"
|
|
"fmt"
|
|
"github.com/conformal/btcec"
|
|
"github.com/conformal/btcwire"
|
|
"github.com/davecgh/go-spew/spew"
|
|
"io"
|
|
"math/big"
|
|
"time"
|
|
)
|
|
|
|
// StackErrShortScript is returned if the script has an opcode that is too long
|
|
// for the length of the script.
|
|
var StackErrShortScript = errors.New("execute past end of script")
|
|
|
|
// StackErrUnderflow is returned if an opcode requires more items on the stack
|
|
// than is present.
|
|
var StackErrUnderflow = errors.New("stack underflow")
|
|
|
|
// StackErrInvalidArgs is returned if the argument for an opcode is out of
|
|
// acceptable range.
|
|
var StackErrInvalidArgs = errors.New("invalid argument")
|
|
|
|
// StackErrOpDisabled is returned when a disabled opcode is encountered in the
|
|
// script.
|
|
var StackErrOpDisabled = errors.New("Disabled Opcode")
|
|
|
|
// StackErrVerifyFailed is returned when one of the OP_VERIFY or OP_*VERIFY
|
|
// instructions is executed and the conditions fails.
|
|
var StackErrVerifyFailed = errors.New("Verify failed")
|
|
|
|
// StackErrNumberTooBig is returned when the argument for an opcode that should
|
|
// be an offset is obviously far too large.
|
|
var StackErrNumberTooBig = errors.New("number too big")
|
|
|
|
// StackErrInvalidOpcode is returned when an opcode marked as invalid or a
|
|
// completely undefined opcode is encountered.
|
|
var StackErrInvalidOpcode = errors.New("Invalid Opcode")
|
|
|
|
// StackErrReservedOpcode is returned when an opcode marked as reserved is
|
|
// encountered.
|
|
var StackErrReservedOpcode = errors.New("Reserved Opcode")
|
|
|
|
// StackErrEarlyReturn is returned when OP_RETURN is executed in the script.
|
|
var StackErrEarlyReturn = errors.New("Script returned early")
|
|
|
|
// StackErrNoIf is returned if an OP_ELSE or OP_ENDIF is encountered without
|
|
// first having an OP_IF or OP_NOTIF in the script.
|
|
var StackErrNoIf = errors.New("OP_ELSE or OP_ENDIF with no matching OP_IF")
|
|
|
|
// StackErrMissingEndif is returned if the end of a script is reached without
|
|
// and OP_ENDIF to correspond to a conditional expression.
|
|
var StackErrMissingEndif = fmt.Errorf("execute fail, in conditional execution")
|
|
|
|
// StackErrTooManyPubkeys is returned if an OP_CHECKMULTISIG is encountered
|
|
// with more than MaxPubKeysPerMultiSig pubkeys present.
|
|
var StackErrTooManyPubkeys = errors.New("Invalid pubkey count in OP_CHECKMULTISIG")
|
|
|
|
// StackErrTooManyOperations is returned if a script has more then
|
|
// MaxOpsPerScript opcodes that do not push data.
|
|
var StackErrTooManyOperations = errors.New("Too many operations in script")
|
|
|
|
// StackErrElementTooBig is returned if the size of an element to be pushed to
|
|
// the stack is over MaxScriptElementSize.
|
|
var StackErrElementTooBig = errors.New("Element in script too large")
|
|
|
|
// StackErrUnknownAddress is returned when ScriptToAddrHash does not recognise
|
|
// the pattern of the script and thus can not find the address for payment.
|
|
var StackErrUnknownAddress = errors.New("non-recognised address")
|
|
|
|
// StackErrScriptFailed is returned when at the end of a script the boolean
|
|
// on top of the stack is false signifying that the script has failed.
|
|
var StackErrScriptFailed = errors.New("execute fail, fail on stack")
|
|
|
|
// StackErrScriptUnfinished is returned when CheckErrorCondition is called
|
|
// on a script that has not finished executing.
|
|
var StackErrScriptUnfinished = errors.New("Error check when script unfinished")
|
|
|
|
// StackErrEmpyStack is returned when the stack is empty at the end of
|
|
// execution. Normal operation requires that a boolean is on top of the stack
|
|
// when the scripts have finished executing.
|
|
var StackErrEmptyStack = errors.New("Stack empty at end of execution")
|
|
|
|
// StackErrP2SHNonPushOnly is returned when a Pay-to-Script-Hash transaction
|
|
// is encountered and the ScriptSig does operations other than push data (in
|
|
// violation of bip16).
|
|
var StackErrP2SHNonPushOnly = errors.New("pay to script hash with non " +
|
|
"pushonly input")
|
|
|
|
// StackErrInvalidParseType is an internal error returned from ScriptToAddrHash
|
|
// ony if the internal data tables are wrong.
|
|
var StackErrInvalidParseType = errors.New("internal error: invalid parsetype found")
|
|
|
|
// StackErrInvalidAddrOffset is an internal error returned from ScriptToAddrHash
|
|
// ony if the internal data tables are wrong.
|
|
var StackErrInvalidAddrOffset = errors.New("internal error: invalid offset found")
|
|
|
|
// StackErrInvalidIndex is returned when an out-of-bounds index was passed to
|
|
// a function.
|
|
var StackErrInvalidIndex = errors.New("Invalid script index")
|
|
|
|
// StackErrNonPushOnly is returned when ScriptInfo is called with a pkScript
|
|
// that peforms operations other that pushing data to the stack.
|
|
var StackErrNonPushOnly = errors.New("SigScript is non pushonly")
|
|
|
|
// Bip16Activation is the timestamp where BIP0016 is valid to use in the
|
|
// blockchain. To be used to determine if BIP0016 should be called for or not.
|
|
// This timestamp corresponds to Sun Apr 1 00:00:00 UTC 2012.
|
|
var Bip16Activation = time.Unix(1333238400, 0)
|
|
|
|
// Hash type bits from the end of a signature.
|
|
const (
|
|
SigHashOld = 0x0
|
|
SigHashAll = 0x1
|
|
SigHashNone = 0x2
|
|
SigHashSingle = 0x3
|
|
SigHashAnyOneCanPay = 0x80
|
|
)
|
|
|
|
// These are the constants specified for maximums in individual scripts.
|
|
const (
|
|
MaxOpsPerScript = 201 // Max number of non-push operations.
|
|
MaxPubKeysPerMultiSig = 20 // Multisig can't have more sigs than this.
|
|
MaxScriptElementSize = 520 // Max bytes pushable to the stack.
|
|
)
|
|
|
|
// ScriptClass is an enumeration for the list of standard types of script.
|
|
type ScriptClass byte
|
|
|
|
// Classes of script payment known about in the blockchain.
|
|
const (
|
|
NonStandardTy ScriptClass = iota // None of the recognized forms.
|
|
PubKeyTy // Pay pubkey.
|
|
PubKeyHashTy // Pay pubkey hash.
|
|
ScriptHashTy // Pay to script hash.
|
|
MultiSigTy // Multi signature.
|
|
NullDataTy // Empty data-only (provably prunable).
|
|
)
|
|
|
|
var scriptClassToName = []string{
|
|
NonStandardTy: "nonstandard",
|
|
PubKeyTy: "pubkey",
|
|
PubKeyHashTy: "pubkeyhash",
|
|
ScriptHashTy: "scripthash",
|
|
MultiSigTy: "multisig",
|
|
NullDataTy: "nulldata",
|
|
}
|
|
|
|
// String implements the Stringer interface by returning the name of
|
|
// the enum script class. If the enum is invalid then "Invalid" will be
|
|
// returned.
|
|
func (t ScriptClass) String() string {
|
|
if int(t) > len(scriptClassToName) || int(t) < 0 {
|
|
return "Invalid"
|
|
}
|
|
return scriptClassToName[t]
|
|
}
|
|
|
|
// Script is the virtual machine that executes btcscripts.
|
|
type Script struct {
|
|
scripts [][]parsedOpcode
|
|
scriptidx int
|
|
scriptoff int
|
|
lastcodesep int
|
|
dstack Stack // data stack
|
|
astack Stack // alt stack
|
|
tx btcwire.MsgTx
|
|
txidx int
|
|
condStack []int
|
|
numOps int
|
|
bip16 bool // treat execution as pay-to-script-hash
|
|
der bool // enforce DER encoding
|
|
savedFirstStack [][]byte // stack from first script for bip16 scripts
|
|
}
|
|
|
|
// isPubkey returns true if the script passed is a pubkey transaction, false
|
|
// otherwise.
|
|
func isPubkey(pops []parsedOpcode) bool {
|
|
return len(pops) == 2 &&
|
|
pops[0].opcode.value > OP_FALSE &&
|
|
pops[0].opcode.value <= OP_DATA_75 &&
|
|
pops[1].opcode.value == OP_CHECKSIG
|
|
}
|
|
|
|
// isPubkeyHash returns true if the script passed is a pubkey hash transaction,
|
|
// false otherwise.
|
|
func isPubkeyHash(pops []parsedOpcode) bool {
|
|
return len(pops) == 5 &&
|
|
pops[0].opcode.value == OP_DUP &&
|
|
pops[1].opcode.value == OP_HASH160 &&
|
|
pops[2].opcode.value == OP_DATA_20 &&
|
|
pops[3].opcode.value == OP_EQUALVERIFY &&
|
|
pops[4].opcode.value == OP_CHECKSIG
|
|
|
|
}
|
|
|
|
// isScriptHash returns true if the script passed is a pay-to-script-hash (P2SH)
|
|
// transction, false otherwise.
|
|
func isScriptHash(pops []parsedOpcode) bool {
|
|
return len(pops) == 3 &&
|
|
pops[0].opcode.value == OP_HASH160 &&
|
|
pops[1].opcode.value == OP_DATA_20 &&
|
|
pops[2].opcode.value == OP_EQUAL
|
|
}
|
|
|
|
// IsPayToScriptHash returns true if the script is in the standard
|
|
// Pay-To-Script-Hash format, false otherwise.
|
|
func IsPayToScriptHash(script []byte) bool {
|
|
pops, err := parseScript(script)
|
|
if err != nil {
|
|
return false
|
|
}
|
|
return isScriptHash(pops)
|
|
}
|
|
|
|
// isMultiSig returns true if the passed script is a multisig transaction, false
|
|
// otherwise.
|
|
func isMultiSig(pops []parsedOpcode) bool {
|
|
l := len(pops)
|
|
// absolute minimum is 1 pubkey so
|
|
// OP_1-16, pubkey, OP_1, OP_CHECK_MULTISIG
|
|
if l < 4 {
|
|
return false
|
|
}
|
|
if pops[0].opcode.value < OP_1 ||
|
|
pops[0].opcode.value > OP_16 {
|
|
return false
|
|
}
|
|
if pops[l-2].opcode.value < OP_1 ||
|
|
pops[l-2].opcode.value > OP_16 {
|
|
return false
|
|
}
|
|
if pops[l-1].opcode.value != OP_CHECK_MULTISIG {
|
|
return false
|
|
}
|
|
for _, pop := range pops[1 : l-2] {
|
|
// valid pubkeys are either 65 or 33 bytes
|
|
if len(pop.data) != 33 &&
|
|
len(pop.data) != 65 {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// isNullData returns true if the passed script is a null data transaction,
|
|
// false otherwise.
|
|
func isNullData(pops []parsedOpcode) bool {
|
|
// A nulldata transaction is either a single OP_RETURN or an
|
|
// OP_RETURN SMALLDATA (where SMALLDATA is a push data up to 80 bytes).
|
|
l := len(pops)
|
|
if l == 1 && pops[0].opcode.value == OP_RETURN {
|
|
return true
|
|
}
|
|
|
|
return l == 2 &&
|
|
pops[0].opcode.value == OP_RETURN &&
|
|
pops[1].opcode.value <= OP_PUSHDATA4 &&
|
|
len(pops[1].data) <= 80
|
|
}
|
|
|
|
// isPushOnly returns true if the script only pushes data, false otherwise.
|
|
func isPushOnly(pops []parsedOpcode) bool {
|
|
// technically we cheat here, we don't look at opcodes
|
|
for _, pop := range pops {
|
|
// all opcodes up to OP_16 are data instructions.
|
|
if pop.opcode.value < OP_FALSE ||
|
|
pop.opcode.value > OP_16 {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// IsPushOnlyScript returns whether or not the passed script only pushes data.
|
|
// If the script does not parse false will be returned.
|
|
func IsPushOnlyScript(script []byte) bool {
|
|
pops, err := parseScript(script)
|
|
if err != nil {
|
|
return false
|
|
}
|
|
return isPushOnly(pops)
|
|
}
|
|
|
|
// GetScriptClass returns the class of the script passed. If the script does not
|
|
// parse then NonStandardTy will be returned.
|
|
func GetScriptClass(script []byte) ScriptClass {
|
|
pops, err := parseScript(script)
|
|
if err != nil {
|
|
return NonStandardTy
|
|
}
|
|
return typeOfScript(pops)
|
|
}
|
|
|
|
// scriptType returns the type of the script being inspected from the known
|
|
// standard types.
|
|
func typeOfScript(pops []parsedOpcode) ScriptClass {
|
|
// XXX dubious optimisation: order these in order of popularity in the
|
|
// blockchain
|
|
if isPubkey(pops) {
|
|
return PubKeyTy
|
|
} else if isPubkeyHash(pops) {
|
|
return PubKeyHashTy
|
|
} else if isScriptHash(pops) {
|
|
return ScriptHashTy
|
|
} else if isMultiSig(pops) {
|
|
return MultiSigTy
|
|
} else if isNullData(pops) {
|
|
return NullDataTy
|
|
}
|
|
return NonStandardTy
|
|
|
|
}
|
|
|
|
// parseScript preparses the script in bytes into a list of parsedOpcodes while
|
|
// applying a number of sanity checks.
|
|
func parseScript(script []byte) ([]parsedOpcode, error) {
|
|
return parseScriptTemplate(script, opcodemap)
|
|
}
|
|
|
|
// parseScriptTemplate is the same as parseScript but allows the passing of the
|
|
// template list for testing purposes. On error we return the list of parsed
|
|
// opcodes so far.
|
|
func parseScriptTemplate(script []byte, opcodemap map[byte]*opcode) ([]parsedOpcode, error) {
|
|
retScript := make([]parsedOpcode, 0, len(script))
|
|
for i := 0; i < len(script); {
|
|
instr := script[i]
|
|
op, ok := opcodemap[instr]
|
|
if !ok {
|
|
return retScript, StackErrInvalidOpcode
|
|
}
|
|
pop := parsedOpcode{opcode: op}
|
|
// parse data out of instruction.
|
|
switch {
|
|
case op.length == 1:
|
|
// no data, done here
|
|
i++
|
|
case op.length > 1:
|
|
if len(script[i:]) < op.length {
|
|
return retScript, StackErrShortScript
|
|
}
|
|
// slice out the data.
|
|
pop.data = script[i+1 : i+op.length]
|
|
i += op.length
|
|
case op.length < 0:
|
|
var err error
|
|
var l uint
|
|
off := i + 1
|
|
switch op.length {
|
|
case -1:
|
|
l, err = scriptUInt8(script[off:])
|
|
case -2:
|
|
l, err = scriptUInt16(script[off:])
|
|
case -4:
|
|
l, err = scriptUInt32(script[off:])
|
|
default:
|
|
return retScript,
|
|
fmt.Errorf("invalid opcode length %d",
|
|
op.length)
|
|
}
|
|
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
off = i + 1 - op.length // beginning of data
|
|
// Disallow entries that do not fit script or were
|
|
// sign extended.
|
|
if int(l) > len(script[off:]) || int(l) < 0 {
|
|
return retScript, StackErrShortScript
|
|
}
|
|
pop.data = script[off : off+int(l)]
|
|
i += 1 - op.length + int(l)
|
|
}
|
|
retScript = append(retScript, pop)
|
|
}
|
|
return retScript, nil
|
|
}
|
|
|
|
// unparseScript reversed the action of parseScript and returns the
|
|
// parsedOpcodes as a list of bytes
|
|
func unparseScript(pops []parsedOpcode) ([]byte, error) {
|
|
script := make([]byte, 0, len(pops))
|
|
for _, pop := range pops {
|
|
b, err := pop.bytes()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
script = append(script, b...)
|
|
}
|
|
return script, nil
|
|
}
|
|
|
|
// ScriptFlags is a bitmask defining additional operations or
|
|
// tests that will be done when executing a Script.
|
|
type ScriptFlags uint32
|
|
|
|
const (
|
|
// ScriptBip16 defines whether the bip16 threshhold has passed and thus
|
|
// pay-to-script hash transactions will be fully validated.
|
|
ScriptBip16 ScriptFlags = 1 << iota
|
|
|
|
// ScriptCanonicalSignatures defines whether additional canonical
|
|
// signature checks are performed when parsing a signature.
|
|
//
|
|
// Canonical (DER) signatures are not required in the tx rules for
|
|
// block acceptance, but are checked in recent versions of bitcoind
|
|
// when accepting transactions to the mempool. Non-canonical (valid
|
|
// BER but not valid DER) transactions can potentially be changed
|
|
// before mined into a block, either by adding extra padding or
|
|
// flipping the sign of the R or S value in the signature, creating a
|
|
// transaction that still validates and spends the inputs, but is not
|
|
// recognized by creator of the transaction. Performing a canonical
|
|
// check enforces script signatures use a unique DER format.
|
|
ScriptCanonicalSignatures
|
|
)
|
|
|
|
// NewScript returns a new script engine for the provided tx and input idx with
|
|
// a signature script scriptSig and a pubkeyscript scriptPubKey. If bip16 is
|
|
// true then it will be treated as if the bip16 threshhold has passed and thus
|
|
// pay-to-script hash transactions will be fully validated.
|
|
func NewScript(scriptSig []byte, scriptPubKey []byte, txidx int, tx *btcwire.MsgTx, flags ScriptFlags) (*Script, error) {
|
|
var m Script
|
|
scripts := [][]byte{scriptSig, scriptPubKey}
|
|
m.scripts = make([][]parsedOpcode, len(scripts))
|
|
for i, scr := range scripts {
|
|
var err error
|
|
m.scripts[i], err = parseScript(scr)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// If the first scripts(s) are empty, must start on later ones.
|
|
if i == 0 && len(scr) == 0 {
|
|
// This could end up seeing an invalid initial pc if
|
|
// all scripts were empty. However, that is an invalid
|
|
// case and should fail.
|
|
m.scriptidx = i + 1
|
|
}
|
|
}
|
|
|
|
// Parse flags.
|
|
bip16 := flags&ScriptBip16 == ScriptBip16
|
|
if bip16 && isScriptHash(m.scripts[1]) {
|
|
// if we are pay to scripthash then we only accept input
|
|
// scripts that push data
|
|
if !isPushOnly(m.scripts[0]) {
|
|
return nil, StackErrP2SHNonPushOnly
|
|
}
|
|
m.bip16 = true
|
|
}
|
|
if flags&ScriptCanonicalSignatures == ScriptCanonicalSignatures {
|
|
m.der = true
|
|
}
|
|
|
|
m.tx = *tx
|
|
m.txidx = txidx
|
|
m.condStack = []int{OpCondTrue}
|
|
|
|
return &m, nil
|
|
}
|
|
|
|
// Execute will execute all script in the script engine and return either nil
|
|
// for successful validation or an error if one occurred.
|
|
func (s *Script) Execute() (err error) {
|
|
done := false
|
|
for done != true {
|
|
log.Tracef("%v", newLogClosure(func() string {
|
|
dis, err := s.DisasmPC()
|
|
if err != nil {
|
|
return fmt.Sprintf("stepping (%v)", err)
|
|
}
|
|
return fmt.Sprintf("stepping %v", dis)
|
|
}))
|
|
|
|
done, err = s.Step()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
log.Tracef("%v", newLogClosure(func() string {
|
|
var dstr, astr string
|
|
|
|
// if we're tracing, dump the stacks.
|
|
if s.dstack.Depth() != 0 {
|
|
dstr = "Stack\n" + spew.Sdump(s.dstack)
|
|
}
|
|
if s.astack.Depth() != 0 {
|
|
astr = "AltStack\n" + spew.Sdump(s.astack)
|
|
}
|
|
|
|
return dstr + astr
|
|
}))
|
|
}
|
|
|
|
return s.CheckErrorCondition()
|
|
}
|
|
|
|
// CheckErrorCondition returns nil if the running script has ended and was
|
|
// successful, leaving a a true boolean on the stack. An error otherwise,
|
|
// including if the script has not finished.
|
|
func (s *Script) CheckErrorCondition() (err error) {
|
|
// Check we are actually done. if pc is past the end of script array
|
|
// then we have run out of scripts to run.
|
|
if s.scriptidx < len(s.scripts) {
|
|
return StackErrScriptUnfinished
|
|
}
|
|
if s.dstack.Depth() < 1 {
|
|
return StackErrEmptyStack
|
|
}
|
|
v, err := s.dstack.PopBool()
|
|
if err == nil && v == false {
|
|
// log interesting data.
|
|
log.Tracef("%v", func() string {
|
|
dis0, _ := s.DisasmScript(0)
|
|
dis1, _ := s.DisasmScript(1)
|
|
return fmt.Sprintf("scripts failed: script0: %s\n"+
|
|
"script1: %s", dis0, dis1)
|
|
})
|
|
err = StackErrScriptFailed
|
|
}
|
|
if err == nil && len(s.condStack) != 1 {
|
|
// conditional execution stack context left active
|
|
err = StackErrMissingEndif
|
|
}
|
|
return err
|
|
}
|
|
|
|
// Step will execute the next instruction and move the program counter to the
|
|
// next opcode in the script, or the next script if the curent has ended. Step
|
|
// will return true in the case that the last opcode was successfully executed.
|
|
// if an error is returned then the result of calling Step or any other method
|
|
// is undefined.
|
|
func (m *Script) Step() (done bool, err error) {
|
|
// verify that it is pointing to a valid script address
|
|
err = m.validPC()
|
|
if err != nil {
|
|
return
|
|
}
|
|
opcode := m.scripts[m.scriptidx][m.scriptoff]
|
|
|
|
executeInstr := true
|
|
if m.condStack[0] != OpCondTrue {
|
|
// some opcodes still 'activate' if on the non-executing side
|
|
// of conditional execution
|
|
if opcode.conditional() {
|
|
executeInstr = true
|
|
} else {
|
|
executeInstr = false
|
|
}
|
|
}
|
|
if executeInstr {
|
|
err = opcode.exec(m)
|
|
if err != nil {
|
|
return
|
|
}
|
|
}
|
|
|
|
// prepare for next instruction
|
|
m.scriptoff++
|
|
if m.scriptoff >= len(m.scripts[m.scriptidx]) {
|
|
m.numOps = 0 // number of ops is per script.
|
|
m.scriptoff = 0
|
|
if m.scriptidx == 0 && m.bip16 {
|
|
m.scriptidx++
|
|
m.savedFirstStack = m.GetStack()
|
|
} else if m.scriptidx == 1 && m.bip16 {
|
|
// Put us past the end for CheckErrorCondition()
|
|
m.scriptidx++
|
|
// We check script ran ok, if so then we pull
|
|
// the script out of the first stack and executre that.
|
|
err := m.CheckErrorCondition()
|
|
if err != nil {
|
|
return false, err
|
|
}
|
|
|
|
script := m.savedFirstStack[len(m.savedFirstStack)-1]
|
|
pops, err := parseScript(script)
|
|
if err != nil {
|
|
return false, err
|
|
}
|
|
m.scripts = append(m.scripts, pops)
|
|
// Set stack to be the stack from first script
|
|
// minus the script itself
|
|
m.SetStack(m.savedFirstStack[:len(m.savedFirstStack)-1])
|
|
} else {
|
|
m.scriptidx++
|
|
}
|
|
// there are zero length scripts in the wild
|
|
if m.scriptidx < len(m.scripts) && m.scriptoff >= len(m.scripts[m.scriptidx]) {
|
|
m.scriptidx++
|
|
}
|
|
m.lastcodesep = 0
|
|
if m.scriptidx >= len(m.scripts) {
|
|
done = true
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// curPC returns either the current script and offset, or an error if the
|
|
// position isn't valid.
|
|
func (m *Script) curPC() (script int, off int, err error) {
|
|
err = m.validPC()
|
|
if err != nil {
|
|
return 0, 0, err
|
|
}
|
|
return m.scriptidx, m.scriptoff, nil
|
|
}
|
|
|
|
// validPC returns an error if the current script position is valid for
|
|
// execution, nil otherwise.
|
|
func (m *Script) validPC() error {
|
|
if m.scriptidx >= len(m.scripts) {
|
|
return fmt.Errorf("Past input scripts %v:%v %v:xxxx", m.scriptidx, m.scriptoff, len(m.scripts))
|
|
}
|
|
if m.scriptoff >= len(m.scripts[m.scriptidx]) {
|
|
return fmt.Errorf("Past input scripts %v:%v %v:%04d", m.scriptidx, m.scriptoff, m.scriptidx, len(m.scripts[m.scriptidx]))
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// DisasmScript returns the disassembly string for the script at offset
|
|
// ``idx''. Where 0 is the scriptSig and 1 is the scriptPubKey.
|
|
func (m *Script) DisasmScript(idx int) (disstr string, err error) {
|
|
if idx >= len(m.scripts) {
|
|
return "", StackErrInvalidIndex
|
|
}
|
|
for i := range m.scripts[idx] {
|
|
disstr = disstr + m.disasm(idx, i) + "\n"
|
|
}
|
|
return disstr, nil
|
|
}
|
|
|
|
// DisasmPC returns the string for the disassembly of the opcode that will be
|
|
// next to execute when Step() is called.
|
|
func (m *Script) DisasmPC() (disstr string, err error) {
|
|
scriptidx, scriptoff, err := m.curPC()
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
return m.disasm(scriptidx, scriptoff), nil
|
|
}
|
|
|
|
// disasm is a helper member to produce the output for DisasmPC and
|
|
// DisasmScript. It produces the opcode prefixed by the program counter at the
|
|
// provided position in the script. it does no error checking and leaves that
|
|
// to the caller to provide a valid offse.
|
|
func (m *Script) disasm(scriptidx int, scriptoff int) string {
|
|
return fmt.Sprintf("%02x:%04x: %s", scriptidx, scriptoff,
|
|
m.scripts[scriptidx][scriptoff].print(false))
|
|
}
|
|
|
|
// subScript will return the script since the last OP_CODESEPARATOR
|
|
func (s *Script) subScript() []parsedOpcode {
|
|
return s.scripts[s.scriptidx][s.lastcodesep:]
|
|
}
|
|
|
|
// removeOpcode will remove any opcode matching ``opcode'' from the opcode
|
|
// stream in pkscript
|
|
func removeOpcode(pkscript []parsedOpcode, opcode byte) []parsedOpcode {
|
|
retScript := make([]parsedOpcode, 0, len(pkscript))
|
|
for _, pop := range pkscript {
|
|
if pop.opcode.value != opcode {
|
|
retScript = append(retScript, pop)
|
|
}
|
|
}
|
|
return retScript
|
|
}
|
|
|
|
// removeOpcodeByData will return the pkscript minus any opcodes that would
|
|
// push the data in ``data'' to the stack.
|
|
func removeOpcodeByData(pkscript []parsedOpcode, data []byte) []parsedOpcode {
|
|
retScript := make([]parsedOpcode, 0, len(pkscript))
|
|
for _, pop := range pkscript {
|
|
if !bytes.Equal(pop.data, data) {
|
|
retScript = append(retScript, pop)
|
|
}
|
|
}
|
|
return retScript
|
|
|
|
}
|
|
|
|
// DisasmString formats a disassembled script for one line printing.
|
|
func DisasmString(buf []byte) (string, error) {
|
|
disbuf := ""
|
|
opcodes, err := parseScript(buf)
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
for _, pop := range opcodes {
|
|
disbuf += pop.print(true) + " "
|
|
}
|
|
if disbuf != "" {
|
|
disbuf = disbuf[:len(disbuf)-1]
|
|
}
|
|
return disbuf, nil
|
|
}
|
|
|
|
// calcScriptHash will, given the a script and hashtype for the current
|
|
// scriptmachine, calculate the doubleSha256 hash of the transaction and
|
|
// script to be used for signature signing and verification.
|
|
func calcScriptHash(script []parsedOpcode, hashType byte, tx *btcwire.MsgTx, idx int) []byte {
|
|
|
|
// remove all instances of OP_CODESEPARATOR still left in the script
|
|
script = removeOpcode(script, OP_CODESEPARATOR)
|
|
|
|
// Make a deep copy of the transaction, zeroing out the script
|
|
// for all inputs that are not currently being processed.
|
|
txCopy := tx.Copy()
|
|
for i := range txCopy.TxIn {
|
|
var txIn btcwire.TxIn
|
|
txIn = *txCopy.TxIn[i]
|
|
txCopy.TxIn[i] = &txIn
|
|
if i == idx {
|
|
// unparseScript cannot fail here, because removeOpcode
|
|
// above only returns a valid script.
|
|
sigscript, _ := unparseScript(script)
|
|
txCopy.TxIn[idx].SignatureScript = sigscript
|
|
} else {
|
|
txCopy.TxIn[i].SignatureScript = []byte{}
|
|
}
|
|
}
|
|
// Default behaviour has all outputs set up.
|
|
for i := range txCopy.TxOut {
|
|
var txOut btcwire.TxOut
|
|
txOut = *txCopy.TxOut[i]
|
|
txCopy.TxOut[i] = &txOut
|
|
}
|
|
|
|
switch hashType & 31 {
|
|
case SigHashNone:
|
|
txCopy.TxOut = txCopy.TxOut[0:0] // empty slice
|
|
for i := range txCopy.TxIn {
|
|
if i != idx {
|
|
txCopy.TxIn[i].Sequence = 0
|
|
}
|
|
}
|
|
case SigHashSingle:
|
|
if idx >= len(txCopy.TxOut) {
|
|
// This was created by a buggy implementation.
|
|
// In this case we do the same as bitcoind and bitcoinj
|
|
// and return 1 (as a uint256 little endian) as an
|
|
// error. Unfortunately this was not checked anywhere
|
|
// and thus is treated as the actual
|
|
// hash.
|
|
hash := make([]byte, 32)
|
|
hash[0] = 0x01
|
|
return hash
|
|
}
|
|
// Resize output array to up to and including requested index.
|
|
txCopy.TxOut = txCopy.TxOut[:idx+1]
|
|
// all but current output get zeroed out
|
|
for i := 0; i < idx; i++ {
|
|
txCopy.TxOut[i].Value = -1
|
|
txCopy.TxOut[i].PkScript = []byte{}
|
|
}
|
|
// Sequence on all other inputs is 0, too.
|
|
for i := range txCopy.TxIn {
|
|
if i != idx {
|
|
txCopy.TxIn[i].Sequence = 0
|
|
}
|
|
}
|
|
default:
|
|
// XXX bitcoind treats undefined hashtypes like normal
|
|
// SigHashAll for purposes of hash generation.
|
|
fallthrough
|
|
case SigHashOld:
|
|
fallthrough
|
|
case SigHashAll:
|
|
// nothing special here
|
|
}
|
|
if hashType&SigHashAnyOneCanPay != 0 {
|
|
txCopy.TxIn = txCopy.TxIn[idx : idx+1]
|
|
idx = 0
|
|
}
|
|
|
|
var wbuf bytes.Buffer
|
|
txCopy.Serialize(&wbuf)
|
|
// Append LE 4 bytes hash type
|
|
binary.Write(&wbuf, binary.LittleEndian, uint32(hashType))
|
|
|
|
return btcwire.DoubleSha256(wbuf.Bytes())
|
|
}
|
|
|
|
// scriptUInt8 return the number stored in the first byte of a slice.
|
|
func scriptUInt8(script []byte) (uint, error) {
|
|
if len(script) <= 1 {
|
|
return 0, StackErrShortScript
|
|
}
|
|
return uint(script[0]), nil
|
|
}
|
|
|
|
// scriptUInt16 returns the number stored in the next 2 bytes of a slice.
|
|
func scriptUInt16(script []byte) (uint, error) {
|
|
if len(script) <= 2 {
|
|
return 0, StackErrShortScript
|
|
}
|
|
// Yes this is little endian
|
|
return ((uint(script[1]) << 8) | uint(script[0])), nil
|
|
}
|
|
|
|
// scriptUInt32 returns the number stored in the first 4 bytes of a slice.
|
|
func scriptUInt32(script []byte) (uint, error) {
|
|
if len(script) <= 4 {
|
|
return 0, StackErrShortScript
|
|
}
|
|
// Yes this is little endian
|
|
return ((uint(script[3]) << 24) | (uint(script[2]) << 16) |
|
|
(uint(script[1]) << 8) | uint(script[0])), nil
|
|
}
|
|
|
|
// getStack returns the contents of stack as a byte array bottom up
|
|
func getStack(stack *Stack) [][]byte {
|
|
array := make([][]byte, stack.Depth())
|
|
for i := range array {
|
|
// PeekByteArry can't fail due to overflow, already checked
|
|
array[len(array)-i-1], _ =
|
|
stack.PeekByteArray(i)
|
|
}
|
|
return array
|
|
}
|
|
|
|
// setStack sets the stack to the contents of the array where the last item in
|
|
// the array is the top item in the stack.
|
|
func setStack(stack *Stack, data [][]byte) {
|
|
// This can not error. Only errors are for invalid arguments.
|
|
_ = stack.DropN(stack.Depth())
|
|
|
|
for i := range data {
|
|
stack.PushByteArray(data[i])
|
|
}
|
|
}
|
|
|
|
// GetStack returns the contents of the primary stack as an array. where the
|
|
// last item in the array is the top of the stack.
|
|
func (s *Script) GetStack() [][]byte {
|
|
return getStack(&s.dstack)
|
|
}
|
|
|
|
// SetStack sets the contents of the primary stack to the contents of the
|
|
// provided array where the last item in the array will be the top of the stack.
|
|
func (s *Script) SetStack(data [][]byte) {
|
|
setStack(&s.dstack, data)
|
|
}
|
|
|
|
// GetAltStack returns the contents of the primary stack as an array. where the
|
|
// last item in the array is the top of the stack.
|
|
func (s *Script) GetAltStack() [][]byte {
|
|
return getStack(&s.astack)
|
|
}
|
|
|
|
// SetAltStack sets the contents of the primary stack to the contents of the
|
|
// provided array where the last item in the array will be the top of the stack.
|
|
func (s *Script) SetAltStack(data [][]byte) {
|
|
setStack(&s.astack, data)
|
|
}
|
|
|
|
// GetSigOpCount provides a quick count of the number of signature operations
|
|
// in a script. a CHECKSIG operations counts for 1, and a CHECK_MULTISIG for 20.
|
|
// If the script fails to parse, then the count up to the point of failure is
|
|
// returned.
|
|
func GetSigOpCount(script []byte) int {
|
|
// We don't check error since parseScript returns the parsed-up-to-error
|
|
// list of pops.
|
|
pops, _ := parseScript(script)
|
|
|
|
return getSigOpCount(pops, false)
|
|
}
|
|
|
|
// GetPreciseSigOpCount returns the number of signature operations in
|
|
// scriptPubKey. If bip16 is true then scriptSig may be searched for the
|
|
// Pay-To-Script-Hash script in order to find the precise number of signature
|
|
// operations in the transaction. If the script fails to parse, then the
|
|
// count up to the point of failure is returned.
|
|
func GetPreciseSigOpCount(scriptSig, scriptPubKey []byte, bip16 bool) int {
|
|
// We don't check error since parseScript returns the parsed-up-to-error
|
|
// list of pops.
|
|
pops, _ := parseScript(scriptPubKey)
|
|
// non P2SH transactions just treated as normal.
|
|
if !(bip16 && isScriptHash(pops)) {
|
|
return getSigOpCount(pops, true)
|
|
}
|
|
|
|
// Ok so this is P2SH, get the contained script and count it..
|
|
|
|
sigPops, err := parseScript(scriptSig)
|
|
if err != nil {
|
|
return 0
|
|
}
|
|
if !isPushOnly(sigPops) || len(sigPops) == 0 {
|
|
return 0
|
|
}
|
|
|
|
shScript := sigPops[len(sigPops)-1].data
|
|
// Means that sigPops is jus OP_1 - OP_16, no sigops there.
|
|
if shScript == nil {
|
|
return 0
|
|
}
|
|
|
|
shPops, _ := parseScript(shScript)
|
|
|
|
return getSigOpCount(shPops, true)
|
|
}
|
|
|
|
// getSigOpCount is the implementation function for counting the number of
|
|
// signature operations in the script provided by pops. If precise mode is
|
|
// requested then we attempt to count the number of operations for a multisig
|
|
// op. Otherwise we use the maximum.
|
|
func getSigOpCount(pops []parsedOpcode, precise bool) int {
|
|
nSigs := 0
|
|
for i, pop := range pops {
|
|
switch pop.opcode.value {
|
|
case OP_CHECKSIG:
|
|
fallthrough
|
|
case OP_CHECKSIGVERIFY:
|
|
nSigs++
|
|
case OP_CHECK_MULTISIG:
|
|
fallthrough
|
|
case OP_CHECKMULTISIGVERIFY:
|
|
// If we are being precise then look for familiar
|
|
// patterns for multisig, for now all we recognise is
|
|
// OP_1 - OP_16 to signify the number of pubkeys.
|
|
// Otherwise, we use the max of 20.
|
|
if precise && i > 0 &&
|
|
pops[i-1].opcode.value >= OP_1 &&
|
|
pops[i-1].opcode.value <= OP_16 {
|
|
nSigs += int(pops[i-1].opcode.value -
|
|
(OP_1 - 1))
|
|
} else {
|
|
nSigs += MaxPubKeysPerMultiSig
|
|
}
|
|
default:
|
|
// not a sigop.
|
|
}
|
|
}
|
|
|
|
return nSigs
|
|
}
|
|
|
|
// PayToPubKeyHashScript creates a new script to pay a transaction
|
|
// output to a 20-byte pubkey hash.
|
|
func PayToPubKeyHashScript(pubKeyHash []byte) (pkScript []byte, err error) {
|
|
pops := []parsedOpcode{
|
|
parsedOpcode{
|
|
opcode: opcodemap[OP_DUP],
|
|
},
|
|
parsedOpcode{
|
|
opcode: opcodemap[OP_HASH160],
|
|
},
|
|
parsedOpcode{
|
|
opcode: opcodemap[OP_DATA_20],
|
|
data: pubKeyHash,
|
|
},
|
|
parsedOpcode{
|
|
opcode: opcodemap[OP_EQUALVERIFY],
|
|
},
|
|
parsedOpcode{
|
|
opcode: opcodemap[OP_CHECKSIG],
|
|
},
|
|
}
|
|
return unparseScript(pops)
|
|
}
|
|
|
|
// SignatureScript creates an input signature script for tx to spend
|
|
// BTC sent from a previous output to the owner of privkey. tx must
|
|
// include all transaction inputs and outputs, however txin scripts are
|
|
// allowed to be filled or empty. The returned script is calculated to
|
|
// be used as the idx'th txin sigscript for tx. subscript is the PkScript
|
|
// of the previous output being used as the idx'th input. privkey is
|
|
// serialized in either a compressed or uncompressed format based on
|
|
// compress. This format must match the same format used to generate
|
|
// the payment address, or the script validation will fail.
|
|
func SignatureScript(tx *btcwire.MsgTx, idx int, subscript []byte, hashType byte, privkey *ecdsa.PrivateKey, compress bool) ([]byte, error) {
|
|
|
|
return signatureScriptCustomReader(rand.Reader, tx, idx, subscript,
|
|
hashType, privkey, compress)
|
|
}
|
|
|
|
// This function exists so we can test ecdsa.Sign's error for an invalid
|
|
// reader.
|
|
func signatureScriptCustomReader(reader io.Reader, tx *btcwire.MsgTx, idx int,
|
|
subscript []byte, hashType byte, privkey *ecdsa.PrivateKey,
|
|
compress bool) ([]byte, error) {
|
|
|
|
parsedScript, err := parseScript(subscript)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("cannot parse output script: %v", err)
|
|
}
|
|
hash := calcScriptHash(parsedScript, hashType, tx, idx)
|
|
r, s, err := ecdsa.Sign(reader, privkey, hash)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("cannot sign tx input: %s", err)
|
|
}
|
|
sig := append(sigDER(r, s), hashType)
|
|
|
|
pk := (*btcec.PublicKey)(&privkey.PublicKey)
|
|
var pubkeyOpcode *parsedOpcode
|
|
if compress {
|
|
pubkeyOpcode = &parsedOpcode{
|
|
opcode: opcodemap[OP_DATA_33],
|
|
data: pk.SerializeCompressed(),
|
|
}
|
|
} else {
|
|
pubkeyOpcode = &parsedOpcode{
|
|
opcode: opcodemap[OP_DATA_65],
|
|
data: pk.SerializeUncompressed(),
|
|
}
|
|
}
|
|
pops := []parsedOpcode{
|
|
parsedOpcode{
|
|
opcode: opcodemap[byte(len(sig))],
|
|
data: sig,
|
|
},
|
|
*pubkeyOpcode,
|
|
}
|
|
return unparseScript(pops)
|
|
}
|
|
|
|
// sigDER returns the ECDSA signature r, s in the DER format used by
|
|
// signature scripts. The signature does not include the appended hashtype.
|
|
//
|
|
// encoding/asn1 is broken so we hand roll this output:
|
|
//
|
|
// 0x30 <length> 0x02 <length r> r 0x02 <length s> s
|
|
func sigDER(r, s *big.Int) []byte {
|
|
// In DER format, a leading 0x00 octet must be prepended to
|
|
// the byte slice so it cannot be interpreted as a negative
|
|
// big-endian number. This is only done if the sign bit on
|
|
// the first byte is set.
|
|
var rb, sb []byte
|
|
if r.Bytes()[0]&0x80 != 0 {
|
|
paddedBytes := make([]byte, len(r.Bytes())+1)
|
|
copy(paddedBytes[1:], r.Bytes())
|
|
rb = paddedBytes
|
|
} else {
|
|
rb = r.Bytes()
|
|
}
|
|
if s.Bytes()[0]&0x80 != 0 {
|
|
paddedBytes := make([]byte, len(s.Bytes())+1)
|
|
copy(paddedBytes[1:], s.Bytes())
|
|
sb = paddedBytes
|
|
} else {
|
|
sb = s.Bytes()
|
|
}
|
|
|
|
// total length of returned signature is 1 byte for each magic and
|
|
// length (6 total), plus lengths of r and s
|
|
length := 6 + len(rb) + len(sb)
|
|
b := make([]byte, length, length)
|
|
|
|
b[0] = 0x30
|
|
b[1] = byte(length - 2)
|
|
b[2] = 0x02
|
|
b[3] = byte(len(rb))
|
|
offset := copy(b[4:], rb) + 4
|
|
b[offset] = 0x02
|
|
b[offset+1] = byte(len(sb))
|
|
copy(b[offset+2:], sb)
|
|
return b
|
|
}
|
|
|
|
// expectedInputs returns the number of arguments required by a script.
|
|
// If the script is of unnown type such that the number can not be determined
|
|
// then -1 is returned. We are an interanl function and thus assume that class
|
|
// is the real class of pops (and we can thus assume things that were
|
|
// determined while finding out the type).
|
|
func expectedInputs(pops []parsedOpcode, class ScriptClass) int {
|
|
// count needed inputs.
|
|
switch class {
|
|
case PubKeyTy:
|
|
return 1
|
|
case PubKeyHashTy:
|
|
return 2
|
|
case ScriptHashTy:
|
|
// Not including script, handled below.
|
|
return 1
|
|
case MultiSigTy:
|
|
// Standard multisig has a push a small number for the number
|
|
// of sigs and number of keys.
|
|
// Check the first push instrution to see how many arguments are
|
|
// expected. typoeOfScript already checked this so that we know
|
|
// it'll be one of OP_1 - OP_16.
|
|
return int(pops[0].opcode.value - (OP_1 - 1))
|
|
case NullDataTy:
|
|
fallthrough
|
|
default:
|
|
return -1
|
|
}
|
|
}
|
|
|
|
type ScriptInfo struct {
|
|
// The class of the sigscript, equivalent to calling GetScriptClass
|
|
// on the sigScript.
|
|
PkScriptClass ScriptClass
|
|
// the number of inputs provided by the pkScript
|
|
NumInputs int
|
|
// the number of outputs required by sigScript and any
|
|
// pay-to-script-hash scripts. The number will be -1 if unknown.
|
|
ExpectedInputs int
|
|
// The nubmer of signature operations in the scriptpair.
|
|
SigOps int
|
|
}
|
|
|
|
// CalcScriptInfo returns a structure providing data about the scriptpair that
|
|
// are provided as arguments. It will error if the pair is in someway invalid
|
|
// such taht they can not be analysed, i.e. if they do not parse or the
|
|
// pkScript is not a push-only script
|
|
func CalcScriptInfo(sigscript, pkscript []byte, bip16 bool) (*ScriptInfo, error) {
|
|
si := new(ScriptInfo)
|
|
// parse both scripts.
|
|
sigPops, err := parseScript(sigscript)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
pkPops, err := parseScript(pkscript)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// push only sigScript makes little sense.
|
|
si.PkScriptClass = typeOfScript(pkPops)
|
|
|
|
// Can't have a pkScript that doesn't just push data.
|
|
if !isPushOnly(sigPops) {
|
|
return nil, StackErrNonPushOnly
|
|
}
|
|
|
|
si.ExpectedInputs = expectedInputs(pkPops, si.PkScriptClass)
|
|
// all entries push to stack (or are OP_RESERVED and exec will fail).
|
|
si.NumInputs = len(sigPops)
|
|
|
|
if si.PkScriptClass == ScriptHashTy && bip16 {
|
|
// grab the last push instruction in the script and pull out the
|
|
// data.
|
|
script := sigPops[len(sigPops)-1].data
|
|
// check for existance and error else.
|
|
shPops, err := parseScript(script)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
shClass := typeOfScript(shPops)
|
|
|
|
shInputs := expectedInputs(shPops, shClass)
|
|
if shInputs == -1 {
|
|
// We have no fucking clue, then.
|
|
si.ExpectedInputs = -1
|
|
} else {
|
|
si.ExpectedInputs += shInputs
|
|
}
|
|
si.SigOps = getSigOpCount(shPops, true)
|
|
} else {
|
|
si.SigOps = getSigOpCount(pkPops, true)
|
|
}
|
|
|
|
return si, nil
|
|
}
|
|
|
|
// CalcMultiSigStats returns the number of public keys and signatures from
|
|
// a multi-signature transaction script. The passed script MUST already be
|
|
// known to be a multi-signature script.
|
|
func CalcMultiSigStats(script []byte) (int, int, error) {
|
|
pops, err := parseScript(script)
|
|
if err != nil {
|
|
return 0, 0, err
|
|
}
|
|
|
|
// A multi-signature script is of the pattern:
|
|
// NUM_SIGS PUBKEY PUBKEY PUBKEY... NUM_PUBKEYS OP_CHECKMULTISIG
|
|
// Therefore the number of signatures is the oldest item on the stack
|
|
// and the number of pubkeys is the 2nd to last. Also, the absolute
|
|
// minimum for a multi-signature script is 1 pubkey, so at least 4
|
|
// items must be on the stack per:
|
|
// OP_1 PUBKEY OP_1 OP_CHECKMULTISIG
|
|
if len(pops) < 4 {
|
|
return 0, 0, StackErrUnderflow
|
|
}
|
|
|
|
numSigs := int(pops[0].opcode.value - (OP_1 - 1))
|
|
numPubKeys := int(pops[len(pops)-2].opcode.value - (OP_1 - 1))
|
|
return numPubKeys, numSigs, nil
|
|
}
|