lbcd/txscript/script.go
David Hill d9cba7ca6a txscript: export StandardVerifyFlags
By exporting StandardVerifyFlags, clients can ensure they create
transactions that btcd will accept into its mempool.

This flag doesn't belong in txscript.  It belongs in a
policy package.  However, this is currently the least worse place.
2015-02-26 15:21:12 -05:00

1795 lines
56 KiB
Go

// Copyright (c) 2013-2015 Conformal Systems LLC.
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package txscript
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"time"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
)
var (
// ErrStackShortScript is returned if the script has an opcode that is
// too long for the length of the script.
ErrStackShortScript = errors.New("execute past end of script")
// ErrStackLongScript is returned if the script has an opcode that is
// too long for the length of the script.
ErrStackLongScript = errors.New("script is longer than maximum allowed")
// ErrStackUnderflow is returned if an opcode requires more items on the
// stack than is present.f
ErrStackUnderflow = errors.New("stack underflow")
// ErrStackInvalidArgs is returned if the argument for an opcode is out
// of acceptable range.
ErrStackInvalidArgs = errors.New("invalid argument")
// ErrStackOpDisabled is returned when a disabled opcode is encountered
// in the script.
ErrStackOpDisabled = errors.New("Disabled Opcode")
// ErrStackVerifyFailed is returned when one of the OP_VERIFY or
// OP_*VERIFY instructions is executed and the conditions fails.
ErrStackVerifyFailed = errors.New("Verify failed")
// ErrStackNumberTooBig is returned when the argument for an opcode that
// should be an offset is obviously far too large.
ErrStackNumberTooBig = errors.New("number too big")
// ErrStackInvalidOpcode is returned when an opcode marked as invalid or
// a completely undefined opcode is encountered.
ErrStackInvalidOpcode = errors.New("Invalid Opcode")
// ErrStackReservedOpcode is returned when an opcode marked as reserved
// is encountered.
ErrStackReservedOpcode = errors.New("Reserved Opcode")
// ErrStackEarlyReturn is returned when OP_RETURN is executed in the
// script.
ErrStackEarlyReturn = errors.New("Script returned early")
// ErrStackNoIf is returned if an OP_ELSE or OP_ENDIF is encountered
// without first having an OP_IF or OP_NOTIF in the script.
ErrStackNoIf = errors.New("OP_ELSE or OP_ENDIF with no matching OP_IF")
// ErrStackMissingEndif is returned if the end of a script is reached
// without and OP_ENDIF to correspond to a conditional expression.
ErrStackMissingEndif = fmt.Errorf("execute fail, in conditional execution")
// ErrStackTooManyPubkeys is returned if an OP_CHECKMULTISIG is
// encountered with more than MaxPubKeysPerMultiSig pubkeys present.
ErrStackTooManyPubkeys = errors.New("Invalid pubkey count in OP_CHECKMULTISIG")
// ErrStackTooManyOperations is returned if a script has more than
// MaxOpsPerScript opcodes that do not push data.
ErrStackTooManyOperations = errors.New("Too many operations in script")
// ErrStackElementTooBig is returned if the size of an element to be
// pushed to the stack is over MaxScriptElementSize.
ErrStackElementTooBig = errors.New("Element in script too large")
// ErrStackUnknownAddress is returned when ScriptToAddrHash does not
// recognise the pattern of the script and thus can not find the address
// for payment.
ErrStackUnknownAddress = errors.New("non-recognised address")
// ErrStackScriptFailed is returned when at the end of a script the
// boolean on top of the stack is false signifying that the script has
// failed.
ErrStackScriptFailed = errors.New("execute fail, fail on stack")
// ErrStackScriptUnfinished is returned when CheckErrorCondition is
// called on a script that has not finished executing.
ErrStackScriptUnfinished = errors.New("Error check when script unfinished")
// ErrStackEmptyStack is returned when the stack is empty at the end of
// execution. Normal operation requires that a boolean is on top of the
// stack when the scripts have finished executing.
ErrStackEmptyStack = errors.New("Stack empty at end of execution")
// ErrStackP2SHNonPushOnly is returned when a Pay-to-Script-Hash
// transaction is encountered and the ScriptSig does operations other
// than push data (in violation of bip16).
ErrStackP2SHNonPushOnly = errors.New("pay to script hash with non " +
"pushonly input")
// ErrStackInvalidParseType is an internal error returned from
// ScriptToAddrHash ony if the internal data tables are wrong.
ErrStackInvalidParseType = errors.New("internal error: invalid parsetype found")
// ErrStackInvalidAddrOffset is an internal error returned from
// ScriptToAddrHash ony if the internal data tables are wrong.
ErrStackInvalidAddrOffset = errors.New("internal error: invalid offset found")
// ErrStackInvalidIndex is returned when an out-of-bounds index was
// passed to a function.
ErrStackInvalidIndex = errors.New("Invalid script index")
// ErrStackNonPushOnly is returned when ScriptInfo is called with a
// pkScript that peforms operations other that pushing data to the stack.
ErrStackNonPushOnly = errors.New("SigScript is non pushonly")
// ErrStackOverflow is returned when stack and altstack combined depth
// is over the limit.
ErrStackOverflow = errors.New("Stacks overflowed")
// ErrStackInvalidPubKey is returned when the ScriptVerifyScriptEncoding
// flag is set and the script contains invalid pubkeys.
ErrStackInvalidPubKey = errors.New("invalid strict pubkey")
// ErrStackMinimalData is returned when the ScriptVerifyMinimalData flag
// is set and the script contains push operations that do not use
// the minimal opcode required.
ErrStackMinimalData = errors.New("non-minimally encoded script number")
)
const (
// maxStackSize is the maximum combined height of stack and alt stack
// during execution.
maxStackSize = 1000
// maxScriptSize is the maximum allowed length of a raw script.
maxScriptSize = 10000
)
// ErrUnsupportedAddress is returned when a concrete type that implements
// a btcutil.Address is not a supported type.
var ErrUnsupportedAddress = errors.New("unsupported address type")
// Bip16Activation is the timestamp where BIP0016 is valid to use in the
// blockchain. To be used to determine if BIP0016 should be called for or not.
// This timestamp corresponds to Sun Apr 1 00:00:00 UTC 2012.
var Bip16Activation = time.Unix(1333238400, 0)
// SigHashType represents hash type bits at the end of a signature.
type SigHashType byte
// Hash type bits from the end of a signature.
const (
SigHashOld SigHashType = 0x0
SigHashAll SigHashType = 0x1
SigHashNone SigHashType = 0x2
SigHashSingle SigHashType = 0x3
SigHashAnyOneCanPay SigHashType = 0x80
)
// These are the constants specified for maximums in individual scripts.
const (
MaxOpsPerScript = 201 // Max number of non-push operations.
MaxPubKeysPerMultiSig = 20 // Multisig can't have more sigs than this.
MaxScriptElementSize = 520 // Max bytes pushable to the stack.
)
// ScriptClass is an enumeration for the list of standard types of script.
type ScriptClass byte
// Classes of script payment known about in the blockchain.
const (
NonStandardTy ScriptClass = iota // None of the recognized forms.
PubKeyTy // Pay pubkey.
PubKeyHashTy // Pay pubkey hash.
ScriptHashTy // Pay to script hash.
MultiSigTy // Multi signature.
NullDataTy // Empty data-only (provably prunable).
)
var scriptClassToName = []string{
NonStandardTy: "nonstandard",
PubKeyTy: "pubkey",
PubKeyHashTy: "pubkeyhash",
ScriptHashTy: "scripthash",
MultiSigTy: "multisig",
NullDataTy: "nulldata",
}
// String implements the Stringer interface by returning the name of
// the enum script class. If the enum is invalid then "Invalid" will be
// returned.
func (t ScriptClass) String() string {
if int(t) > len(scriptClassToName) || int(t) < 0 {
return "Invalid"
}
return scriptClassToName[t]
}
// Script is the virtual machine that executes scripts.
type Script struct {
scripts [][]parsedOpcode
scriptidx int
scriptoff int
lastcodesep int
dstack Stack // data stack
astack Stack // alt stack
tx wire.MsgTx
txidx int
condStack []int
numOps int
bip16 bool // treat execution as pay-to-script-hash
strictMultiSig bool // verify multisig stack item is zero length
discourageUpgradableNops bool // NOP1 to NOP10 are reserved for future soft-fork upgrades
verifyStrictEncoding bool // verify strict encoding of signatures
verifyDERSignatures bool // verify signatures compily with the DER
savedFirstStack [][]byte // stack from first script for bip16 scripts
}
// isSmallInt returns whether or not the opcode is considered a small integer,
// which is an OP_0, or OP_1 through OP_16.
func isSmallInt(op *opcode) bool {
if op.value == OP_0 || (op.value >= OP_1 && op.value <= OP_16) {
return true
}
return false
}
// isPubkey returns true if the script passed is a pubkey transaction, false
// otherwise.
func isPubkey(pops []parsedOpcode) bool {
// valid pubkeys are either 33 or 65 bytes
return len(pops) == 2 &&
(len(pops[0].data) == 33 || len(pops[0].data) == 65) &&
pops[1].opcode.value == OP_CHECKSIG
}
// isPubkeyHash returns true if the script passed is a pubkey hash transaction,
// false otherwise.
func isPubkeyHash(pops []parsedOpcode) bool {
return len(pops) == 5 &&
pops[0].opcode.value == OP_DUP &&
pops[1].opcode.value == OP_HASH160 &&
pops[2].opcode.value == OP_DATA_20 &&
pops[3].opcode.value == OP_EQUALVERIFY &&
pops[4].opcode.value == OP_CHECKSIG
}
// isScriptHash returns true if the script passed is a pay-to-script-hash (P2SH)
// transction, false otherwise.
func isScriptHash(pops []parsedOpcode) bool {
return len(pops) == 3 &&
pops[0].opcode.value == OP_HASH160 &&
pops[1].opcode.value == OP_DATA_20 &&
pops[2].opcode.value == OP_EQUAL
}
// IsPayToScriptHash returns true if the script is in the standard
// Pay-To-Script-Hash format, false otherwise.
func IsPayToScriptHash(script []byte) bool {
pops, err := parseScript(script)
if err != nil {
return false
}
return isScriptHash(pops)
}
// isMultiSig returns true if the passed script is a multisig transaction, false
// otherwise.
func isMultiSig(pops []parsedOpcode) bool {
l := len(pops)
// absolute minimum is 1 pubkey so
// OP_0/OP_1-16, pubkey, OP_1, OP_CHECKMULTISIG
if l < 4 {
return false
}
if !isSmallInt(pops[0].opcode) {
return false
}
if !isSmallInt(pops[l-2].opcode) {
return false
}
if pops[l-1].opcode.value != OP_CHECKMULTISIG {
return false
}
for _, pop := range pops[1 : l-2] {
// valid pubkeys are either 65 or 33 bytes
if len(pop.data) != 33 &&
len(pop.data) != 65 {
return false
}
}
return true
}
// isNullData returns true if the passed script is a null data transaction,
// false otherwise.
func isNullData(pops []parsedOpcode) bool {
// A nulldata transaction is either a single OP_RETURN or an
// OP_RETURN SMALLDATA (where SMALLDATA is a push data up to 40 bytes).
l := len(pops)
if l == 1 && pops[0].opcode.value == OP_RETURN {
return true
}
return l == 2 &&
pops[0].opcode.value == OP_RETURN &&
pops[1].opcode.value <= OP_PUSHDATA4 &&
len(pops[1].data) <= 40
}
// isPushOnly returns true if the script only pushes data, false otherwise.
func isPushOnly(pops []parsedOpcode) bool {
// technically we cheat here, we don't look at opcodes
for _, pop := range pops {
// all opcodes up to OP_16 are data instructions.
if pop.opcode.value < OP_FALSE ||
pop.opcode.value > OP_16 {
return false
}
}
return true
}
// IsPushOnlyScript returns whether or not the passed script only pushes data.
// If the script does not parse false will be returned.
func IsPushOnlyScript(script []byte) bool {
pops, err := parseScript(script)
if err != nil {
return false
}
return isPushOnly(pops)
}
// checkHashTypeEncoding returns whether or not the passed hashtype adheres to
// the strict encoding requirements if enabled.
func (s *Script) checkHashTypeEncoding(hashType SigHashType) error {
if !s.verifyStrictEncoding {
return nil
}
sigHashType := hashType & ^SigHashAnyOneCanPay
if sigHashType < SigHashAll || sigHashType > SigHashSingle {
return fmt.Errorf("invalid hashtype: 0x%x\n", hashType)
}
return nil
}
// checkPubKeyEncoding returns whether or not the passed public key adheres to
// the strict encoding requirements if enabled.
func (s *Script) checkPubKeyEncoding(pubKey []byte) error {
if !s.verifyStrictEncoding {
return nil
}
if len(pubKey) == 33 && (pubKey[0] == 0x02 || pubKey[0] == 0x03) {
// Compressed
return nil
}
if len(pubKey) == 65 && pubKey[0] == 0x04 {
// Uncompressed
return nil
}
return ErrStackInvalidPubKey
}
// checkSignatureEncoding returns whether or not the passed signature adheres to
// the strict encoding requirements if enabled.
func (s *Script) checkSignatureEncoding(sig []byte) error {
if !s.verifyStrictEncoding && !s.verifyDERSignatures {
return nil
}
if len(sig) < 8 {
// Too short
return fmt.Errorf("malformed signature: too short: %d < 8",
len(sig))
}
if len(sig) > 72 {
// Too long
return fmt.Errorf("malformed signature: too long: %d > 72",
len(sig))
}
if sig[0] != 0x30 {
// Wrong type
return fmt.Errorf("malformed signature: format has wrong type: 0x%x",
sig[0])
}
if int(sig[1]) != len(sig)-2 {
// Invalid length
return fmt.Errorf("malformed signature: bad length: %d != %d",
sig[1], len(sig)-2)
}
rLen := int(sig[3])
// Make sure S is inside the signature
if rLen+5 > len(sig) {
return fmt.Errorf("malformed signature: S out of bounds")
}
sLen := int(sig[rLen+5])
// The length of the elements does not match
// the length of the signature
if rLen+sLen+6 != len(sig) {
return fmt.Errorf("malformed signature: invalid R length")
}
// R elements must be integers
if sig[2] != 0x02 {
return fmt.Errorf("malformed signature: missing first integer marker")
}
// Zero-length integers are not allowed for R
if rLen == 0 {
return fmt.Errorf("malformed signature: R length is zero")
}
// R must not be negative
if sig[4]&0x80 != 0 {
return fmt.Errorf("malformed signature: R value is negative")
}
// Null bytes at the start of R are not allowed, unless R would
// otherwise be interpreted as a negative number.
if rLen > 1 && sig[4] == 0x00 && sig[5]&0x80 == 0 {
return fmt.Errorf("malformed signature: invalid R value")
}
// S elements must be integers
if sig[rLen+4] != 0x02 {
return fmt.Errorf("malformed signature: missing second integer marker")
}
// Zero-length integers are not allowed for S
if sLen == 0 {
return fmt.Errorf("malformed signature: S length is zero")
}
// S must not be negative
if sig[rLen+6]&0x80 != 0 {
return fmt.Errorf("malformed signature: S value is negative")
}
// Null bytes at the start of S are not allowed, unless S would
// otherwise be interpreted as a negative number.
if sLen > 1 && sig[rLen+6] == 0x00 && sig[rLen+7]&0x80 == 0 {
return fmt.Errorf("malformed signature: invalid S value")
}
return nil
}
// canonicalPush returns true if the object is either not a push instruction
// or the push instruction contained wherein is matches the canonical form
// or using the smallest instruction to do the job. False otherwise.
func canonicalPush(pop parsedOpcode) bool {
opcode := pop.opcode.value
data := pop.data
dataLen := len(pop.data)
if opcode > OP_16 {
return true
}
if opcode < OP_PUSHDATA1 && opcode > OP_0 && (dataLen == 1 && data[0] <= 16) {
return false
}
if opcode == OP_PUSHDATA1 && dataLen < OP_PUSHDATA1 {
return false
}
if opcode == OP_PUSHDATA2 && dataLen <= 0xff {
return false
}
if opcode == OP_PUSHDATA4 && dataLen <= 0xffff {
return false
}
return true
}
// GetScriptClass returns the class of the script passed. If the script does not
// parse then NonStandardTy will be returned.
func GetScriptClass(script []byte) ScriptClass {
pops, err := parseScript(script)
if err != nil {
return NonStandardTy
}
return typeOfScript(pops)
}
// scriptType returns the type of the script being inspected from the known
// standard types.
func typeOfScript(pops []parsedOpcode) ScriptClass {
// XXX dubious optimisation: order these in order of popularity in the
// blockchain
if isPubkey(pops) {
return PubKeyTy
} else if isPubkeyHash(pops) {
return PubKeyHashTy
} else if isScriptHash(pops) {
return ScriptHashTy
} else if isMultiSig(pops) {
return MultiSigTy
} else if isNullData(pops) {
return NullDataTy
}
return NonStandardTy
}
// parseScript preparses the script in bytes into a list of parsedOpcodes while
// applying a number of sanity checks.
func parseScript(script []byte) ([]parsedOpcode, error) {
return parseScriptTemplate(script, opcodemap)
}
// parseScriptTemplate is the same as parseScript but allows the passing of the
// template list for testing purposes. On error we return the list of parsed
// opcodes so far.
func parseScriptTemplate(script []byte, opcodemap map[byte]*opcode) ([]parsedOpcode, error) {
retScript := make([]parsedOpcode, 0, len(script))
for i := 0; i < len(script); {
instr := script[i]
op, ok := opcodemap[instr]
if !ok {
return retScript, ErrStackInvalidOpcode
}
pop := parsedOpcode{opcode: op}
// parse data out of instruction.
switch {
case op.length == 1:
// no data, done here
i++
case op.length > 1:
if len(script[i:]) < op.length {
return retScript, ErrStackShortScript
}
// slice out the data.
pop.data = script[i+1 : i+op.length]
i += op.length
case op.length < 0:
var l uint
off := i + 1
if len(script[off:]) < -op.length {
return retScript, ErrStackShortScript
}
// Next -length bytes are little endian length of data.
switch op.length {
case -1:
l = uint(script[off])
case -2:
l = ((uint(script[off+1]) << 8) |
uint(script[off]))
case -4:
l = ((uint(script[off+3]) << 24) |
(uint(script[off+2]) << 16) |
(uint(script[off+1]) << 8) |
uint(script[off]))
default:
return retScript,
fmt.Errorf("invalid opcode length %d",
op.length)
}
off += -op.length // beginning of data
// Disallow entries that do not fit script or were
// sign extended.
if int(l) > len(script[off:]) || int(l) < 0 {
return retScript, ErrStackShortScript
}
pop.data = script[off : off+int(l)]
i += 1 - op.length + int(l)
}
retScript = append(retScript, pop)
}
return retScript, nil
}
// unparseScript reversed the action of parseScript and returns the
// parsedOpcodes as a list of bytes
func unparseScript(pops []parsedOpcode) ([]byte, error) {
script := make([]byte, 0, len(pops))
for _, pop := range pops {
b, err := pop.bytes()
if err != nil {
return nil, err
}
script = append(script, b...)
}
return script, nil
}
// ScriptFlags is a bitmask defining additional operations or
// tests that will be done when executing a Script.
type ScriptFlags uint32
const (
// ScriptBip16 defines whether the bip16 threshhold has passed and thus
// pay-to-script hash transactions will be fully validated.
ScriptBip16 ScriptFlags = 1 << iota
// ScriptStrictMultiSig defines whether to verify the stack item
// used by CHECKMULTISIG is zero length.
ScriptStrictMultiSig
// ScriptDiscourageUpgradableNops defines whether to verify that
// NOP1 through NOP10 are reserved for future soft-fork upgrades. This
// flag must not be used for consensus critical code nor applied to
// blocks as this flag is only for stricter standard transaction
// checks. This flag is only applied when the above opcodes are
// executed.
ScriptDiscourageUpgradableNops
// ScriptVerifyDERSignatures defines that signatures are required
// to compily with the DER format.
ScriptVerifyDERSignatures
// ScriptVerifyMinimalData defines that signatures must use the smallest
// push operator. This is both rules 3 and 4 of BIP0062.
ScriptVerifyMinimalData
// ScriptVerifySigPushOnly defines that signature scripts must contain
// only pushed data. This is rule 2 of BIP0062.
ScriptVerifySigPushOnly
// ScriptVerifyStrictEncoding defines that signature scripts and
// public keys must follow the strict encoding requirements.
ScriptVerifyStrictEncoding
// StandardVerifyFlags are the script flags which are used when
// executing transaction scripts to enforce additional checks which
// are required for the script to be considered standard. These checks
// help reduce issues related to transaction malleability as well as
// allow pay-to-script hash transactions. Note these flags are
// different than what is required for the consensus rules in that they
// are more strict.
//
// TODO: These flags do not belong here. These flags belong in a
// policy package.
StandardVerifyFlags = ScriptBip16 |
ScriptVerifyDERSignatures |
ScriptVerifyStrictEncoding |
ScriptVerifyMinimalData |
ScriptStrictMultiSig |
ScriptDiscourageUpgradableNops
)
// NewScript returns a new script engine for the provided tx and input idx with
// a signature script scriptSig and a pubkeyscript scriptPubKey. If bip16 is
// true then it will be treated as if the bip16 threshhold has passed and thus
// pay-to-script hash transactions will be fully validated.
func NewScript(scriptSig []byte, scriptPubKey []byte, txidx int, tx *wire.MsgTx, flags ScriptFlags) (*Script, error) {
var m Script
if flags&ScriptVerifySigPushOnly == ScriptVerifySigPushOnly && !IsPushOnlyScript(scriptSig) {
return nil, ErrStackNonPushOnly
}
scripts := [][]byte{scriptSig, scriptPubKey}
m.scripts = make([][]parsedOpcode, len(scripts))
for i, scr := range scripts {
if len(scr) > maxScriptSize {
return nil, ErrStackLongScript
}
var err error
m.scripts[i], err = parseScript(scr)
if err != nil {
return nil, err
}
// If the first scripts(s) are empty, must start on later ones.
if i == 0 && len(scr) == 0 {
// This could end up seeing an invalid initial pc if
// all scripts were empty. However, that is an invalid
// case and should fail.
m.scriptidx = i + 1
}
}
// Parse flags.
bip16 := flags&ScriptBip16 == ScriptBip16
if bip16 && isScriptHash(m.scripts[1]) {
// if we are pay to scripthash then we only accept input
// scripts that push data
if !isPushOnly(m.scripts[0]) {
return nil, ErrStackP2SHNonPushOnly
}
m.bip16 = true
}
if flags&ScriptStrictMultiSig == ScriptStrictMultiSig {
m.strictMultiSig = true
}
if flags&ScriptDiscourageUpgradableNops == ScriptDiscourageUpgradableNops {
m.discourageUpgradableNops = true
}
if flags&ScriptVerifyStrictEncoding == ScriptVerifyStrictEncoding {
m.verifyStrictEncoding = true
}
if flags&ScriptVerifyDERSignatures == ScriptVerifyDERSignatures {
m.verifyDERSignatures = true
}
if flags&ScriptVerifyMinimalData == ScriptVerifyMinimalData {
m.dstack.verifyMinimalData = true
m.astack.verifyMinimalData = true
}
m.tx = *tx
m.txidx = txidx
m.condStack = []int{OpCondTrue}
return &m, nil
}
// Execute will execute all script in the script engine and return either nil
// for successful validation or an error if one occurred.
func (s *Script) Execute() (err error) {
done := false
for done != true {
log.Tracef("%v", newLogClosure(func() string {
dis, err := s.DisasmPC()
if err != nil {
return fmt.Sprintf("stepping (%v)", err)
}
return fmt.Sprintf("stepping %v", dis)
}))
done, err = s.Step()
if err != nil {
return err
}
log.Tracef("%v", newLogClosure(func() string {
var dstr, astr string
// if we're tracing, dump the stacks.
if s.dstack.Depth() != 0 {
dstr = "Stack:\n" + s.dstack.String()
}
if s.astack.Depth() != 0 {
astr = "AltStack:\n" + s.astack.String()
}
return dstr + astr
}))
}
return s.CheckErrorCondition()
}
// CheckErrorCondition returns nil if the running script has ended and was
// successful, leaving a a true boolean on the stack. An error otherwise,
// including if the script has not finished.
func (s *Script) CheckErrorCondition() (err error) {
// Check we are actually done. if pc is past the end of script array
// then we have run out of scripts to run.
if s.scriptidx < len(s.scripts) {
return ErrStackScriptUnfinished
}
if s.dstack.Depth() < 1 {
return ErrStackEmptyStack
}
v, err := s.dstack.PopBool()
if err == nil && v == false {
// log interesting data.
log.Tracef("%v", newLogClosure(func() string {
dis0, _ := s.DisasmScript(0)
dis1, _ := s.DisasmScript(1)
return fmt.Sprintf("scripts failed: script0: %s\n"+
"script1: %s", dis0, dis1)
}))
err = ErrStackScriptFailed
}
return err
}
// Step will execute the next instruction and move the program counter to the
// next opcode in the script, or the next script if the curent has ended. Step
// will return true in the case that the last opcode was successfully executed.
// if an error is returned then the result of calling Step or any other method
// is undefined.
func (s *Script) Step() (done bool, err error) {
// verify that it is pointing to a valid script address
err = s.validPC()
if err != nil {
return true, err
}
opcode := s.scripts[s.scriptidx][s.scriptoff]
err = opcode.exec(s)
if err != nil {
return true, err
}
if s.dstack.Depth()+s.astack.Depth() > maxStackSize {
return false, ErrStackOverflow
}
// prepare for next instruction
s.scriptoff++
if s.scriptoff >= len(s.scripts[s.scriptidx]) {
// Illegal to have an `if' that straddles two scripts.
if err == nil && len(s.condStack) != 1 {
return false, ErrStackMissingEndif
}
// alt stack doesn't persist.
_ = s.astack.DropN(s.astack.Depth())
s.numOps = 0 // number of ops is per script.
s.scriptoff = 0
if s.scriptidx == 0 && s.bip16 {
s.scriptidx++
s.savedFirstStack = s.GetStack()
} else if s.scriptidx == 1 && s.bip16 {
// Put us past the end for CheckErrorCondition()
s.scriptidx++
// We check script ran ok, if so then we pull
// the script out of the first stack and executre that.
err := s.CheckErrorCondition()
if err != nil {
return false, err
}
script := s.savedFirstStack[len(s.savedFirstStack)-1]
pops, err := parseScript(script)
if err != nil {
return false, err
}
s.scripts = append(s.scripts, pops)
// Set stack to be the stack from first script
// minus the script itself
s.SetStack(s.savedFirstStack[:len(s.savedFirstStack)-1])
} else {
s.scriptidx++
}
// there are zero length scripts in the wild
if s.scriptidx < len(s.scripts) && s.scriptoff >= len(s.scripts[s.scriptidx]) {
s.scriptidx++
}
s.lastcodesep = 0
if s.scriptidx >= len(s.scripts) {
return true, nil
}
}
return false, nil
}
// curPC returns either the current script and offset, or an error if the
// position isn't valid.
func (s *Script) curPC() (script int, off int, err error) {
err = s.validPC()
if err != nil {
return 0, 0, err
}
return s.scriptidx, s.scriptoff, nil
}
// validPC returns an error if the current script position is valid for
// execution, nil otherwise.
func (s *Script) validPC() error {
if s.scriptidx >= len(s.scripts) {
return fmt.Errorf("Past input scripts %v:%v %v:xxxx", s.scriptidx, s.scriptoff, len(s.scripts))
}
if s.scriptoff >= len(s.scripts[s.scriptidx]) {
return fmt.Errorf("Past input scripts %v:%v %v:%04d", s.scriptidx, s.scriptoff, s.scriptidx, len(s.scripts[s.scriptidx]))
}
return nil
}
// DisasmScript returns the disassembly string for the script at offset
// ``idx''. Where 0 is the scriptSig and 1 is the scriptPubKey.
func (s *Script) DisasmScript(idx int) (disstr string, err error) {
if idx >= len(s.scripts) {
return "", ErrStackInvalidIndex
}
for i := range s.scripts[idx] {
disstr = disstr + s.disasm(idx, i) + "\n"
}
return disstr, nil
}
// DisasmPC returns the string for the disassembly of the opcode that will be
// next to execute when Step() is called.
func (s *Script) DisasmPC() (disstr string, err error) {
scriptidx, scriptoff, err := s.curPC()
if err != nil {
return "", err
}
return s.disasm(scriptidx, scriptoff), nil
}
// disasm is a helper member to produce the output for DisasmPC and
// DisasmScript. It produces the opcode prefixed by the program counter at the
// provided position in the script. it does no error checking and leaves that
// to the caller to provide a valid offse.
func (s *Script) disasm(scriptidx int, scriptoff int) string {
return fmt.Sprintf("%02x:%04x: %s", scriptidx, scriptoff,
s.scripts[scriptidx][scriptoff].print(false))
}
// subScript will return the script since the last OP_CODESEPARATOR
func (s *Script) subScript() []parsedOpcode {
return s.scripts[s.scriptidx][s.lastcodesep:]
}
// removeOpcode will remove any opcode matching ``opcode'' from the opcode
// stream in pkscript
func removeOpcode(pkscript []parsedOpcode, opcode byte) []parsedOpcode {
retScript := make([]parsedOpcode, 0, len(pkscript))
for _, pop := range pkscript {
if pop.opcode.value != opcode {
retScript = append(retScript, pop)
}
}
return retScript
}
// removeOpcodeByData will return the pkscript minus any opcodes that would
// push the data in ``data'' to the stack.
func removeOpcodeByData(pkscript []parsedOpcode, data []byte) []parsedOpcode {
retScript := make([]parsedOpcode, 0, len(pkscript))
for _, pop := range pkscript {
if !canonicalPush(pop) || !bytes.Contains(pop.data, data) {
retScript = append(retScript, pop)
}
}
return retScript
}
// DisasmString formats a disassembled script for one line printing. When the
// script fails to parse, the returned string will contain the disassembled
// script up to the point the failure occurred along with the string '[error]'
// appended. In addition, the reason the script failed to parse is returned
// if the caller wants more information about the failure.
func DisasmString(buf []byte) (string, error) {
disbuf := ""
opcodes, err := parseScript(buf)
for _, pop := range opcodes {
disbuf += pop.print(true) + " "
}
if disbuf != "" {
disbuf = disbuf[:len(disbuf)-1]
}
if err != nil {
disbuf += "[error]"
}
return disbuf, err
}
// calcScriptHash will, given the a script and hashtype for the current
// scriptmachine, calculate the doubleSha256 hash of the transaction and
// script to be used for signature signing and verification.
func calcScriptHash(script []parsedOpcode, hashType SigHashType, tx *wire.MsgTx, idx int) []byte {
// remove all instances of OP_CODESEPARATOR still left in the script
script = removeOpcode(script, OP_CODESEPARATOR)
// Make a deep copy of the transaction, zeroing out the script
// for all inputs that are not currently being processed.
txCopy := tx.Copy()
for i := range txCopy.TxIn {
var txIn wire.TxIn
txIn = *txCopy.TxIn[i]
txCopy.TxIn[i] = &txIn
if i == idx {
// unparseScript cannot fail here, because removeOpcode
// above only returns a valid script.
sigscript, _ := unparseScript(script)
txCopy.TxIn[idx].SignatureScript = sigscript
} else {
txCopy.TxIn[i].SignatureScript = []byte{}
}
}
// Default behaviour has all outputs set up.
for i := range txCopy.TxOut {
var txOut wire.TxOut
txOut = *txCopy.TxOut[i]
txCopy.TxOut[i] = &txOut
}
switch hashType & 31 {
case SigHashNone:
txCopy.TxOut = txCopy.TxOut[0:0] // empty slice
for i := range txCopy.TxIn {
if i != idx {
txCopy.TxIn[i].Sequence = 0
}
}
case SigHashSingle:
if idx >= len(txCopy.TxOut) {
// This was created by a buggy implementation.
// In this case we do the same as bitcoind and bitcoinj
// and return 1 (as a uint256 little endian) as an
// error. Unfortunately this was not checked anywhere
// and thus is treated as the actual
// hash.
hash := make([]byte, 32)
hash[0] = 0x01
return hash
}
// Resize output array to up to and including requested index.
txCopy.TxOut = txCopy.TxOut[:idx+1]
// all but current output get zeroed out
for i := 0; i < idx; i++ {
txCopy.TxOut[i].Value = -1
txCopy.TxOut[i].PkScript = []byte{}
}
// Sequence on all other inputs is 0, too.
for i := range txCopy.TxIn {
if i != idx {
txCopy.TxIn[i].Sequence = 0
}
}
default:
// XXX bitcoind treats undefined hashtypes like normal
// SigHashAll for purposes of hash generation.
fallthrough
case SigHashOld:
fallthrough
case SigHashAll:
// nothing special here
}
if hashType&SigHashAnyOneCanPay != 0 {
txCopy.TxIn = txCopy.TxIn[idx : idx+1]
idx = 0
}
var wbuf bytes.Buffer
txCopy.Serialize(&wbuf)
// Append LE 4 bytes hash type
binary.Write(&wbuf, binary.LittleEndian, uint32(hashType))
return wire.DoubleSha256(wbuf.Bytes())
}
// getStack returns the contents of stack as a byte array bottom up
func getStack(stack *Stack) [][]byte {
array := make([][]byte, stack.Depth())
for i := range array {
// PeekByteArry can't fail due to overflow, already checked
array[len(array)-i-1], _ =
stack.PeekByteArray(i)
}
return array
}
// setStack sets the stack to the contents of the array where the last item in
// the array is the top item in the stack.
func setStack(stack *Stack, data [][]byte) {
// This can not error. Only errors are for invalid arguments.
_ = stack.DropN(stack.Depth())
for i := range data {
stack.PushByteArray(data[i])
}
}
// GetStack returns the contents of the primary stack as an array. where the
// last item in the array is the top of the stack.
func (s *Script) GetStack() [][]byte {
return getStack(&s.dstack)
}
// SetStack sets the contents of the primary stack to the contents of the
// provided array where the last item in the array will be the top of the stack.
func (s *Script) SetStack(data [][]byte) {
setStack(&s.dstack, data)
}
// GetAltStack returns the contents of the primary stack as an array. where the
// last item in the array is the top of the stack.
func (s *Script) GetAltStack() [][]byte {
return getStack(&s.astack)
}
// SetAltStack sets the contents of the primary stack to the contents of the
// provided array where the last item in the array will be the top of the stack.
func (s *Script) SetAltStack(data [][]byte) {
setStack(&s.astack, data)
}
// GetSigOpCount provides a quick count of the number of signature operations
// in a script. a CHECKSIG operations counts for 1, and a CHECK_MULTISIG for 20.
// If the script fails to parse, then the count up to the point of failure is
// returned.
func GetSigOpCount(script []byte) int {
// We don't check error since parseScript returns the parsed-up-to-error
// list of pops.
pops, _ := parseScript(script)
return getSigOpCount(pops, false)
}
// GetPreciseSigOpCount returns the number of signature operations in
// scriptPubKey. If bip16 is true then scriptSig may be searched for the
// Pay-To-Script-Hash script in order to find the precise number of signature
// operations in the transaction. If the script fails to parse, then the
// count up to the point of failure is returned.
func GetPreciseSigOpCount(scriptSig, scriptPubKey []byte, bip16 bool) int {
// We don't check error since parseScript returns the parsed-up-to-error
// list of pops.
pops, _ := parseScript(scriptPubKey)
// non P2SH transactions just treated as normal.
if !(bip16 && isScriptHash(pops)) {
return getSigOpCount(pops, true)
}
// Ok so this is P2SH, get the contained script and count it..
sigPops, err := parseScript(scriptSig)
if err != nil {
return 0
}
if !isPushOnly(sigPops) || len(sigPops) == 0 {
return 0
}
shScript := sigPops[len(sigPops)-1].data
// Means that sigPops is jus OP_1 - OP_16, no sigops there.
if shScript == nil {
return 0
}
shPops, _ := parseScript(shScript)
return getSigOpCount(shPops, true)
}
// getSigOpCount is the implementation function for counting the number of
// signature operations in the script provided by pops. If precise mode is
// requested then we attempt to count the number of operations for a multisig
// op. Otherwise we use the maximum.
func getSigOpCount(pops []parsedOpcode, precise bool) int {
nSigs := 0
for i, pop := range pops {
switch pop.opcode.value {
case OP_CHECKSIG:
fallthrough
case OP_CHECKSIGVERIFY:
nSigs++
case OP_CHECKMULTISIG:
fallthrough
case OP_CHECKMULTISIGVERIFY:
// If we are being precise then look for familiar
// patterns for multisig, for now all we recognise is
// OP_1 - OP_16 to signify the number of pubkeys.
// Otherwise, we use the max of 20.
if precise && i > 0 &&
pops[i-1].opcode.value >= OP_1 &&
pops[i-1].opcode.value <= OP_16 {
nSigs += int(pops[i-1].opcode.value -
(OP_1 - 1))
} else {
nSigs += MaxPubKeysPerMultiSig
}
default:
// not a sigop.
}
}
return nSigs
}
// payToPubKeyHashScript creates a new script to pay a transaction
// output to a 20-byte pubkey hash. It is expected that the input is a valid
// hash.
func payToPubKeyHashScript(pubKeyHash []byte) ([]byte, error) {
return NewScriptBuilder().AddOp(OP_DUP).AddOp(OP_HASH160).
AddData(pubKeyHash).AddOp(OP_EQUALVERIFY).AddOp(OP_CHECKSIG).
Script()
}
// payToScriptHashScript creates a new script to pay a transaction output to a
// script hash. It is expected that the input is a valid hash.
func payToScriptHashScript(scriptHash []byte) ([]byte, error) {
return NewScriptBuilder().AddOp(OP_HASH160).AddData(scriptHash).
AddOp(OP_EQUAL).Script()
}
// payToPubkeyScript creates a new script to pay a transaction output to a
// public key. It is expected that the input is a valid pubkey.
func payToPubKeyScript(serializedPubKey []byte) ([]byte, error) {
return NewScriptBuilder().AddData(serializedPubKey).
AddOp(OP_CHECKSIG).Script()
}
// PayToAddrScript creates a new script to pay a transaction output to a the
// specified address.
func PayToAddrScript(addr btcutil.Address) ([]byte, error) {
switch addr := addr.(type) {
case *btcutil.AddressPubKeyHash:
if addr == nil {
return nil, ErrUnsupportedAddress
}
return payToPubKeyHashScript(addr.ScriptAddress())
case *btcutil.AddressScriptHash:
if addr == nil {
return nil, ErrUnsupportedAddress
}
return payToScriptHashScript(addr.ScriptAddress())
case *btcutil.AddressPubKey:
if addr == nil {
return nil, ErrUnsupportedAddress
}
return payToPubKeyScript(addr.ScriptAddress())
}
return nil, ErrUnsupportedAddress
}
// ErrBadNumRequired is returned from MultiSigScript when nrequired is larger
// than the number of provided public keys.
var ErrBadNumRequired = errors.New("more signatures required than keys present")
// MultiSigScript returns a valid script for a multisignature redemption where
// nrequired of the keys in pubkeys are required to have signed the transaction
// for success. An ErrBadNumRequired will be returned if nrequired is larger than
// the number of keys provided.
func MultiSigScript(pubkeys []*btcutil.AddressPubKey, nrequired int) ([]byte, error) {
if len(pubkeys) < nrequired {
return nil, ErrBadNumRequired
}
builder := NewScriptBuilder().AddInt64(int64(nrequired))
for _, key := range pubkeys {
builder.AddData(key.ScriptAddress())
}
builder.AddInt64(int64(len(pubkeys)))
builder.AddOp(OP_CHECKMULTISIG)
return builder.Script()
}
// SignatureScript creates an input signature script for tx to spend
// BTC sent from a previous output to the owner of privKey. tx must
// include all transaction inputs and outputs, however txin scripts are
// allowed to be filled or empty. The returned script is calculated to
// be used as the idx'th txin sigscript for tx. subscript is the PkScript
// of the previous output being used as the idx'th input. privKey is
// serialized in either a compressed or uncompressed format based on
// compress. This format must match the same format used to generate
// the payment address, or the script validation will fail.
func SignatureScript(tx *wire.MsgTx, idx int, subscript []byte, hashType SigHashType, privKey *btcec.PrivateKey, compress bool) ([]byte, error) {
sig, err := RawTxInSignature(tx, idx, subscript, hashType, privKey)
if err != nil {
return nil, err
}
pk := (*btcec.PublicKey)(&privKey.PublicKey)
var pkData []byte
if compress {
pkData = pk.SerializeCompressed()
} else {
pkData = pk.SerializeUncompressed()
}
return NewScriptBuilder().AddData(sig).AddData(pkData).Script()
}
// RawTxInSignature returns the serialized ECDSA signature for the input
// idx of the given transaction, with hashType appended to it.
func RawTxInSignature(tx *wire.MsgTx, idx int, subScript []byte,
hashType SigHashType, key *btcec.PrivateKey) ([]byte, error) {
parsedScript, err := parseScript(subScript)
if err != nil {
return nil, fmt.Errorf("cannot parse output script: %v", err)
}
hash := calcScriptHash(parsedScript, hashType, tx, idx)
signature, err := key.Sign(hash)
if err != nil {
return nil, fmt.Errorf("cannot sign tx input: %s", err)
}
return append(signature.Serialize(), byte(hashType)), nil
}
func p2pkSignatureScript(tx *wire.MsgTx, idx int, subScript []byte, hashType SigHashType, privKey *btcec.PrivateKey) ([]byte, error) {
sig, err := RawTxInSignature(tx, idx, subScript, hashType, privKey)
if err != nil {
return nil, err
}
return NewScriptBuilder().AddData(sig).Script()
}
// signMultiSig signs as many of the outputs in the provided multisig script as
// possible. It returns the generated script and a boolean if the script fulfils
// the contract (i.e. nrequired signatures are provided). Since it is arguably
// legal to not be able to sign any of the outputs, no error is returned.
func signMultiSig(tx *wire.MsgTx, idx int, subScript []byte, hashType SigHashType,
addresses []btcutil.Address, nRequired int, kdb KeyDB) ([]byte, bool) {
// We start with a single OP_FALSE to work around the (now standard)
// but in the reference implementation that causes a spurious pop at
// the end of OP_CHECKMULTISIG.
builder := NewScriptBuilder().AddOp(OP_FALSE)
signed := 0
for _, addr := range addresses {
key, _, err := kdb.GetKey(addr)
if err != nil {
continue
}
sig, err := RawTxInSignature(tx, idx, subScript, hashType, key)
if err != nil {
continue
}
builder.AddData(sig)
signed++
if signed == nRequired {
break
}
}
script, _ := builder.Script()
return script, signed == nRequired
}
func sign(chainParams *chaincfg.Params, tx *wire.MsgTx, idx int,
subScript []byte, hashType SigHashType, kdb KeyDB, sdb ScriptDB) ([]byte,
ScriptClass, []btcutil.Address, int, error) {
class, addresses, nrequired, err := ExtractPkScriptAddrs(subScript,
chainParams)
if err != nil {
return nil, NonStandardTy, nil, 0, err
}
switch class {
case PubKeyTy:
// look up key for address
key, _, err := kdb.GetKey(addresses[0])
if err != nil {
return nil, class, nil, 0, err
}
script, err := p2pkSignatureScript(tx, idx, subScript, hashType,
key)
if err != nil {
return nil, class, nil, 0, err
}
return script, class, addresses, nrequired, nil
case PubKeyHashTy:
// look up key for address
key, compressed, err := kdb.GetKey(addresses[0])
if err != nil {
return nil, class, nil, 0, err
}
script, err := SignatureScript(tx, idx, subScript, hashType,
key, compressed)
if err != nil {
return nil, class, nil, 0, err
}
return script, class, addresses, nrequired, nil
case ScriptHashTy:
script, err := sdb.GetScript(addresses[0])
if err != nil {
return nil, class, nil, 0, err
}
return script, class, addresses, nrequired, nil
case MultiSigTy:
script, _ := signMultiSig(tx, idx, subScript, hashType,
addresses, nrequired, kdb)
return script, class, addresses, nrequired, nil
case NullDataTy:
return nil, class, nil, 0,
errors.New("can't sign NULLDATA transactions")
default:
return nil, class, nil, 0,
errors.New("can't sign unknown transactions")
}
}
// mergeScripts merges sigScript and prevScript assuming they are both
// partial solutions for pkScript spending output idx of tx. class, addresses
// and nrequired are the result of extracting the addresses from pkscript.
// The return value is the best effort merging of the two scripts. Calling this
// function with addresses, class and nrequired that do not match pkScript is
// an error and results in undefined behaviour.
func mergeScripts(chainParams *chaincfg.Params, tx *wire.MsgTx, idx int,
pkScript []byte, class ScriptClass, addresses []btcutil.Address,
nRequired int, sigScript, prevScript []byte) []byte {
// TODO(oga) the scripthash and multisig paths here are overly
// inefficient in that they will recompute already known data.
// some internal refactoring could probably make this avoid needless
// extra calculations.
switch class {
case ScriptHashTy:
// Remove the last push in the script and then recurse.
// this could be a lot less inefficient.
sigPops, err := parseScript(sigScript)
if err != nil || len(sigPops) == 0 {
return prevScript
}
prevPops, err := parseScript(prevScript)
if err != nil || len(prevPops) == 0 {
return sigScript
}
// assume that script in sigPops is the correct one, we just
// made it.
script := sigPops[len(sigPops)-1].data
// We already know this information somewhere up the stack.
class, addresses, nrequired, err :=
ExtractPkScriptAddrs(script, chainParams)
// regenerate scripts.
sigScript, _ := unparseScript(sigPops)
prevScript, _ := unparseScript(prevPops)
// Merge
mergedScript := mergeScripts(chainParams, tx, idx, script,
class, addresses, nrequired, sigScript, prevScript)
// Reappend the script and return the result.
builder := NewScriptBuilder()
builder.script = mergedScript
builder.AddData(script)
finalScript, _ := builder.Script()
return finalScript
case MultiSigTy:
return mergeMultiSig(tx, idx, addresses, nRequired, pkScript,
sigScript, prevScript)
// It doesn't actualy make sense to merge anything other than multiig
// and scripthash (because it could contain multisig). Everything else
// has either zero signature, can't be spent, or has a single signature
// which is either present or not. The other two cases are handled
// above. In the conflict case here we just assume the longest is
// correct (this matches behaviour of the reference implementation).
default:
if len(sigScript) > len(prevScript) {
return sigScript
}
return prevScript
}
}
// mergeMultiSig combines the two signature scripts sigScript and prevScript
// that both provide signatures for pkScript in output idx of tx. addresses
// and nRequired should be the results from extracting the addresses from
// pkScript. Since this function is internal only we assume that the arguments
// have come from other functions internally and thus are all consistent with
// each other, behaviour is undefined if this contract is broken.
func mergeMultiSig(tx *wire.MsgTx, idx int, addresses []btcutil.Address,
nRequired int, pkScript, sigScript, prevScript []byte) []byte {
// This is an internal only function and we already parsed this script
// as ok for multisig (this is how we got here), so if this fails then
// all assumptions are broken and who knows which way is up?
pkPops, _ := parseScript(pkScript)
sigPops, err := parseScript(sigScript)
if err != nil || len(sigPops) == 0 {
return prevScript
}
prevPops, err := parseScript(prevScript)
if err != nil || len(prevPops) == 0 {
return sigScript
}
// Convenience function to avoid duplication.
extractSigs := func(pops []parsedOpcode, sigs [][]byte) [][]byte {
for _, pop := range pops {
if len(pop.data) != 0 {
sigs = append(sigs, pop.data)
}
}
return sigs
}
possibleSigs := make([][]byte, 0, len(sigPops)+len(prevPops))
possibleSigs = extractSigs(sigPops, possibleSigs)
possibleSigs = extractSigs(prevPops, possibleSigs)
// Now we need to match the signatures to pubkeys, the only real way to
// do that is to try to verify them all and match it to the pubkey
// that verifies it. we then can go through the addresses in order
// to build our script. Anything that doesn't parse or doesn't verify we
// throw away.
addrToSig := make(map[string][]byte)
sigLoop:
for _, sig := range possibleSigs {
// can't have a valid signature that doesn't at least have a
// hashtype, in practise it is even longer than this. but
// that'll be checked next.
if len(sig) < 1 {
continue
}
tSig := sig[:len(sig)-1]
hashType := SigHashType(sig[len(sig)-1])
pSig, err := btcec.ParseDERSignature(tSig, btcec.S256())
if err != nil {
continue
}
// We have to do this each round since hash types may vary
// between signatures and so the hash will vary. We can,
// however, assume no sigs etc are in the script since that
// would make the transaction nonstandard and thus not
// MultiSigTy, so we just need to hash the full thing.
hash := calcScriptHash(pkPops, hashType, tx, idx)
for _, addr := range addresses {
// All multisig addresses should be pubkey addreses
// it is an error to call this internal function with
// bad input.
pkaddr := addr.(*btcutil.AddressPubKey)
pubKey := pkaddr.PubKey()
// If it matches we put it in the map. We only
// can take one signature per public key so if we
// already have one, we can throw this away.
if pSig.Verify(hash, pubKey) {
aStr := addr.EncodeAddress()
if _, ok := addrToSig[aStr]; !ok {
addrToSig[aStr] = sig
}
continue sigLoop
}
}
}
// Extra opcode to handle the extra arg consumed (due to previous bugs
// in the reference implementation).
builder := NewScriptBuilder().AddOp(OP_FALSE)
doneSigs := 0
// This assumes that addresses are in the same order as in the script.
for _, addr := range addresses {
sig, ok := addrToSig[addr.EncodeAddress()]
if !ok {
continue
}
builder.AddData(sig)
doneSigs++
if doneSigs == nRequired {
break
}
}
// padding for missing ones.
for i := doneSigs; i < nRequired; i++ {
builder.AddOp(OP_0)
}
script, _ := builder.Script()
return script
}
// KeyDB is an interface type provided to SignTxOutput, it encapsulates
// any user state required to get the private keys for an address.
type KeyDB interface {
GetKey(btcutil.Address) (*btcec.PrivateKey, bool, error)
}
// KeyClosure implements ScriptDB with a closure
type KeyClosure func(btcutil.Address) (*btcec.PrivateKey, bool, error)
// GetKey implements KeyDB by returning the result of calling the closure
func (kc KeyClosure) GetKey(address btcutil.Address) (*btcec.PrivateKey,
bool, error) {
return kc(address)
}
// ScriptDB is an interface type provided to SignTxOutput, it encapsulates
// any user state required to get the scripts for an pay-to-script-hash address.
type ScriptDB interface {
GetScript(btcutil.Address) ([]byte, error)
}
// ScriptClosure implements ScriptDB with a closure
type ScriptClosure func(btcutil.Address) ([]byte, error)
// GetScript implements ScriptDB by returning the result of calling the closure
func (sc ScriptClosure) GetScript(address btcutil.Address) ([]byte, error) {
return sc(address)
}
// SignTxOutput signs output idx of the given tx to resolve the script given in
// pkScript with a signature type of hashType. Any keys required will be
// looked up by calling getKey() with the string of the given address.
// Any pay-to-script-hash signatures will be similarly looked up by calling
// getScript. If previousScript is provided then the results in previousScript
// will be merged in a type-dependant manner with the newly generated.
// signature script.
func SignTxOutput(chainParams *chaincfg.Params, tx *wire.MsgTx, idx int,
pkScript []byte, hashType SigHashType, kdb KeyDB, sdb ScriptDB,
previousScript []byte) ([]byte, error) {
sigScript, class, addresses, nrequired, err := sign(chainParams, tx,
idx, pkScript, hashType, kdb, sdb)
if err != nil {
return nil, err
}
if class == ScriptHashTy {
// TODO keep the sub addressed and pass down to merge.
realSigScript, _, _, _, err := sign(chainParams, tx, idx,
sigScript, hashType, kdb, sdb)
if err != nil {
return nil, err
}
// This is a bad thing. Append the p2sh script as the last
// push in the script.
builder := NewScriptBuilder()
builder.script = realSigScript
builder.AddData(sigScript)
sigScript, _ = builder.Script()
// TODO keep a copy of the script for merging.
}
// Merge scripts. with any previous data, if any.
mergedScript := mergeScripts(chainParams, tx, idx, pkScript, class,
addresses, nrequired, sigScript, previousScript)
return mergedScript, nil
}
// expectedInputs returns the number of arguments required by a script.
// If the script is of unnown type such that the number can not be determined
// then -1 is returned. We are an internal function and thus assume that class
// is the real class of pops (and we can thus assume things that were
// determined while finding out the type).
func expectedInputs(pops []parsedOpcode, class ScriptClass) int {
// count needed inputs.
switch class {
case PubKeyTy:
return 1
case PubKeyHashTy:
return 2
case ScriptHashTy:
// Not including script, handled below.
return 1
case MultiSigTy:
// Standard multisig has a push a small number for the number
// of sigs and number of keys. Check the first push instruction
// to see how many arguments are expected. typeOfScript already
// checked this so we know it'll be a small int. Also, due to
// the original bitcoind bug where OP_CHECKMULTISIG pops an
// additional item from the stack, add an extra expected input
// for the extra push that is required to compensate.
return asSmallInt(pops[0].opcode) + 1
case NullDataTy:
fallthrough
default:
return -1
}
}
// ScriptInfo houses information about a script pair that is determined by
// CalcScriptInfo.
type ScriptInfo struct {
// The class of the sigscript, equivalent to calling GetScriptClass
// on the sigScript.
PkScriptClass ScriptClass
// NumInputs is the number of inputs provided by the pkScript.
NumInputs int
// ExpectedInputs is the number of outputs required by sigScript and any
// pay-to-script-hash scripts. The number will be -1 if unknown.
ExpectedInputs int
// SigOps is the nubmer of signature operations in the script pair.
SigOps int
}
// CalcScriptInfo returns a structure providing data about the scriptpair that
// are provided as arguments. It will error if the pair is in someway invalid
// such that they can not be analysed, i.e. if they do not parse or the
// pkScript is not a push-only script
func CalcScriptInfo(sigscript, pkscript []byte, bip16 bool) (*ScriptInfo, error) {
si := new(ScriptInfo)
// parse both scripts.
sigPops, err := parseScript(sigscript)
if err != nil {
return nil, err
}
pkPops, err := parseScript(pkscript)
if err != nil {
return nil, err
}
// push only sigScript makes little sense.
si.PkScriptClass = typeOfScript(pkPops)
// Can't have a pkScript that doesn't just push data.
if !isPushOnly(sigPops) {
return nil, ErrStackNonPushOnly
}
si.ExpectedInputs = expectedInputs(pkPops, si.PkScriptClass)
// all entries push to stack (or are OP_RESERVED and exec will fail).
si.NumInputs = len(sigPops)
if si.PkScriptClass == ScriptHashTy && bip16 {
// grab the last push instruction in the script and pull out the
// data.
script := sigPops[len(sigPops)-1].data
// check for existance and error else.
shPops, err := parseScript(script)
if err != nil {
return nil, err
}
shClass := typeOfScript(shPops)
shInputs := expectedInputs(shPops, shClass)
if shInputs == -1 {
// We have no fucking clue, then.
si.ExpectedInputs = -1
} else {
si.ExpectedInputs += shInputs
}
si.SigOps = getSigOpCount(shPops, true)
} else {
si.SigOps = getSigOpCount(pkPops, true)
}
return si, nil
}
// asSmallInt returns the passed opcode, which must be true according to
// isSmallInt(), as an integer.
func asSmallInt(op *opcode) int {
if op.value == OP_0 {
return 0
}
return int(op.value - (OP_1 - 1))
}
// CalcMultiSigStats returns the number of public keys and signatures from
// a multi-signature transaction script. The passed script MUST already be
// known to be a multi-signature script.
func CalcMultiSigStats(script []byte) (int, int, error) {
pops, err := parseScript(script)
if err != nil {
return 0, 0, err
}
// A multi-signature script is of the pattern:
// NUM_SIGS PUBKEY PUBKEY PUBKEY... NUM_PUBKEYS OP_CHECKMULTISIG
// Therefore the number of signatures is the oldest item on the stack
// and the number of pubkeys is the 2nd to last. Also, the absolute
// minimum for a multi-signature script is 1 pubkey, so at least 4
// items must be on the stack per:
// OP_1 PUBKEY OP_1 OP_CHECKMULTISIG
if len(pops) < 4 {
return 0, 0, ErrStackUnderflow
}
numSigs := asSmallInt(pops[0].opcode)
numPubKeys := asSmallInt(pops[len(pops)-2].opcode)
return numPubKeys, numSigs, nil
}
// PushedData returns an array of byte slices containing any pushed data found
// in the passed script. This includes OP_0, but not OP_1 - OP_16.
func PushedData(script []byte) ([][]byte, error) {
pops, err := parseScript(script)
if err != nil {
return nil, err
}
var data [][]byte
for _, pop := range pops {
if pop.data != nil {
data = append(data, pop.data)
} else if pop.opcode.value == OP_0 {
data = append(data, []byte{})
}
}
return data, nil
}