lbcd/blockmanager.go
Dave Collins 6e402deb35 Relicense to the btcsuite developers.
This commit relicenses all code in this repository to the btcsuite
developers.
2015-05-01 12:00:56 -05:00

1619 lines
52 KiB
Go

// Copyright (c) 2013-2014 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package main
import (
"container/list"
"net"
"os"
"path/filepath"
"sync"
"sync/atomic"
"time"
"github.com/btcsuite/btcd/blockchain"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/database"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
)
const (
chanBufferSize = 50
// minInFlightBlocks is the minimum number of blocks that should be
// in the request queue for headers-first mode before requesting
// more.
minInFlightBlocks = 10
// blockDbNamePrefix is the prefix for the block database name. The
// database type is appended to this value to form the full block
// database name.
blockDbNamePrefix = "blocks"
)
// newPeerMsg signifies a newly connected peer to the block handler.
type newPeerMsg struct {
peer *peer
}
// blockMsg packages a bitcoin block message and the peer it came from together
// so the block handler has access to that information.
type blockMsg struct {
block *btcutil.Block
peer *peer
}
// invMsg packages a bitcoin inv message and the peer it came from together
// so the block handler has access to that information.
type invMsg struct {
inv *wire.MsgInv
peer *peer
}
// headersMsg packages a bitcoin headers message and the peer it came from
// together so the block handler has access to that information.
type headersMsg struct {
headers *wire.MsgHeaders
peer *peer
}
// donePeerMsg signifies a newly disconnected peer to the block handler.
type donePeerMsg struct {
peer *peer
}
// txMsg packages a bitcoin tx message and the peer it came from together
// so the block handler has access to that information.
type txMsg struct {
tx *btcutil.Tx
peer *peer
}
// getSyncPeerMsg is a message type to be sent across the message channel for
// retrieving the current sync peer.
type getSyncPeerMsg struct {
reply chan *peer
}
// checkConnectBlockMsg is a message type to be sent across the message channel
// for requesting chain to check if a block connects to the end of the current
// main chain.
type checkConnectBlockMsg struct {
block *btcutil.Block
reply chan error
}
// calcNextReqDifficultyResponse is a response sent to the reply channel of a
// calcNextReqDifficultyMsg query.
type calcNextReqDifficultyResponse struct {
difficulty uint32
err error
}
// calcNextReqDifficultyMsg is a message type to be sent across the message
// channel for requesting the required difficulty of the next block.
type calcNextReqDifficultyMsg struct {
timestamp time.Time
reply chan calcNextReqDifficultyResponse
}
// processBlockResponse is a response sent to the reply channel of a
// processBlockMsg.
type processBlockResponse struct {
isOrphan bool
err error
}
// fetchTransactionStoreResponse is a response sent to the reply channel of a
// fetchTransactionStoreMsg.
type fetchTransactionStoreResponse struct {
TxStore blockchain.TxStore
err error
}
// fetchTransactionStoreMsg is a message type to be sent across the message
// channel fetching the tx input store for some Tx.
type fetchTransactionStoreMsg struct {
tx *btcutil.Tx
reply chan fetchTransactionStoreResponse
}
// processBlockMsg is a message type to be sent across the message channel
// for requested a block is processed. Note this call differs from blockMsg
// above in that blockMsg is intended for blocks that came from peers and have
// extra handling whereas this message essentially is just a concurrent safe
// way to call ProcessBlock on the internal block chain instance.
type processBlockMsg struct {
block *btcutil.Block
flags blockchain.BehaviorFlags
reply chan processBlockResponse
}
// isCurrentMsg is a message type to be sent across the message channel for
// requesting whether or not the block manager believes it is synced with
// the currently connected peers.
type isCurrentMsg struct {
reply chan bool
}
// pauseMsg is a message type to be sent across the message channel for
// pausing the block manager. This effectively provides the caller with
// exclusive access over the manager until a receive is performed on the
// unpause channel.
type pauseMsg struct {
unpause <-chan struct{}
}
// headerNode is used as a node in a list of headers that are linked together
// between checkpoints.
type headerNode struct {
height int64
sha *wire.ShaHash
}
// chainState tracks the state of the best chain as blocks are inserted. This
// is done because btcchain is currently not safe for concurrent access and the
// block manager is typically quite busy processing block and inventory.
// Therefore, requesting this information from chain through the block manager
// would not be anywhere near as efficient as simply updating it as each block
// is inserted and protecting it with a mutex.
type chainState struct {
sync.Mutex
newestHash *wire.ShaHash
newestHeight int64
pastMedianTime time.Time
pastMedianTimeErr error
}
// Best returns the block hash and height known for the tip of the best known
// chain.
//
// This function is safe for concurrent access.
func (c *chainState) Best() (*wire.ShaHash, int64) {
c.Lock()
defer c.Unlock()
return c.newestHash, c.newestHeight
}
// blockManager provides a concurrency safe block manager for handling all
// incoming blocks.
type blockManager struct {
server *server
started int32
shutdown int32
blockChain *blockchain.BlockChain
requestedTxns map[wire.ShaHash]struct{}
requestedBlocks map[wire.ShaHash]struct{}
progressLogger *blockProgressLogger
receivedLogBlocks int64
receivedLogTx int64
processingReqs bool
syncPeer *peer
msgChan chan interface{}
chainState chainState
wg sync.WaitGroup
quit chan struct{}
// The following fields are used for headers-first mode.
headersFirstMode bool
headerList *list.List
startHeader *list.Element
nextCheckpoint *chaincfg.Checkpoint
}
// resetHeaderState sets the headers-first mode state to values appropriate for
// syncing from a new peer.
func (b *blockManager) resetHeaderState(newestHash *wire.ShaHash, newestHeight int64) {
b.headersFirstMode = false
b.headerList.Init()
b.startHeader = nil
// When there is a next checkpoint, add an entry for the latest known
// block into the header pool. This allows the next downloaded header
// to prove it links to the chain properly.
if b.nextCheckpoint != nil {
node := headerNode{height: newestHeight, sha: newestHash}
b.headerList.PushBack(&node)
}
}
// updateChainState updates the chain state associated with the block manager.
// This allows fast access to chain information since btcchain is currently not
// safe for concurrent access and the block manager is typically quite busy
// processing block and inventory.
func (b *blockManager) updateChainState(newestHash *wire.ShaHash, newestHeight int64) {
b.chainState.Lock()
defer b.chainState.Unlock()
b.chainState.newestHash = newestHash
b.chainState.newestHeight = newestHeight
medianTime, err := b.blockChain.CalcPastMedianTime()
if err != nil {
b.chainState.pastMedianTimeErr = err
} else {
b.chainState.pastMedianTime = medianTime
}
}
// findNextHeaderCheckpoint returns the next checkpoint after the passed height.
// It returns nil when there is not one either because the height is already
// later than the final checkpoint or some other reason such as disabled
// checkpoints.
func (b *blockManager) findNextHeaderCheckpoint(height int64) *chaincfg.Checkpoint {
// There is no next checkpoint if checkpoints are disabled or there are
// none for this current network.
if cfg.DisableCheckpoints {
return nil
}
checkpoints := b.server.chainParams.Checkpoints
if len(checkpoints) == 0 {
return nil
}
// There is no next checkpoint if the height is already after the final
// checkpoint.
finalCheckpoint := &checkpoints[len(checkpoints)-1]
if height >= finalCheckpoint.Height {
return nil
}
// Find the next checkpoint.
nextCheckpoint := finalCheckpoint
for i := len(checkpoints) - 2; i >= 0; i-- {
if height >= checkpoints[i].Height {
break
}
nextCheckpoint = &checkpoints[i]
}
return nextCheckpoint
}
// startSync will choose the best peer among the available candidate peers to
// download/sync the blockchain from. When syncing is already running, it
// simply returns. It also examines the candidates for any which are no longer
// candidates and removes them as needed.
func (b *blockManager) startSync(peers *list.List) {
// Return now if we're already syncing.
if b.syncPeer != nil {
return
}
// Find the height of the current known best block.
_, height, err := b.server.db.NewestSha()
if err != nil {
bmgrLog.Errorf("%v", err)
return
}
var bestPeer *peer
var enext *list.Element
for e := peers.Front(); e != nil; e = enext {
enext = e.Next()
p := e.Value.(*peer)
// Remove sync candidate peers that are no longer candidates due
// to passing their latest known block. NOTE: The < is
// intentional as opposed to <=. While techcnically the peer
// doesn't have a later block when it's equal, it will likely
// have one soon so it is a reasonable choice. It also allows
// the case where both are at 0 such as during regression test.
if p.lastBlock < int32(height) {
peers.Remove(e)
continue
}
// TODO(davec): Use a better algorithm to choose the best peer.
// For now, just pick the first available candidate.
bestPeer = p
}
// Start syncing from the best peer if one was selected.
if bestPeer != nil {
locator, err := b.blockChain.LatestBlockLocator()
if err != nil {
bmgrLog.Errorf("Failed to get block locator for the "+
"latest block: %v", err)
return
}
bmgrLog.Infof("Syncing to block height %d from peer %v",
bestPeer.lastBlock, bestPeer.addr)
// When the current height is less than a known checkpoint we
// can use block headers to learn about which blocks comprise
// the chain up to the checkpoint and perform less validation
// for them. This is possible since each header contains the
// hash of the previous header and a merkle root. Therefore if
// we validate all of the received headers link together
// properly and the checkpoint hashes match, we can be sure the
// hashes for the blocks in between are accurate. Further, once
// the full blocks are downloaded, the merkle root is computed
// and compared against the value in the header which proves the
// full block hasn't been tampered with.
//
// Once we have passed the final checkpoint, or checkpoints are
// disabled, use standard inv messages learn about the blocks
// and fully validate them. Finally, regression test mode does
// not support the headers-first approach so do normal block
// downloads when in regression test mode.
if b.nextCheckpoint != nil && height < b.nextCheckpoint.Height &&
!cfg.RegressionTest && !cfg.DisableCheckpoints {
bestPeer.PushGetHeadersMsg(locator, b.nextCheckpoint.Hash)
b.headersFirstMode = true
bmgrLog.Infof("Downloading headers for blocks %d to "+
"%d from peer %s", height+1,
b.nextCheckpoint.Height, bestPeer.addr)
} else {
bestPeer.PushGetBlocksMsg(locator, &zeroHash)
}
b.syncPeer = bestPeer
} else {
bmgrLog.Warnf("No sync peer candidates available")
}
}
// isSyncCandidate returns whether or not the peer is a candidate to consider
// syncing from.
func (b *blockManager) isSyncCandidate(p *peer) bool {
// Typically a peer is not a candidate for sync if it's not a full node,
// however regression test is special in that the regression tool is
// not a full node and still needs to be considered a sync candidate.
if cfg.RegressionTest {
// The peer is not a candidate if it's not coming from localhost
// or the hostname can't be determined for some reason.
host, _, err := net.SplitHostPort(p.addr)
if err != nil {
return false
}
if host != "127.0.0.1" && host != "localhost" {
return false
}
} else {
// The peer is not a candidate for sync if it's not a full node.
if p.services&wire.SFNodeNetwork != wire.SFNodeNetwork {
return false
}
}
// Candidate if all checks passed.
return true
}
// handleNewPeerMsg deals with new peers that have signalled they may
// be considered as a sync peer (they have already successfully negotiated). It
// also starts syncing if needed. It is invoked from the syncHandler goroutine.
func (b *blockManager) handleNewPeerMsg(peers *list.List, p *peer) {
// Ignore if in the process of shutting down.
if atomic.LoadInt32(&b.shutdown) != 0 {
return
}
bmgrLog.Infof("New valid peer %s (%s)", p, p.userAgent)
// Ignore the peer if it's not a sync candidate.
if !b.isSyncCandidate(p) {
return
}
// Add the peer as a candidate to sync from.
peers.PushBack(p)
// Start syncing by choosing the best candidate if needed.
b.startSync(peers)
}
// handleDonePeerMsg deals with peers that have signalled they are done. It
// removes the peer as a candidate for syncing and in the case where it was
// the current sync peer, attempts to select a new best peer to sync from. It
// is invoked from the syncHandler goroutine.
func (b *blockManager) handleDonePeerMsg(peers *list.List, p *peer) {
// Remove the peer from the list of candidate peers.
for e := peers.Front(); e != nil; e = e.Next() {
if e.Value == p {
peers.Remove(e)
break
}
}
bmgrLog.Infof("Lost peer %s", p)
// Remove requested transactions from the global map so that they will
// be fetched from elsewhere next time we get an inv.
for k := range p.requestedTxns {
delete(b.requestedTxns, k)
}
// Remove requested blocks from the global map so that they will be
// fetched from elsewhere next time we get an inv.
// TODO(oga) we could possibly here check which peers have these blocks
// and request them now to speed things up a little.
for k := range p.requestedBlocks {
delete(b.requestedBlocks, k)
}
// Attempt to find a new peer to sync from if the quitting peer is the
// sync peer. Also, reset the headers-first state if in headers-first
// mode so
if b.syncPeer != nil && b.syncPeer == p {
b.syncPeer = nil
if b.headersFirstMode {
// This really shouldn't fail. We have a fairly
// unrecoverable database issue if it does.
newestHash, height, err := b.server.db.NewestSha()
if err != nil {
bmgrLog.Warnf("Unable to obtain latest "+
"block information from the database: "+
"%v", err)
return
}
b.resetHeaderState(newestHash, height)
}
b.startSync(peers)
}
}
// handleTxMsg handles transaction messages from all peers.
func (b *blockManager) handleTxMsg(tmsg *txMsg) {
// NOTE: BitcoinJ, and possibly other wallets, don't follow the spec of
// sending an inventory message and allowing the remote peer to decide
// whether or not they want to request the transaction via a getdata
// message. Unfortuantely the reference implementation permits
// unrequested data, so it has allowed wallets that don't follow the
// spec to proliferate. While this is not ideal, there is no check here
// to disconnect peers for sending unsolicited transactions to provide
// interoperability.
// Process the transaction to include validation, insertion in the
// memory pool, orphan handling, etc.
err := tmsg.peer.server.txMemPool.ProcessTransaction(tmsg.tx, true, true)
// Remove transaction from request maps. Either the mempool/chain
// already knows about it and as such we shouldn't have any more
// instances of trying to fetch it, or we failed to insert and thus
// we'll retry next time we get an inv.
txHash := tmsg.tx.Sha()
delete(tmsg.peer.requestedTxns, *txHash)
delete(b.requestedTxns, *txHash)
if err != nil {
// When the error is a rule error, it means the transaction was
// simply rejected as opposed to something actually going wrong,
// so log it as such. Otherwise, something really did go wrong,
// so log it as an actual error.
if _, ok := err.(RuleError); ok {
bmgrLog.Debugf("Rejected transaction %v from %s: %v",
txHash, tmsg.peer, err)
} else {
bmgrLog.Errorf("Failed to process transaction %v: %v",
txHash, err)
}
// Convert the error into an appropriate reject message and
// send it.
code, reason := errToRejectErr(err)
tmsg.peer.PushRejectMsg(wire.CmdBlock, code, reason, txHash,
false)
return
}
}
// current returns true if we believe we are synced with our peers, false if we
// still have blocks to check
func (b *blockManager) current() bool {
if !b.blockChain.IsCurrent(b.server.timeSource) {
return false
}
// if blockChain thinks we are current and we have no syncPeer it
// is probably right.
if b.syncPeer == nil {
return true
}
_, height, err := b.server.db.NewestSha()
// No matter what chain thinks, if we are below the block we are
// syncing to we are not current.
// TODO(oga) we can get chain to return the height of each block when we
// parse an orphan, which would allow us to update the height of peers
// from what it was at initial handshake.
if err != nil || height < int64(b.syncPeer.lastBlock) {
return false
}
return true
}
// handleBlockMsg handles block messages from all peers.
func (b *blockManager) handleBlockMsg(bmsg *blockMsg) {
// If we didn't ask for this block then the peer is misbehaving.
blockSha := bmsg.block.Sha()
if _, ok := bmsg.peer.requestedBlocks[*blockSha]; !ok {
// The regression test intentionally sends some blocks twice
// to test duplicate block insertion fails. Don't disconnect
// the peer or ignore the block when we're in regression test
// mode in this case so the chain code is actually fed the
// duplicate blocks.
if !cfg.RegressionTest {
bmgrLog.Warnf("Got unrequested block %v from %s -- "+
"disconnecting", blockSha, bmsg.peer.addr)
bmsg.peer.Disconnect()
return
}
}
// When in headers-first mode, if the block matches the hash of the
// first header in the list of headers that are being fetched, it's
// eligible for less validation since the headers have already been
// verified to link together and are valid up to the next checkpoint.
// Also, remove the list entry for all blocks except the checkpoint
// since it is needed to verify the next round of headers links
// properly.
isCheckpointBlock := false
behaviorFlags := blockchain.BFNone
if b.headersFirstMode {
firstNodeEl := b.headerList.Front()
if firstNodeEl != nil {
firstNode := firstNodeEl.Value.(*headerNode)
if blockSha.IsEqual(firstNode.sha) {
behaviorFlags |= blockchain.BFFastAdd
if firstNode.sha.IsEqual(b.nextCheckpoint.Hash) {
isCheckpointBlock = true
} else {
b.headerList.Remove(firstNodeEl)
}
}
}
}
// Remove block from request maps. Either chain will know about it and
// so we shouldn't have any more instances of trying to fetch it, or we
// will fail the insert and thus we'll retry next time we get an inv.
delete(bmsg.peer.requestedBlocks, *blockSha)
delete(b.requestedBlocks, *blockSha)
// Process the block to include validation, best chain selection, orphan
// handling, etc.
isOrphan, err := b.blockChain.ProcessBlock(bmsg.block,
b.server.timeSource, behaviorFlags)
if err != nil {
// When the error is a rule error, it means the block was simply
// rejected as opposed to something actually going wrong, so log
// it as such. Otherwise, something really did go wrong, so log
// it as an actual error.
if _, ok := err.(blockchain.RuleError); ok {
bmgrLog.Infof("Rejected block %v from %s: %v", blockSha,
bmsg.peer, err)
} else {
bmgrLog.Errorf("Failed to process block %v: %v",
blockSha, err)
}
// Convert the error into an appropriate reject message and
// send it.
code, reason := errToRejectErr(err)
bmsg.peer.PushRejectMsg(wire.CmdBlock, code, reason,
blockSha, false)
return
}
// Meta-data about the new block this peer is reporting. We use this
// below to update this peer's lastest block height and the heights of
// other peers based on their last announced block sha. This allows us
// to dynamically update the block heights of peers, avoiding stale heights
// when looking for a new sync peer. Upon acceptance of a block or
// recognition of an orphan, we also use this information to update
// the block heights over other peers who's invs may have been ignored
// if we are actively syncing while the chain is not yet current or
// who may have lost the lock announcment race.
var heightUpdate int32
var blkShaUpdate *wire.ShaHash
// Request the parents for the orphan block from the peer that sent it.
if isOrphan {
// We've just received an orphan block from a peer. In order
// to update the height of the peer, we try to extract the
// block height from the scriptSig of the coinbase transaction.
// Extraction is only attempted if the block's version is
// high enough (ver 2+).
header := &bmsg.block.MsgBlock().Header
if blockchain.ShouldHaveSerializedBlockHeight(header) {
coinbaseTx := bmsg.block.Transactions()[0]
cbHeight, err := blockchain.ExtractCoinbaseHeight(coinbaseTx)
if err != nil {
bmgrLog.Warnf("Unable to extract height from "+
"coinbase tx: %v", err)
} else {
bmgrLog.Debugf("Extracted height of %v from "+
"orphan block", cbHeight)
heightUpdate = int32(cbHeight)
blkShaUpdate = blockSha
}
}
orphanRoot := b.blockChain.GetOrphanRoot(blockSha)
locator, err := b.blockChain.LatestBlockLocator()
if err != nil {
bmgrLog.Warnf("Failed to get block locator for the "+
"latest block: %v", err)
} else {
bmsg.peer.PushGetBlocksMsg(locator, orphanRoot)
}
} else {
// When the block is not an orphan, log information about it and
// update the chain state.
b.progressLogger.LogBlockHeight(bmsg.block)
// Query the db for the latest best block since the block
// that was processed could be on a side chain or have caused
// a reorg.
newestSha, newestHeight, _ := b.server.db.NewestSha()
b.updateChainState(newestSha, newestHeight)
// Update this peer's latest block height, for future
// potential sync node candidancy.
heightUpdate = int32(newestHeight)
blkShaUpdate = newestSha
// Allow any clients performing long polling via the
// getblocktemplate RPC to be notified when the new block causes
// their old block template to become stale.
rpcServer := b.server.rpcServer
if rpcServer != nil {
rpcServer.gbtWorkState.NotifyBlockConnected(blockSha)
}
}
// Update the block height for this peer. But only send a message to
// the server for updating peer heights if this is an orphan or our
// chain is "current". This avoid sending a spammy amount of messages
// if we're syncing the chain from scratch.
if blkShaUpdate != nil && heightUpdate != 0 {
bmsg.peer.UpdateLastBlockHeight(heightUpdate)
if isOrphan || b.current() {
go b.server.UpdatePeerHeights(blkShaUpdate, int32(heightUpdate), bmsg.peer)
}
}
// Sync the db to disk.
b.server.db.Sync()
// Nothing more to do if we aren't in headers-first mode.
if !b.headersFirstMode {
return
}
// This is headers-first mode, so if the block is not a checkpoint
// request more blocks using the header list when the request queue is
// getting short.
if !isCheckpointBlock {
if b.startHeader != nil &&
len(bmsg.peer.requestedBlocks) < minInFlightBlocks {
b.fetchHeaderBlocks()
}
return
}
// This is headers-first mode and the block is a checkpoint. When
// there is a next checkpoint, get the next round of headers by asking
// for headers starting from the block after this one up to the next
// checkpoint.
prevHeight := b.nextCheckpoint.Height
prevHash := b.nextCheckpoint.Hash
b.nextCheckpoint = b.findNextHeaderCheckpoint(prevHeight)
if b.nextCheckpoint != nil {
locator := blockchain.BlockLocator([]*wire.ShaHash{prevHash})
err := bmsg.peer.PushGetHeadersMsg(locator, b.nextCheckpoint.Hash)
if err != nil {
bmgrLog.Warnf("Failed to send getheaders message to "+
"peer %s: %v", bmsg.peer.addr, err)
return
}
bmgrLog.Infof("Downloading headers for blocks %d to %d from "+
"peer %s", prevHeight+1, b.nextCheckpoint.Height,
b.syncPeer.addr)
return
}
// This is headers-first mode, the block is a checkpoint, and there are
// no more checkpoints, so switch to normal mode by requesting blocks
// from the block after this one up to the end of the chain (zero hash).
b.headersFirstMode = false
b.headerList.Init()
bmgrLog.Infof("Reached the final checkpoint -- switching to normal mode")
locator := blockchain.BlockLocator([]*wire.ShaHash{blockSha})
err = bmsg.peer.PushGetBlocksMsg(locator, &zeroHash)
if err != nil {
bmgrLog.Warnf("Failed to send getblocks message to peer %s: %v",
bmsg.peer.addr, err)
return
}
}
// fetchHeaderBlocks creates and sends a request to the syncPeer for the next
// list of blocks to be downloaded based on the current list of headers.
func (b *blockManager) fetchHeaderBlocks() {
// Nothing to do if there is no start header.
if b.startHeader == nil {
bmgrLog.Warnf("fetchHeaderBlocks called with no start header")
return
}
// Build up a getdata request for the list of blocks the headers
// describe. The size hint will be limited to wire.MaxInvPerMsg by
// the function, so no need to double check it here.
gdmsg := wire.NewMsgGetDataSizeHint(uint(b.headerList.Len()))
numRequested := 0
for e := b.startHeader; e != nil; e = e.Next() {
node, ok := e.Value.(*headerNode)
if !ok {
bmgrLog.Warn("Header list node type is not a headerNode")
continue
}
iv := wire.NewInvVect(wire.InvTypeBlock, node.sha)
haveInv, err := b.haveInventory(iv)
if err != nil {
bmgrLog.Warnf("Unexpected failure when checking for "+
"existing inventory during header block "+
"fetch: %v", err)
}
if !haveInv {
b.requestedBlocks[*node.sha] = struct{}{}
b.syncPeer.requestedBlocks[*node.sha] = struct{}{}
gdmsg.AddInvVect(iv)
numRequested++
}
b.startHeader = e.Next()
if numRequested >= wire.MaxInvPerMsg {
break
}
}
if len(gdmsg.InvList) > 0 {
b.syncPeer.QueueMessage(gdmsg, nil)
}
}
// handleHeadersMsghandles headers messages from all peers.
func (b *blockManager) handleHeadersMsg(hmsg *headersMsg) {
// The remote peer is misbehaving if we didn't request headers.
msg := hmsg.headers
numHeaders := len(msg.Headers)
if !b.headersFirstMode {
bmgrLog.Warnf("Got %d unrequested headers from %s -- "+
"disconnecting", numHeaders, hmsg.peer.addr)
hmsg.peer.Disconnect()
return
}
// Nothing to do for an empty headers message.
if numHeaders == 0 {
return
}
// Process all of the received headers ensuring each one connects to the
// previous and that checkpoints match.
receivedCheckpoint := false
var finalHash *wire.ShaHash
for _, blockHeader := range msg.Headers {
blockHash := blockHeader.BlockSha()
finalHash = &blockHash
// Ensure there is a previous header to compare against.
prevNodeEl := b.headerList.Back()
if prevNodeEl == nil {
bmgrLog.Warnf("Header list does not contain a previous" +
"element as expected -- disconnecting peer")
hmsg.peer.Disconnect()
return
}
// Ensure the header properly connects to the previous one and
// add it to the list of headers.
node := headerNode{sha: &blockHash}
prevNode := prevNodeEl.Value.(*headerNode)
if prevNode.sha.IsEqual(&blockHeader.PrevBlock) {
node.height = prevNode.height + 1
e := b.headerList.PushBack(&node)
if b.startHeader == nil {
b.startHeader = e
}
} else {
bmgrLog.Warnf("Received block header that does not "+
"properly connect to the chain from peer %s "+
"-- disconnecting", hmsg.peer.addr)
hmsg.peer.Disconnect()
return
}
// Verify the header at the next checkpoint height matches.
if node.height == b.nextCheckpoint.Height {
if node.sha.IsEqual(b.nextCheckpoint.Hash) {
receivedCheckpoint = true
bmgrLog.Infof("Verified downloaded block "+
"header against checkpoint at height "+
"%d/hash %s", node.height, node.sha)
} else {
bmgrLog.Warnf("Block header at height %d/hash "+
"%s from peer %s does NOT match "+
"expected checkpoint hash of %s -- "+
"disconnecting", node.height,
node.sha, hmsg.peer.addr,
b.nextCheckpoint.Hash)
hmsg.peer.Disconnect()
return
}
break
}
}
// When this header is a checkpoint, switch to fetching the blocks for
// all of the headers since the last checkpoint.
if receivedCheckpoint {
// Since the first entry of the list is always the final block
// that is already in the database and is only used to ensure
// the next header links properly, it must be removed before
// fetching the blocks.
b.headerList.Remove(b.headerList.Front())
bmgrLog.Infof("Received %v block headers: Fetching blocks",
b.headerList.Len())
b.progressLogger.SetLastLogTime(time.Now())
b.fetchHeaderBlocks()
return
}
// This header is not a checkpoint, so request the next batch of
// headers starting from the latest known header and ending with the
// next checkpoint.
locator := blockchain.BlockLocator([]*wire.ShaHash{finalHash})
err := hmsg.peer.PushGetHeadersMsg(locator, b.nextCheckpoint.Hash)
if err != nil {
bmgrLog.Warnf("Failed to send getheaders message to "+
"peer %s: %v", hmsg.peer.addr, err)
return
}
}
// haveInventory returns whether or not the inventory represented by the passed
// inventory vector is known. This includes checking all of the various places
// inventory can be when it is in different states such as blocks that are part
// of the main chain, on a side chain, in the orphan pool, and transactions that
// are in the memory pool (either the main pool or orphan pool).
func (b *blockManager) haveInventory(invVect *wire.InvVect) (bool, error) {
switch invVect.Type {
case wire.InvTypeBlock:
// Ask chain if the block is known to it in any form (main
// chain, side chain, or orphan).
return b.blockChain.HaveBlock(&invVect.Hash)
case wire.InvTypeTx:
// Ask the transaction memory pool if the transaction is known
// to it in any form (main pool or orphan).
if b.server.txMemPool.HaveTransaction(&invVect.Hash) {
return true, nil
}
// Check if the transaction exists from the point of view of the
// end of the main chain.
return b.server.db.ExistsTxSha(&invVect.Hash)
}
// The requested inventory is is an unsupported type, so just claim
// it is known to avoid requesting it.
return true, nil
}
// handleInvMsg handles inv messages from all peers.
// We examine the inventory advertised by the remote peer and act accordingly.
func (b *blockManager) handleInvMsg(imsg *invMsg) {
// Attempt to find the final block in the inventory list. There may
// not be one.
lastBlock := -1
invVects := imsg.inv.InvList
for i := len(invVects) - 1; i >= 0; i-- {
if invVects[i].Type == wire.InvTypeBlock {
lastBlock = i
break
}
}
// If this inv contains a block annoucement, and this isn't coming from
// our current sync peer or we're current, then update the last
// announced block for this peer. We'll use this information later to
// update the heights of peers based on blocks we've accepted that they
// previously announced.
if lastBlock != -1 && (imsg.peer != b.syncPeer || b.current()) {
imsg.peer.UpdateLastAnnouncedBlock(&invVects[lastBlock].Hash)
}
// Ignore invs from peers that aren't the sync if we are not current.
// Helps prevent fetching a mass of orphans.
if imsg.peer != b.syncPeer && !b.current() {
return
}
// If our chain is current and a peer announces a block we already
// know of, then update their current block height.
if lastBlock != -1 && b.current() {
exists, err := b.server.db.ExistsSha(&invVects[lastBlock].Hash)
if err == nil && exists {
blkHeight, err := b.server.db.FetchBlockHeightBySha(&invVects[lastBlock].Hash)
if err != nil {
bmgrLog.Warnf("Unable to fetch block height for block (sha: %v), %v",
&invVects[lastBlock].Hash, err)
} else {
imsg.peer.UpdateLastBlockHeight(int32(blkHeight))
}
}
}
// Request the advertised inventory if we don't already have it. Also,
// request parent blocks of orphans if we receive one we already have.
// Finally, attempt to detect potential stalls due to long side chains
// we already have and request more blocks to prevent them.
chain := b.blockChain
for i, iv := range invVects {
// Ignore unsupported inventory types.
if iv.Type != wire.InvTypeBlock && iv.Type != wire.InvTypeTx {
continue
}
// Add the inventory to the cache of known inventory
// for the peer.
imsg.peer.AddKnownInventory(iv)
// Ignore inventory when we're in headers-first mode.
if b.headersFirstMode {
continue
}
// Request the inventory if we don't already have it.
haveInv, err := b.haveInventory(iv)
if err != nil {
bmgrLog.Warnf("Unexpected failure when checking for "+
"existing inventory during inv message "+
"processing: %v", err)
continue
}
if !haveInv {
// Add it to the request queue.
imsg.peer.requestQueue = append(imsg.peer.requestQueue, iv)
continue
}
if iv.Type == wire.InvTypeBlock {
// The block is an orphan block that we already have.
// When the existing orphan was processed, it requested
// the missing parent blocks. When this scenario
// happens, it means there were more blocks missing
// than are allowed into a single inventory message. As
// a result, once this peer requested the final
// advertised block, the remote peer noticed and is now
// resending the orphan block as an available block
// to signal there are more missing blocks that need to
// be requested.
if chain.IsKnownOrphan(&iv.Hash) {
// Request blocks starting at the latest known
// up to the root of the orphan that just came
// in.
orphanRoot := chain.GetOrphanRoot(&iv.Hash)
locator, err := chain.LatestBlockLocator()
if err != nil {
bmgrLog.Errorf("PEER: Failed to get block "+
"locator for the latest block: "+
"%v", err)
continue
}
imsg.peer.PushGetBlocksMsg(locator, orphanRoot)
continue
}
// We already have the final block advertised by this
// inventory message, so force a request for more. This
// should only happen if we're on a really long side
// chain.
if i == lastBlock {
// Request blocks after this one up to the
// final one the remote peer knows about (zero
// stop hash).
locator := chain.BlockLocatorFromHash(&iv.Hash)
imsg.peer.PushGetBlocksMsg(locator, &zeroHash)
}
}
}
// Request as much as possible at once. Anything that won't fit into
// the request will be requested on the next inv message.
numRequested := 0
gdmsg := wire.NewMsgGetData()
requestQueue := imsg.peer.requestQueue
for len(requestQueue) != 0 {
iv := requestQueue[0]
requestQueue[0] = nil
requestQueue = requestQueue[1:]
switch iv.Type {
case wire.InvTypeBlock:
// Request the block if there is not already a pending
// request.
if _, exists := b.requestedBlocks[iv.Hash]; !exists {
b.requestedBlocks[iv.Hash] = struct{}{}
imsg.peer.requestedBlocks[iv.Hash] = struct{}{}
gdmsg.AddInvVect(iv)
numRequested++
}
case wire.InvTypeTx:
// Request the transaction if there is not already a
// pending request.
if _, exists := b.requestedTxns[iv.Hash]; !exists {
b.requestedTxns[iv.Hash] = struct{}{}
imsg.peer.requestedTxns[iv.Hash] = struct{}{}
gdmsg.AddInvVect(iv)
numRequested++
}
}
if numRequested >= wire.MaxInvPerMsg {
break
}
}
imsg.peer.requestQueue = requestQueue
if len(gdmsg.InvList) > 0 {
imsg.peer.QueueMessage(gdmsg, nil)
}
}
// blockHandler is the main handler for the block manager. It must be run
// as a goroutine. It processes block and inv messages in a separate goroutine
// from the peer handlers so the block (MsgBlock) messages are handled by a
// single thread without needing to lock memory data structures. This is
// important because the block manager controls which blocks are needed and how
// the fetching should proceed.
func (b *blockManager) blockHandler() {
candidatePeers := list.New()
out:
for {
select {
case m := <-b.msgChan:
switch msg := m.(type) {
case *newPeerMsg:
b.handleNewPeerMsg(candidatePeers, msg.peer)
case *txMsg:
b.handleTxMsg(msg)
msg.peer.txProcessed <- struct{}{}
case *blockMsg:
b.handleBlockMsg(msg)
msg.peer.blockProcessed <- struct{}{}
case *invMsg:
b.handleInvMsg(msg)
case *headersMsg:
b.handleHeadersMsg(msg)
case *donePeerMsg:
b.handleDonePeerMsg(candidatePeers, msg.peer)
case getSyncPeerMsg:
msg.reply <- b.syncPeer
case checkConnectBlockMsg:
err := b.blockChain.CheckConnectBlock(msg.block)
msg.reply <- err
case calcNextReqDifficultyMsg:
difficulty, err :=
b.blockChain.CalcNextRequiredDifficulty(
msg.timestamp)
msg.reply <- calcNextReqDifficultyResponse{
difficulty: difficulty,
err: err,
}
case fetchTransactionStoreMsg:
txStore, err := b.blockChain.FetchTransactionStore(msg.tx)
msg.reply <- fetchTransactionStoreResponse{
TxStore: txStore,
err: err,
}
case processBlockMsg:
isOrphan, err := b.blockChain.ProcessBlock(
msg.block, b.server.timeSource,
msg.flags)
if err != nil {
msg.reply <- processBlockResponse{
isOrphan: false,
err: err,
}
}
// Query the db for the latest best block since
// the block that was processed could be on a
// side chain or have caused a reorg.
newestSha, newestHeight, _ := b.server.db.NewestSha()
b.updateChainState(newestSha, newestHeight)
msg.reply <- processBlockResponse{
isOrphan: isOrphan,
err: nil,
}
case isCurrentMsg:
msg.reply <- b.current()
case pauseMsg:
// Wait until the sender unpauses the manager.
<-msg.unpause
default:
bmgrLog.Warnf("Invalid message type in block "+
"handler: %T", msg)
}
case <-b.quit:
break out
}
}
b.wg.Done()
bmgrLog.Trace("Block handler done")
}
// handleNotifyMsg handles notifications from blockchain. It does things such
// as request orphan block parents and relay accepted blocks to connected peers.
func (b *blockManager) handleNotifyMsg(notification *blockchain.Notification) {
switch notification.Type {
// A block has been accepted into the block chain. Relay it to other
// peers.
case blockchain.NTBlockAccepted:
// Don't relay if we are not current. Other peers that are
// current should already know about it.
if !b.current() {
return
}
block, ok := notification.Data.(*btcutil.Block)
if !ok {
bmgrLog.Warnf("Chain accepted notification is not a block.")
break
}
// Generate the inventory vector and relay it.
iv := wire.NewInvVect(wire.InvTypeBlock, block.Sha())
b.server.RelayInventory(iv, nil)
// A block has been connected to the main block chain.
case blockchain.NTBlockConnected:
block, ok := notification.Data.(*btcutil.Block)
if !ok {
bmgrLog.Warnf("Chain connected notification is not a block.")
break
}
// Remove all of the transactions (except the coinbase) in the
// connected block from the transaction pool. Secondly, remove any
// transactions which are now double spends as a result of these
// new transactions. Finally, remove any transaction that is
// no longer an orphan. Note that removing a transaction from
// pool also removes any transactions which depend on it,
// recursively.
for _, tx := range block.Transactions()[1:] {
b.server.txMemPool.RemoveTransaction(tx)
b.server.txMemPool.RemoveDoubleSpends(tx)
b.server.txMemPool.RemoveOrphan(tx.Sha())
b.server.txMemPool.ProcessOrphans(tx.Sha())
}
if r := b.server.rpcServer; r != nil {
// Now that this block is in the blockchain we can mark
// all the transactions (except the coinbase) as no
// longer needing rebroadcasting.
for _, tx := range block.Transactions()[1:] {
iv := wire.NewInvVect(wire.InvTypeTx, tx.Sha())
b.server.RemoveRebroadcastInventory(iv)
}
// Notify registered websocket clients of incoming block.
r.ntfnMgr.NotifyBlockConnected(block)
}
// If we're maintaing the address index, and it is up to date
// then update it based off this new block.
if cfg.AddrIndex && b.server.addrIndexer.IsCaughtUp() {
b.server.addrIndexer.UpdateAddressIndex(block)
}
// A block has been disconnected from the main block chain.
case blockchain.NTBlockDisconnected:
block, ok := notification.Data.(*btcutil.Block)
if !ok {
bmgrLog.Warnf("Chain disconnected notification is not a block.")
break
}
// Reinsert all of the transactions (except the coinbase) into
// the transaction pool.
for _, tx := range block.Transactions()[1:] {
_, err := b.server.txMemPool.MaybeAcceptTransaction(tx,
false, false)
if err != nil {
// Remove the transaction and all transactions
// that depend on it if it wasn't accepted into
// the transaction pool.
b.server.txMemPool.RemoveTransaction(tx)
}
}
// Notify registered websocket clients.
if r := b.server.rpcServer; r != nil {
r.ntfnMgr.NotifyBlockDisconnected(block)
}
}
}
// NewPeer informs the block manager of a newly active peer.
func (b *blockManager) NewPeer(p *peer) {
// Ignore if we are shutting down.
if atomic.LoadInt32(&b.shutdown) != 0 {
return
}
b.msgChan <- &newPeerMsg{peer: p}
}
// QueueTx adds the passed transaction message and peer to the block handling
// queue.
func (b *blockManager) QueueTx(tx *btcutil.Tx, p *peer) {
// Don't accept more transactions if we're shutting down.
if atomic.LoadInt32(&b.shutdown) != 0 {
p.txProcessed <- struct{}{}
return
}
b.msgChan <- &txMsg{tx: tx, peer: p}
}
// QueueBlock adds the passed block message and peer to the block handling queue.
func (b *blockManager) QueueBlock(block *btcutil.Block, p *peer) {
// Don't accept more blocks if we're shutting down.
if atomic.LoadInt32(&b.shutdown) != 0 {
p.blockProcessed <- struct{}{}
return
}
b.msgChan <- &blockMsg{block: block, peer: p}
}
// QueueInv adds the passed inv message and peer to the block handling queue.
func (b *blockManager) QueueInv(inv *wire.MsgInv, p *peer) {
// No channel handling here because peers do not need to block on inv
// messages.
if atomic.LoadInt32(&b.shutdown) != 0 {
return
}
b.msgChan <- &invMsg{inv: inv, peer: p}
}
// QueueHeaders adds the passed headers message and peer to the block handling
// queue.
func (b *blockManager) QueueHeaders(headers *wire.MsgHeaders, p *peer) {
// No channel handling here because peers do not need to block on
// headers messages.
if atomic.LoadInt32(&b.shutdown) != 0 {
return
}
b.msgChan <- &headersMsg{headers: headers, peer: p}
}
// DonePeer informs the blockmanager that a peer has disconnected.
func (b *blockManager) DonePeer(p *peer) {
// Ignore if we are shutting down.
if atomic.LoadInt32(&b.shutdown) != 0 {
return
}
b.msgChan <- &donePeerMsg{peer: p}
}
// Start begins the core block handler which processes block and inv messages.
func (b *blockManager) Start() {
// Already started?
if atomic.AddInt32(&b.started, 1) != 1 {
return
}
bmgrLog.Trace("Starting block manager")
b.wg.Add(1)
go b.blockHandler()
}
// Stop gracefully shuts down the block manager by stopping all asynchronous
// handlers and waiting for them to finish.
func (b *blockManager) Stop() error {
if atomic.AddInt32(&b.shutdown, 1) != 1 {
bmgrLog.Warnf("Block manager is already in the process of " +
"shutting down")
return nil
}
bmgrLog.Infof("Block manager shutting down")
close(b.quit)
b.wg.Wait()
return nil
}
// SyncPeer returns the current sync peer.
func (b *blockManager) SyncPeer() *peer {
reply := make(chan *peer)
b.msgChan <- getSyncPeerMsg{reply: reply}
return <-reply
}
// CheckConnectBlock performs several checks to confirm connecting the passed
// block to the main chain does not violate any rules. This function makes use
// of CheckConnectBlock on an internal instance of a block chain. It is funneled
// through the block manager since btcchain is not safe for concurrent access.
func (b *blockManager) CheckConnectBlock(block *btcutil.Block) error {
reply := make(chan error)
b.msgChan <- checkConnectBlockMsg{block: block, reply: reply}
return <-reply
}
// CalcNextRequiredDifficulty calculates the required difficulty for the next
// block after the current main chain. This function makes use of
// CalcNextRequiredDifficulty on an internal instance of a block chain. It is
// funneled through the block manager since btcchain is not safe for concurrent
// access.
func (b *blockManager) CalcNextRequiredDifficulty(timestamp time.Time) (uint32, error) {
reply := make(chan calcNextReqDifficultyResponse)
b.msgChan <- calcNextReqDifficultyMsg{timestamp: timestamp, reply: reply}
response := <-reply
return response.difficulty, response.err
}
// FetchTransactionStore makes use of FetchTransactionStore on an internal
// instance of a block chain. It is safe for concurrent access.
func (b *blockManager) FetchTransactionStore(tx *btcutil.Tx) (blockchain.TxStore, error) {
reply := make(chan fetchTransactionStoreResponse, 1)
b.msgChan <- fetchTransactionStoreMsg{tx: tx, reply: reply}
response := <-reply
return response.TxStore, response.err
}
// ProcessBlock makes use of ProcessBlock on an internal instance of a block
// chain. It is funneled through the block manager since btcchain is not safe
// for concurrent access.
func (b *blockManager) ProcessBlock(block *btcutil.Block, flags blockchain.BehaviorFlags) (bool, error) {
reply := make(chan processBlockResponse, 1)
b.msgChan <- processBlockMsg{block: block, flags: flags, reply: reply}
response := <-reply
return response.isOrphan, response.err
}
// IsCurrent returns whether or not the block manager believes it is synced with
// the connected peers.
func (b *blockManager) IsCurrent() bool {
reply := make(chan bool)
b.msgChan <- isCurrentMsg{reply: reply}
return <-reply
}
// Pause pauses the block manager until the returned channel is closed.
//
// Note that while paused, all peer and block processing is halted. The
// message sender should avoid pausing the block manager for long durations.
func (b *blockManager) Pause() chan<- struct{} {
c := make(chan struct{})
b.msgChan <- pauseMsg{c}
return c
}
// newBlockManager returns a new bitcoin block manager.
// Use Start to begin processing asynchronous block and inv updates.
func newBlockManager(s *server) (*blockManager, error) {
newestHash, height, err := s.db.NewestSha()
if err != nil {
return nil, err
}
bm := blockManager{
server: s,
requestedTxns: make(map[wire.ShaHash]struct{}),
requestedBlocks: make(map[wire.ShaHash]struct{}),
progressLogger: newBlockProgressLogger("Processed", bmgrLog),
msgChan: make(chan interface{}, cfg.MaxPeers*3),
headerList: list.New(),
quit: make(chan struct{}),
}
bm.progressLogger = newBlockProgressLogger("Processed", bmgrLog)
bm.blockChain = blockchain.New(s.db, s.chainParams, bm.handleNotifyMsg)
bm.blockChain.DisableCheckpoints(cfg.DisableCheckpoints)
if !cfg.DisableCheckpoints {
// Initialize the next checkpoint based on the current height.
bm.nextCheckpoint = bm.findNextHeaderCheckpoint(height)
if bm.nextCheckpoint != nil {
bm.resetHeaderState(newestHash, height)
}
} else {
bmgrLog.Info("Checkpoints are disabled")
}
bmgrLog.Infof("Generating initial block node index. This may " +
"take a while...")
err = bm.blockChain.GenerateInitialIndex()
if err != nil {
return nil, err
}
bmgrLog.Infof("Block index generation complete")
// Initialize the chain state now that the intial block node index has
// been generated.
bm.updateChainState(newestHash, height)
return &bm, nil
}
// removeRegressionDB removes the existing regression test database if running
// in regression test mode and it already exists.
func removeRegressionDB(dbPath string) error {
// Dont do anything if not in regression test mode.
if !cfg.RegressionTest {
return nil
}
// Remove the old regression test database if it already exists.
fi, err := os.Stat(dbPath)
if err == nil {
btcdLog.Infof("Removing regression test database from '%s'", dbPath)
if fi.IsDir() {
err := os.RemoveAll(dbPath)
if err != nil {
return err
}
} else {
err := os.Remove(dbPath)
if err != nil {
return err
}
}
}
return nil
}
// dbPath returns the path to the block database given a database type.
func blockDbPath(dbType string) string {
// The database name is based on the database type.
dbName := blockDbNamePrefix + "_" + dbType
if dbType == "sqlite" {
dbName = dbName + ".db"
}
dbPath := filepath.Join(cfg.DataDir, dbName)
return dbPath
}
// warnMultipeDBs shows a warning if multiple block database types are detected.
// This is not a situation most users want. It is handy for development however
// to support multiple side-by-side databases.
func warnMultipeDBs() {
// This is intentionally not using the known db types which depend
// on the database types compiled into the binary since we want to
// detect legacy db types as well.
dbTypes := []string{"leveldb", "sqlite"}
duplicateDbPaths := make([]string, 0, len(dbTypes)-1)
for _, dbType := range dbTypes {
if dbType == cfg.DbType {
continue
}
// Store db path as a duplicate db if it exists.
dbPath := blockDbPath(dbType)
if fileExists(dbPath) {
duplicateDbPaths = append(duplicateDbPaths, dbPath)
}
}
// Warn if there are extra databases.
if len(duplicateDbPaths) > 0 {
selectedDbPath := blockDbPath(cfg.DbType)
btcdLog.Warnf("WARNING: There are multiple block chain databases "+
"using different database types.\nYou probably don't "+
"want to waste disk space by having more than one.\n"+
"Your current database is located at [%v].\nThe "+
"additional database is located at %v", selectedDbPath,
duplicateDbPaths)
}
}
// setupBlockDB loads (or creates when needed) the block database taking into
// account the selected database backend. It also contains additional logic
// such warning the user if there are multiple databases which consume space on
// the file system and ensuring the regression test database is clean when in
// regression test mode.
func setupBlockDB() (database.Db, error) {
// The memdb backend does not have a file path associated with it, so
// handle it uniquely. We also don't want to worry about the multiple
// database type warnings when running with the memory database.
if cfg.DbType == "memdb" {
btcdLog.Infof("Creating block database in memory.")
db, err := database.CreateDB(cfg.DbType)
if err != nil {
return nil, err
}
return db, nil
}
warnMultipeDBs()
// The database name is based on the database type.
dbPath := blockDbPath(cfg.DbType)
// The regression test is special in that it needs a clean database for
// each run, so remove it now if it already exists.
removeRegressionDB(dbPath)
btcdLog.Infof("Loading block database from '%s'", dbPath)
db, err := database.OpenDB(cfg.DbType, dbPath)
if err != nil {
// Return the error if it's not because the database
// doesn't exist.
if err != database.ErrDbDoesNotExist {
return nil, err
}
// Create the db if it does not exist.
err = os.MkdirAll(cfg.DataDir, 0700)
if err != nil {
return nil, err
}
db, err = database.CreateDB(cfg.DbType, dbPath)
if err != nil {
return nil, err
}
}
return db, nil
}
// loadBlockDB opens the block database and returns a handle to it.
func loadBlockDB() (database.Db, error) {
db, err := setupBlockDB()
if err != nil {
return nil, err
}
// Get the latest block height from the database.
_, height, err := db.NewestSha()
if err != nil {
db.Close()
return nil, err
}
// Insert the appropriate genesis block for the bitcoin network being
// connected to if needed.
if height == -1 {
genesis := btcutil.NewBlock(activeNetParams.GenesisBlock)
_, err := db.InsertBlock(genesis)
if err != nil {
db.Close()
return nil, err
}
btcdLog.Infof("Inserted genesis block %v",
activeNetParams.GenesisHash)
height = 0
}
btcdLog.Infof("Block database loaded with block height %d", height)
return db, nil
}