lbcd/blockchain/chain.go

2032 lines
70 KiB
Go

// Copyright (c) 2013-2018 The btcsuite developers
// Copyright (c) 2015-2018 The Decred developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package blockchain
import (
"container/list"
"fmt"
"sync"
"time"
"github.com/lbryio/lbcd/chaincfg"
"github.com/lbryio/lbcd/chaincfg/chainhash"
"github.com/lbryio/lbcd/database"
"github.com/lbryio/lbcd/txscript"
"github.com/lbryio/lbcd/wire"
btcutil "github.com/lbryio/lbcutil"
"github.com/lbryio/lbcd/claimtrie"
)
const (
// maxOrphanBlocks is the maximum number of orphan blocks that can be
// queued.
maxOrphanBlocks = 100
)
// BlockLocator is used to help locate a specific block. The algorithm for
// building the block locator is to add the hashes in reverse order until
// the genesis block is reached. In order to keep the list of locator hashes
// to a reasonable number of entries, first the most recent previous 12 block
// hashes are added, then the step is doubled each loop iteration to
// exponentially decrease the number of hashes as a function of the distance
// from the block being located.
//
// For example, assume a block chain with a side chain as depicted below:
// genesis -> 1 -> 2 -> ... -> 15 -> 16 -> 17 -> 18
// \-> 16a -> 17a
//
// The block locator for block 17a would be the hashes of blocks:
// [17a 16a 15 14 13 12 11 10 9 8 7 6 4 genesis]
type BlockLocator []*chainhash.Hash
// orphanBlock represents a block that we don't yet have the parent for. It
// is a normal block plus an expiration time to prevent caching the orphan
// forever.
type orphanBlock struct {
block *btcutil.Block
expiration time.Time
}
// BestState houses information about the current best block and other info
// related to the state of the main chain as it exists from the point of view of
// the current best block.
//
// The BestSnapshot method can be used to obtain access to this information
// in a concurrent safe manner and the data will not be changed out from under
// the caller when chain state changes occur as the function name implies.
// However, the returned snapshot must be treated as immutable since it is
// shared by all callers.
type BestState struct {
Hash chainhash.Hash // The hash of the block.
Height int32 // The height of the block.
Bits uint32 // The difficulty bits of the block.
BlockSize uint64 // The size of the block.
BlockWeight uint64 // The weight of the block.
NumTxns uint64 // The number of txns in the block.
TotalTxns uint64 // The total number of txns in the chain.
MedianTime time.Time // Median time as per CalcPastMedianTime.
}
// newBestState returns a new best stats instance for the given parameters.
func newBestState(node *blockNode, blockSize, blockWeight, numTxns,
totalTxns uint64, medianTime time.Time) *BestState {
return &BestState{
Hash: node.hash,
Height: node.height,
Bits: node.bits,
BlockSize: blockSize,
BlockWeight: blockWeight,
NumTxns: numTxns,
TotalTxns: totalTxns,
MedianTime: medianTime,
}
}
// BlockChain provides functions for working with the bitcoin block chain.
// It includes functionality such as rejecting duplicate blocks, ensuring blocks
// follow all rules, orphan handling, checkpoint handling, and best chain
// selection with reorganization.
type BlockChain struct {
// The following fields are set when the instance is created and can't
// be changed afterwards, so there is no need to protect them with a
// separate mutex.
checkpoints []chaincfg.Checkpoint
checkpointsByHeight map[int32]*chaincfg.Checkpoint
db database.DB
chainParams *chaincfg.Params
timeSource MedianTimeSource
sigCache *txscript.SigCache
indexManager IndexManager
hashCache *txscript.HashCache
// The following fields are calculated based upon the provided chain
// parameters. They are also set when the instance is created and
// can't be changed afterwards, so there is no need to protect them with
// a separate mutex.
minRetargetTimespan int64 // target timespan / adjustment factor
maxRetargetTimespan int64 // target timespan * adjustment factor
blocksPerRetarget int32 // target timespan / target time per block
// chainLock protects concurrent access to the vast majority of the
// fields in this struct below this point.
chainLock sync.RWMutex
// notificationSendLock helps us only process one block at a time.
// It's definitely a hack. DCRD has much better structure in this regard.
// Without this you will get an error if you invalidate a block and then generate more right after.
// Taken from https://github.com/gcash/bchd/pull/308
notificationSendLock sync.Mutex
// These fields are related to the memory block index. They both have
// their own locks, however they are often also protected by the chain
// lock to help prevent logic races when blocks are being processed.
//
// index houses the entire block index in memory. The block index is
// a tree-shaped structure.
//
// bestChain tracks the current active chain by making use of an
// efficient chain view into the block index.
index *blockIndex
bestChain *chainView
// These fields are related to handling of orphan blocks. They are
// protected by a combination of the chain lock and the orphan lock.
orphanLock sync.RWMutex
orphans map[chainhash.Hash]*orphanBlock
prevOrphans map[chainhash.Hash][]*orphanBlock
oldestOrphan *orphanBlock
// These fields are related to checkpoint handling. They are protected
// by the chain lock.
nextCheckpoint *chaincfg.Checkpoint
checkpointNode *blockNode
// The state is used as a fairly efficient way to cache information
// about the current best chain state that is returned to callers when
// requested. It operates on the principle of MVCC such that any time a
// new block becomes the best block, the state pointer is replaced with
// a new struct and the old state is left untouched. In this way,
// multiple callers can be pointing to different best chain states.
// This is acceptable for most callers because the state is only being
// queried at a specific point in time.
//
// In addition, some of the fields are stored in the database so the
// chain state can be quickly reconstructed on load.
stateLock sync.RWMutex
stateSnapshot *BestState
// The following caches are used to efficiently keep track of the
// current deployment threshold state of each rule change deployment.
//
// This information is stored in the database so it can be quickly
// reconstructed on load.
//
// warningCaches caches the current deployment threshold state for blocks
// in each of the **possible** deployments. This is used in order to
// detect when new unrecognized rule changes are being voted on and/or
// have been activated such as will be the case when older versions of
// the software are being used
//
// deploymentCaches caches the current deployment threshold state for
// blocks in each of the actively defined deployments.
warningCaches []thresholdStateCache
deploymentCaches []thresholdStateCache
// The following fields are used to determine if certain warnings have
// already been shown.
//
// unknownRulesWarned refers to warnings due to unknown rules being
// activated.
unknownRulesWarned bool
// The notifications field stores a slice of callbacks to be executed on
// certain blockchain events.
notificationsLock sync.RWMutex
notifications []NotificationCallback
claimTrie *claimtrie.ClaimTrie
}
// HaveBlock returns whether or not the chain instance has the block represented
// by the passed hash. This includes checking the various places a block can
// be like part of the main chain, on a side chain, or in the orphan pool.
//
// This function is safe for concurrent access.
func (b *BlockChain) HaveBlock(hash *chainhash.Hash) (bool, error) {
exists, err := b.blockExists(hash)
if err != nil {
return false, err
}
return exists || b.IsKnownOrphan(hash), nil
}
// GetWarnings returns a bool for whether unknownRules
// has been warned.
func (b *BlockChain) GetWarnings() bool {
b.chainLock.RLock()
defer b.chainLock.RUnlock()
return b.unknownRulesWarned
}
// IsKnownOrphan returns whether the passed hash is currently a known orphan.
// Keep in mind that only a limited number of orphans are held onto for a
// limited amount of time, so this function must not be used as an absolute
// way to test if a block is an orphan block. A full block (as opposed to just
// its hash) must be passed to ProcessBlock for that purpose. However, calling
// ProcessBlock with an orphan that already exists results in an error, so this
// function provides a mechanism for a caller to intelligently detect *recent*
// duplicate orphans and react accordingly.
//
// This function is safe for concurrent access.
func (b *BlockChain) IsKnownOrphan(hash *chainhash.Hash) bool {
// Protect concurrent access. Using a read lock only so multiple
// readers can query without blocking each other.
b.orphanLock.RLock()
_, exists := b.orphans[*hash]
b.orphanLock.RUnlock()
return exists
}
// GetOrphanRoot returns the head of the chain for the provided hash from the
// map of orphan blocks.
//
// This function is safe for concurrent access.
func (b *BlockChain) GetOrphanRoot(hash *chainhash.Hash) *chainhash.Hash {
// Protect concurrent access. Using a read lock only so multiple
// readers can query without blocking each other.
b.orphanLock.RLock()
defer b.orphanLock.RUnlock()
// Keep looping while the parent of each orphaned block is
// known and is an orphan itself.
orphanRoot := hash
prevHash := hash
for {
orphan, exists := b.orphans[*prevHash]
if !exists {
break
}
orphanRoot = prevHash
prevHash = &orphan.block.MsgBlock().Header.PrevBlock
}
return orphanRoot
}
// removeOrphanBlock removes the passed orphan block from the orphan pool and
// previous orphan index.
func (b *BlockChain) removeOrphanBlock(orphan *orphanBlock) {
// Protect concurrent access.
b.orphanLock.Lock()
defer b.orphanLock.Unlock()
// Remove the orphan block from the orphan pool.
orphanHash := orphan.block.Hash()
delete(b.orphans, *orphanHash)
// Remove the reference from the previous orphan index too. An indexing
// for loop is intentionally used over a range here as range does not
// reevaluate the slice on each iteration nor does it adjust the index
// for the modified slice.
prevHash := &orphan.block.MsgBlock().Header.PrevBlock
orphans := b.prevOrphans[*prevHash]
for i := 0; i < len(orphans); i++ {
hash := orphans[i].block.Hash()
if hash.IsEqual(orphanHash) {
copy(orphans[i:], orphans[i+1:])
orphans[len(orphans)-1] = nil
orphans = orphans[:len(orphans)-1]
i--
}
}
b.prevOrphans[*prevHash] = orphans
// Remove the map entry altogether if there are no longer any orphans
// which depend on the parent hash.
if len(b.prevOrphans[*prevHash]) == 0 {
delete(b.prevOrphans, *prevHash)
}
}
// addOrphanBlock adds the passed block (which is already determined to be
// an orphan prior calling this function) to the orphan pool. It lazily cleans
// up any expired blocks so a separate cleanup poller doesn't need to be run.
// It also imposes a maximum limit on the number of outstanding orphan
// blocks and will remove the oldest received orphan block if the limit is
// exceeded.
func (b *BlockChain) addOrphanBlock(block *btcutil.Block) {
// Remove expired orphan blocks.
for _, oBlock := range b.orphans {
if time.Now().After(oBlock.expiration) {
b.removeOrphanBlock(oBlock)
continue
}
// Update the oldest orphan block pointer so it can be discarded
// in case the orphan pool fills up.
if b.oldestOrphan == nil || oBlock.expiration.Before(b.oldestOrphan.expiration) {
b.oldestOrphan = oBlock
}
}
// Limit orphan blocks to prevent memory exhaustion.
if len(b.orphans)+1 > maxOrphanBlocks {
// Remove the oldest orphan to make room for the new one.
b.removeOrphanBlock(b.oldestOrphan)
b.oldestOrphan = nil
}
// Protect concurrent access. This is intentionally done here instead
// of near the top since removeOrphanBlock does its own locking and
// the range iterator is not invalidated by removing map entries.
b.orphanLock.Lock()
defer b.orphanLock.Unlock()
// Insert the block into the orphan map with an expiration time
// 1 hour from now.
expiration := time.Now().Add(time.Hour)
oBlock := &orphanBlock{
block: block,
expiration: expiration,
}
b.orphans[*block.Hash()] = oBlock
// Add to previous hash lookup index for faster dependency lookups.
prevHash := &block.MsgBlock().Header.PrevBlock
b.prevOrphans[*prevHash] = append(b.prevOrphans[*prevHash], oBlock)
}
// SequenceLock represents the converted relative lock-time in seconds, and
// absolute block-height for a transaction input's relative lock-times.
// According to SequenceLock, after the referenced input has been confirmed
// within a block, a transaction spending that input can be included into a
// block either after 'seconds' (according to past median time), or once the
// 'BlockHeight' has been reached.
type SequenceLock struct {
Seconds int64
BlockHeight int32
}
// CalcSequenceLock computes a relative lock-time SequenceLock for the passed
// transaction using the passed UtxoViewpoint to obtain the past median time
// for blocks in which the referenced inputs of the transactions were included
// within. The generated SequenceLock lock can be used in conjunction with a
// block height, and adjusted median block time to determine if all the inputs
// referenced within a transaction have reached sufficient maturity allowing
// the candidate transaction to be included in a block.
//
// This function is safe for concurrent access.
func (b *BlockChain) CalcSequenceLock(tx *btcutil.Tx, utxoView *UtxoViewpoint, mempool bool) (*SequenceLock, error) {
b.chainLock.Lock()
defer b.chainLock.Unlock()
return b.calcSequenceLock(b.bestChain.Tip(), tx, utxoView, mempool)
}
// calcSequenceLock computes the relative lock-times for the passed
// transaction. See the exported version, CalcSequenceLock for further details.
//
// This function MUST be called with the chain state lock held (for writes).
func (b *BlockChain) calcSequenceLock(node *blockNode, tx *btcutil.Tx, utxoView *UtxoViewpoint, mempool bool) (*SequenceLock, error) {
// A value of -1 for each relative lock type represents a relative time
// lock value that will allow a transaction to be included in a block
// at any given height or time. This value is returned as the relative
// lock time in the case that BIP 68 is disabled, or has not yet been
// activated.
sequenceLock := &SequenceLock{Seconds: -1, BlockHeight: -1}
// The sequence locks semantics are always active for transactions
// within the mempool.
csvSoftforkActive := mempool
// If we're performing block validation, then we need to query the BIP9
// state.
if !csvSoftforkActive {
// Obtain the latest BIP9 version bits state for the
// CSV-package soft-fork deployment. The adherence of sequence
// locks depends on the current soft-fork state.
csvState, err := b.deploymentState(node.parent, chaincfg.DeploymentCSV)
if err != nil {
return nil, err
}
csvSoftforkActive = csvState == ThresholdActive
}
// If the transaction's version is less than 2, and BIP 68 has not yet
// been activated then sequence locks are disabled. Additionally,
// sequence locks don't apply to coinbase transactions Therefore, we
// return sequence lock values of -1 indicating that this transaction
// can be included within a block at any given height or time.
mTx := tx.MsgTx()
sequenceLockActive := mTx.Version >= 2 && csvSoftforkActive
if !sequenceLockActive || IsCoinBase(tx) {
return sequenceLock, nil
}
// Grab the next height from the PoV of the passed blockNode to use for
// inputs present in the mempool.
nextHeight := node.height + 1
for txInIndex, txIn := range mTx.TxIn {
utxo := utxoView.LookupEntry(txIn.PreviousOutPoint)
if utxo == nil {
str := fmt.Sprintf("output %v referenced from "+
"transaction %s:%d either does not exist or "+
"has already been spent", txIn.PreviousOutPoint,
tx.Hash(), txInIndex)
return sequenceLock, ruleError(ErrMissingTxOut, str)
}
// If the input height is set to the mempool height, then we
// assume the transaction makes it into the next block when
// evaluating its sequence blocks.
inputHeight := utxo.BlockHeight()
if inputHeight == 0x7fffffff {
inputHeight = nextHeight
}
// Given a sequence number, we apply the relative time lock
// mask in order to obtain the time lock delta required before
// this input can be spent.
sequenceNum := txIn.Sequence
relativeLock := int64(sequenceNum & wire.SequenceLockTimeMask)
switch {
// Relative time locks are disabled for this input, so we can
// skip any further calculation.
case sequenceNum&wire.SequenceLockTimeDisabled == wire.SequenceLockTimeDisabled:
continue
case sequenceNum&wire.SequenceLockTimeIsSeconds == wire.SequenceLockTimeIsSeconds:
// This input requires a relative time lock expressed
// in seconds before it can be spent. Therefore, we
// need to query for the block prior to the one in
// which this input was included within so we can
// compute the past median time for the block prior to
// the one which included this referenced output.
prevInputHeight := inputHeight - 1
if prevInputHeight < 0 {
prevInputHeight = 0
}
blockNode := node.Ancestor(prevInputHeight)
medianTime := blockNode.CalcPastMedianTime()
// Time based relative time-locks as defined by BIP 68
// have a time granularity of RelativeLockSeconds, so
// we shift left by this amount to convert to the
// proper relative time-lock. We also subtract one from
// the relative lock to maintain the original lockTime
// semantics.
timeLockSeconds := (relativeLock << wire.SequenceLockTimeGranularity) - 1
timeLock := medianTime.Unix() + timeLockSeconds
if timeLock > sequenceLock.Seconds {
sequenceLock.Seconds = timeLock
}
default:
// The relative lock-time for this input is expressed
// in blocks so we calculate the relative offset from
// the input's height as its converted absolute
// lock-time. We subtract one from the relative lock in
// order to maintain the original lockTime semantics.
blockHeight := inputHeight + int32(relativeLock-1)
if blockHeight > sequenceLock.BlockHeight {
sequenceLock.BlockHeight = blockHeight
}
}
}
return sequenceLock, nil
}
// LockTimeToSequence converts the passed relative locktime to a sequence
// number in accordance to BIP-68.
// See: https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
// * (Compatibility)
func LockTimeToSequence(isSeconds bool, locktime uint32) uint32 {
// If we're expressing the relative lock time in blocks, then the
// corresponding sequence number is simply the desired input age.
if !isSeconds {
return locktime
}
// Set the 22nd bit which indicates the lock time is in seconds, then
// shift the locktime over by 9 since the time granularity is in
// 512-second intervals (2^9). This results in a max lock-time of
// 33,553,920 seconds, or 1.1 years.
return wire.SequenceLockTimeIsSeconds |
locktime>>wire.SequenceLockTimeGranularity
}
// getReorganizeNodes finds the fork point between the main chain and the passed
// node and returns a list of block nodes that would need to be detached from
// the main chain and a list of block nodes that would need to be attached to
// the fork point (which will be the end of the main chain after detaching the
// returned list of block nodes) in order to reorganize the chain such that the
// passed node is the new end of the main chain. The lists will be empty if the
// passed node is not on a side chain.
//
// This function may modify node statuses in the block index without flushing.
//
// This function MUST be called with the chain state lock held (for reads).
func (b *BlockChain) getReorganizeNodes(node *blockNode) (*list.List, *list.List) {
attachNodes := list.New()
detachNodes := list.New()
// Do not reorganize to a known invalid chain. Ancestors deeper than the
// direct parent are checked below but this is a quick check before doing
// more unnecessary work.
if b.index.NodeStatus(node.parent).KnownInvalid() {
b.index.SetStatusFlags(node, statusInvalidAncestor)
return detachNodes, attachNodes
}
// Find the fork point (if any) adding each block to the list of nodes
// to attach to the main tree. Push them onto the list in reverse order
// so they are attached in the appropriate order when iterating the list
// later.
forkNode := b.bestChain.FindFork(node)
invalidChain := false
for n := node; n != nil && n != forkNode; n = n.parent {
if b.index.NodeStatus(n).KnownInvalid() {
invalidChain = true
break
}
attachNodes.PushFront(n)
}
// If any of the node's ancestors are invalid, unwind attachNodes, marking
// each one as invalid for future reference.
if invalidChain {
var next *list.Element
for e := attachNodes.Front(); e != nil; e = next {
next = e.Next()
n := attachNodes.Remove(e).(*blockNode)
b.index.SetStatusFlags(n, statusInvalidAncestor)
}
return detachNodes, attachNodes
}
// Start from the end of the main chain and work backwards until the
// common ancestor adding each block to the list of nodes to detach from
// the main chain.
for n := b.bestChain.Tip(); n != nil && n != forkNode; n = n.parent {
detachNodes.PushBack(n)
}
return detachNodes, attachNodes
}
// connectBlock handles connecting the passed node/block to the end of the main
// (best) chain.
//
// This passed utxo view must have all referenced txos the block spends marked
// as spent and all of the new txos the block creates added to it. In addition,
// the passed stxos slice must be populated with all of the information for the
// spent txos. This approach is used because the connection validation that
// must happen prior to calling this function requires the same details, so
// it would be inefficient to repeat it.
//
// This function MUST be called with the chain state lock held (for writes).
func (b *BlockChain) connectBlock(node *blockNode, block *btcutil.Block,
view *UtxoViewpoint, stxos []SpentTxOut) error {
// Make sure it's extending the end of the best chain.
prevHash := &block.MsgBlock().Header.PrevBlock
if !prevHash.IsEqual(&b.bestChain.Tip().hash) {
return AssertError("connectBlock must be called with a block " +
"that extends the main chain")
}
// Sanity check the correct number of stxos are provided.
if len(stxos) != countSpentOutputs(block) {
return AssertError("connectBlock called with inconsistent " +
"spent transaction out information")
}
// No warnings about unknown rules until the chain is current.
current := b.isCurrent()
if current {
// Warn if any unknown new rules are either about to activate or
// have already been activated.
if err := b.warnUnknownRuleActivations(node); err != nil {
return err
}
}
// Handle LBRY Claim Scripts
if b.claimTrie != nil {
shouldFlush := current && b.chainParams.Net != wire.TestNet
if err := b.ParseClaimScripts(block, node, view, shouldFlush); err != nil {
return ruleError(ErrBadClaimTrie, err.Error())
}
}
// Write any block status changes to DB before updating best state.
err := b.index.flushToDB()
if err != nil {
return err
}
// Generate a new best state snapshot that will be used to update the
// database and later memory if all database updates are successful.
b.stateLock.RLock()
curTotalTxns := b.stateSnapshot.TotalTxns
b.stateLock.RUnlock()
numTxns := uint64(len(block.MsgBlock().Transactions))
blockSize := uint64(block.MsgBlock().SerializeSize())
blockWeight := uint64(GetBlockWeight(block))
state := newBestState(node, blockSize, blockWeight, numTxns,
curTotalTxns+numTxns, node.CalcPastMedianTime())
// Atomically insert info into the database.
err = b.db.Update(func(dbTx database.Tx) error {
// Update best block state.
err := dbPutBestState(dbTx, state, node.workSum)
if err != nil {
return err
}
// Add the block hash and height to the block index which tracks
// the main chain.
err = dbPutBlockIndex(dbTx, block.Hash(), node.height)
if err != nil {
return err
}
// Update the utxo set using the state of the utxo view. This
// entails removing all of the utxos spent and adding the new
// ones created by the block.
err = dbPutUtxoView(dbTx, view)
if err != nil {
return err
}
// Update the transaction spend journal by adding a record for
// the block that contains all txos spent by it.
err = dbPutSpendJournalEntry(dbTx, block.Hash(), stxos)
if err != nil {
return err
}
// Allow the index manager to call each of the currently active
// optional indexes with the block being connected so they can
// update themselves accordingly.
if b.indexManager != nil {
err := b.indexManager.ConnectBlock(dbTx, block, stxos)
if err != nil {
return err
}
}
return nil
})
if err != nil {
return err
}
// Prune fully spent entries and mark all entries in the view unmodified
// now that the modifications have been committed to the database.
view.commit()
// This node is now the end of the best chain.
b.bestChain.SetTip(node)
// Update the state for the best block. Notice how this replaces the
// entire struct instead of updating the existing one. This effectively
// allows the old version to act as a snapshot which callers can use
// freely without needing to hold a lock for the duration. See the
// comments on the state variable for more details.
b.stateLock.Lock()
b.stateSnapshot = state
b.stateLock.Unlock()
// Notify the caller that the block was connected to the main chain.
// The caller would typically want to react with actions such as
// updating wallets.
b.notificationSendLock.Lock()
defer b.notificationSendLock.Unlock()
b.chainLock.Unlock()
defer b.chainLock.Lock()
b.sendNotification(NTBlockConnected, block)
return nil
}
// disconnectBlock handles disconnecting the passed node/block from the end of
// the main (best) chain.
//
// This function MUST be called with the chain state lock held (for writes).
func (b *BlockChain) disconnectBlock(node *blockNode, block *btcutil.Block, view *UtxoViewpoint) error {
// Make sure the node being disconnected is the end of the best chain.
if !node.hash.IsEqual(&b.bestChain.Tip().hash) {
return AssertError("disconnectBlock must be called with the " +
"block at the end of the main chain")
}
// Load the previous block since some details for it are needed below.
prevNode := node.parent
var prevBlock *btcutil.Block
err := b.db.View(func(dbTx database.Tx) error {
var err error
prevBlock, err = dbFetchBlockByNode(dbTx, prevNode)
return err
})
if err != nil {
return err
}
// Write any block status changes to DB before updating best state.
err = b.index.flushToDB()
if err != nil {
return err
}
// Generate a new best state snapshot that will be used to update the
// database and later memory if all database updates are successful.
b.stateLock.RLock()
curTotalTxns := b.stateSnapshot.TotalTxns
b.stateLock.RUnlock()
numTxns := uint64(len(prevBlock.MsgBlock().Transactions))
blockSize := uint64(prevBlock.MsgBlock().SerializeSize())
blockWeight := uint64(GetBlockWeight(prevBlock))
newTotalTxns := curTotalTxns - uint64(len(block.MsgBlock().Transactions))
state := newBestState(prevNode, blockSize, blockWeight, numTxns,
newTotalTxns, prevNode.CalcPastMedianTime())
err = b.db.Update(func(dbTx database.Tx) error {
// Update best block state.
err := dbPutBestState(dbTx, state, node.workSum)
if err != nil {
return err
}
// Remove the block hash and height from the block index which
// tracks the main chain.
err = dbRemoveBlockIndex(dbTx, block.Hash(), node.height)
if err != nil {
return err
}
// Update the utxo set using the state of the utxo view. This
// entails restoring all of the utxos spent and removing the new
// ones created by the block.
err = dbPutUtxoView(dbTx, view)
if err != nil {
return err
}
// Before we delete the spend journal entry for this back,
// we'll fetch it as is so the indexers can utilize if needed.
stxos, err := dbFetchSpendJournalEntry(dbTx, block)
if err != nil {
return err
}
// Update the transaction spend journal by removing the record
// that contains all txos spent by the block.
err = dbRemoveSpendJournalEntry(dbTx, block.Hash())
if err != nil {
return err
}
// Allow the index manager to call each of the currently active
// optional indexes with the block being disconnected so they
// can update themselves accordingly.
if b.indexManager != nil {
err := b.indexManager.DisconnectBlock(dbTx, block, stxos)
if err != nil {
return err
}
}
return nil
})
if err != nil {
return err
}
if b.claimTrie != nil {
if err = b.claimTrie.ResetHeight(node.parent.height); err != nil {
return err
}
}
// Prune fully spent entries and mark all entries in the view unmodified
// now that the modifications have been committed to the database.
view.commit()
// This node's parent is now the end of the best chain.
b.bestChain.SetTip(node.parent)
// Update the state for the best block. Notice how this replaces the
// entire struct instead of updating the existing one. This effectively
// allows the old version to act as a snapshot which callers can use
// freely without needing to hold a lock for the duration. See the
// comments on the state variable for more details.
b.stateLock.Lock()
b.stateSnapshot = state
b.stateLock.Unlock()
// Notify the caller that the block was disconnected from the main
// chain. The caller would typically want to react with actions such as
// updating wallets.
b.notificationSendLock.Lock()
defer b.notificationSendLock.Unlock()
b.chainLock.Unlock()
defer b.chainLock.Lock()
b.sendNotification(NTBlockDisconnected, block)
return nil
}
// countSpentOutputs returns the number of utxos the passed block spends.
func countSpentOutputs(block *btcutil.Block) int {
// Exclude the coinbase transaction since it can't spend anything.
var numSpent int
for _, tx := range block.Transactions()[1:] {
numSpent += len(tx.MsgTx().TxIn)
}
return numSpent
}
// reorganizeChain reorganizes the block chain by disconnecting the nodes in the
// detachNodes list and connecting the nodes in the attach list. It expects
// that the lists are already in the correct order and are in sync with the
// end of the current best chain. Specifically, nodes that are being
// disconnected must be in reverse order (think of popping them off the end of
// the chain) and nodes the are being attached must be in forwards order
// (think pushing them onto the end of the chain).
//
// This function may modify node statuses in the block index without flushing.
//
// This function MUST be called with the chain state lock held (for writes).
func (b *BlockChain) reorganizeChain(detachNodes, attachNodes *list.List) error {
// Nothing to do if no reorganize nodes were provided.
if detachNodes.Len() == 0 && attachNodes.Len() == 0 {
return nil
}
// Ensure the provided nodes match the current best chain.
tip := b.bestChain.Tip()
if detachNodes.Len() != 0 {
firstDetachNode := detachNodes.Front().Value.(*blockNode)
if firstDetachNode.hash != tip.hash {
return AssertError(fmt.Sprintf("reorganize nodes to detach are "+
"not for the current best chain -- first detach node %v, "+
"current chain %v", &firstDetachNode.hash, &tip.hash))
}
}
// Ensure the provided nodes are for the same fork point.
if attachNodes.Len() != 0 && detachNodes.Len() != 0 {
firstAttachNode := attachNodes.Front().Value.(*blockNode)
lastDetachNode := detachNodes.Back().Value.(*blockNode)
if firstAttachNode.parent.hash != lastDetachNode.parent.hash {
return AssertError(fmt.Sprintf("reorganize nodes do not have the "+
"same fork point -- first attach parent %v, last detach "+
"parent %v", &firstAttachNode.parent.hash,
&lastDetachNode.parent.hash))
}
}
// Track the old and new best chains heads.
oldBest := tip
newBest := tip
// All of the blocks to detach and related spend journal entries needed
// to unspend transaction outputs in the blocks being disconnected must
// be loaded from the database during the reorg check phase below and
// then they are needed again when doing the actual database updates.
// Rather than doing two loads, cache the loaded data into these slices.
detachBlocks := make([]*btcutil.Block, 0, detachNodes.Len())
detachSpentTxOuts := make([][]SpentTxOut, 0, detachNodes.Len())
attachBlocks := make([]*btcutil.Block, 0, attachNodes.Len())
// Disconnect all of the blocks back to the point of the fork. This
// entails loading the blocks and their associated spent txos from the
// database and using that information to unspend all of the spent txos
// and remove the utxos created by the blocks.
view := NewUtxoViewpoint()
view.SetBestHash(&oldBest.hash)
for e := detachNodes.Front(); e != nil; e = e.Next() {
n := e.Value.(*blockNode)
var block *btcutil.Block
err := b.db.View(func(dbTx database.Tx) error {
var err error
block, err = dbFetchBlockByNode(dbTx, n)
return err
})
if err != nil {
return err
}
if n.hash != *block.Hash() {
return AssertError(fmt.Sprintf("detach block node hash %v (height "+
"%v) does not match previous parent block hash %v", &n.hash,
n.height, block.Hash()))
}
// Load all of the utxos referenced by the block that aren't
// already in the view.
err = view.fetchInputUtxos(b.db, block)
if err != nil {
return err
}
// Load all of the spent txos for the block from the spend
// journal.
var stxos []SpentTxOut
err = b.db.View(func(dbTx database.Tx) error {
stxos, err = dbFetchSpendJournalEntry(dbTx, block)
return err
})
if err != nil {
return err
}
// Store the loaded block and spend journal entry for later.
detachBlocks = append(detachBlocks, block)
detachSpentTxOuts = append(detachSpentTxOuts, stxos)
err = view.disconnectTransactions(b.db, block, stxos)
if err != nil {
return err
}
newBest = n.parent
}
// Set the fork point only if there are nodes to attach since otherwise
// blocks are only being disconnected and thus there is no fork point.
var forkNode *blockNode
if attachNodes.Len() > 0 {
forkNode = newBest
}
// Perform several checks to verify each block that needs to be attached
// to the main chain can be connected without violating any rules and
// without actually connecting the block.
//
// NOTE: These checks could be done directly when connecting a block,
// however the downside to that approach is that if any of these checks
// fail after disconnecting some blocks or attaching others, all of the
// operations have to be rolled back to get the chain back into the
// state it was before the rule violation (or other failure). There are
// at least a couple of ways accomplish that rollback, but both involve
// tweaking the chain and/or database. This approach catches these
// issues before ever modifying the chain.
for e := attachNodes.Front(); e != nil; e = e.Next() {
n := e.Value.(*blockNode)
var block *btcutil.Block
err := b.db.View(func(dbTx database.Tx) error {
var err error
block, err = dbFetchBlockByNode(dbTx, n)
return err
})
if err != nil {
return err
}
// Store the loaded block for later.
attachBlocks = append(attachBlocks, block)
// Skip checks if node has already been fully validated. Although
// checkConnectBlock gets skipped, we still need to update the UTXO
// view.
if b.index.NodeStatus(n).KnownValid() {
err = view.fetchInputUtxos(b.db, block)
if err != nil {
return err
}
err = view.connectTransactions(block, nil)
if err != nil {
return err
}
newBest = n
continue
}
// Notice the spent txout details are not requested here and
// thus will not be generated. This is done because the state
// is not being immediately written to the database, so it is
// not needed.
//
// In the case the block is determined to be invalid due to a
// rule violation, mark it as invalid and mark all of its
// descendants as having an invalid ancestor.
err = b.checkConnectBlock(n, block, view, nil)
if err != nil {
if _, ok := err.(RuleError); ok {
b.index.UnsetStatusFlags(n, statusValid)
b.index.SetStatusFlags(n, statusValidateFailed)
for de := e.Next(); de != nil; de = de.Next() {
dn := de.Value.(*blockNode)
b.index.SetStatusFlags(dn, statusInvalidAncestor)
}
}
return err
}
b.index.SetStatusFlags(n, statusValid)
newBest = n
}
// Reset the view for the actual connection code below. This is
// required because the view was previously modified when checking if
// the reorg would be successful and the connection code requires the
// view to be valid from the viewpoint of each block being connected or
// disconnected.
view = NewUtxoViewpoint()
view.SetBestHash(&b.bestChain.Tip().hash)
// Disconnect blocks from the main chain.
for i, e := 0, detachNodes.Front(); e != nil; i, e = i+1, e.Next() {
n := e.Value.(*blockNode)
block := detachBlocks[i]
// Load all of the utxos referenced by the block that aren't
// already in the view.
err := view.fetchInputUtxos(b.db, block)
if err != nil {
return err
}
// Update the view to unspend all of the spent txos and remove
// the utxos created by the block.
err = view.disconnectTransactions(b.db, block,
detachSpentTxOuts[i])
if err != nil {
return err
}
// Update the database and chain state.
err = b.disconnectBlock(n, block, view)
if err != nil {
return err
}
}
// Connect the new best chain blocks.
for i, e := 0, attachNodes.Front(); e != nil; i, e = i+1, e.Next() {
n := e.Value.(*blockNode)
block := attachBlocks[i]
// Load all of the utxos referenced by the block that aren't
// already in the view.
err := view.fetchInputUtxos(b.db, block)
if err != nil {
return err
}
// Update the view to mark all utxos referenced by the block
// as spent and add all transactions being created by this block
// to it. Also, provide an stxo slice so the spent txout
// details are generated.
stxos := make([]SpentTxOut, 0, countSpentOutputs(block))
err = view.connectTransactions(block, &stxos)
if err != nil {
return err
}
// Update the database and chain state.
err = b.connectBlock(n, block, view, stxos)
if err != nil {
return err
}
}
// Log the point where the chain forked and old and new best chain
// heads.
if forkNode != nil {
log.Infof("REORGANIZE: Chain forks at %v (height %v)", forkNode.hash,
forkNode.height)
}
log.Infof("REORGANIZE: Old best chain head was %v (height %v)",
&oldBest.hash, oldBest.height)
log.Infof("REORGANIZE: New best chain head is %v (height %v)",
newBest.hash, newBest.height)
return nil
}
// connectBestChain handles connecting the passed block to the chain while
// respecting proper chain selection according to the chain with the most
// proof of work. In the typical case, the new block simply extends the main
// chain. However, it may also be extending (or creating) a side chain (fork)
// which may or may not end up becoming the main chain depending on which fork
// cumulatively has the most proof of work. It returns whether or not the block
// ended up on the main chain (either due to extending the main chain or causing
// a reorganization to become the main chain).
//
// The flags modify the behavior of this function as follows:
// - BFFastAdd: Avoids several expensive transaction validation operations.
// This is useful when using checkpoints.
//
// This function MUST be called with the chain state lock held (for writes).
func (b *BlockChain) connectBestChain(node *blockNode, block *btcutil.Block, flags BehaviorFlags) (bool, error) {
fastAdd := flags&BFFastAdd == BFFastAdd
flushIndexState := func() {
// Intentionally ignore errors writing updated node status to DB. If
// it fails to write, it's not the end of the world. If the block is
// valid, we flush in connectBlock and if the block is invalid, the
// worst that can happen is we revalidate the block after a restart.
if writeErr := b.index.flushToDB(); writeErr != nil {
log.Warnf("Error flushing block index changes to disk: %v",
writeErr)
}
}
// We are extending the main (best) chain with a new block. This is the
// most common case.
parentHash := &block.MsgBlock().Header.PrevBlock
if parentHash.IsEqual(&b.bestChain.Tip().hash) {
// Skip checks if node has already been fully validated.
fastAdd = fastAdd || b.index.NodeStatus(node).KnownValid()
// Perform several checks to verify the block can be connected
// to the main chain without violating any rules and without
// actually connecting the block.
view := NewUtxoViewpoint()
view.SetBestHash(parentHash)
stxos := make([]SpentTxOut, 0, countSpentOutputs(block))
if !fastAdd {
err := b.checkConnectBlock(node, block, view, &stxos)
if err == nil {
b.index.SetStatusFlags(node, statusValid)
} else if _, ok := err.(RuleError); ok {
b.index.UnsetStatusFlags(node, statusValid)
b.index.SetStatusFlags(node, statusValidateFailed)
} else {
return false, err
}
flushIndexState()
if err != nil {
return false, err
}
}
// In the fast add case the code to check the block connection
// was skipped, so the utxo view needs to load the referenced
// utxos, spend them, and add the new utxos being created by
// this block.
if fastAdd {
err := view.fetchInputUtxos(b.db, block)
if err != nil {
return false, err
}
err = view.connectTransactions(block, &stxos)
if err != nil {
return false, err
}
}
// Connect the block to the main chain.
err := b.connectBlock(node, block, view, stxos)
if err != nil {
// If we got hit with a rule error, then we'll mark
// that status of the block as invalid and flush the
// index state to disk before returning with the error.
if _, ok := err.(RuleError); ok {
b.index.UnsetStatusFlags(node, statusValid)
b.index.SetStatusFlags(
node, statusValidateFailed,
)
}
flushIndexState()
return false, err
}
// If this is fast add, or this block node isn't yet marked as
// valid, then we'll update its status and flush the state to
// disk again.
if fastAdd || !b.index.NodeStatus(node).KnownValid() {
b.index.SetStatusFlags(node, statusValid)
flushIndexState()
}
return true, nil
}
if fastAdd {
log.Warnf("fastAdd set in the side chain case? %v\n",
block.Hash())
}
// We're extending (or creating) a side chain, but the cumulative
// work for this new side chain is not enough to make it the new chain.
if node.workSum.Cmp(b.bestChain.Tip().workSum) <= 0 {
// Log information about how the block is forking the chain.
fork := b.bestChain.FindFork(node)
if fork.hash.IsEqual(parentHash) {
log.Infof("FORK: Block %v forks the chain at height %d"+
"/block %v, but does not cause a reorganize",
node.hash, fork.height, fork.hash)
} else {
log.Infof("EXTEND FORK: Block %v extends a side chain "+
"which forks the chain at height %d/block %v",
node.hash, fork.height, fork.hash)
}
return false, nil
}
// We're extending (or creating) a side chain and the cumulative work
// for this new side chain is more than the old best chain, so this side
// chain needs to become the main chain. In order to accomplish that,
// find the common ancestor of both sides of the fork, disconnect the
// blocks that form the (now) old fork from the main chain, and attach
// the blocks that form the new chain to the main chain starting at the
// common ancenstor (the point where the chain forked).
detachNodes, attachNodes := b.getReorganizeNodes(node)
// Reorganize the chain.
log.Infof("REORGANIZE: Block %v is causing a reorganize.", node.hash)
err := b.reorganizeChain(detachNodes, attachNodes)
// Either getReorganizeNodes or reorganizeChain could have made unsaved
// changes to the block index, so flush regardless of whether there was an
// error. The index would only be dirty if the block failed to connect, so
// we can ignore any errors writing.
if writeErr := b.index.flushToDB(); writeErr != nil {
log.Warnf("Error flushing block index changes to disk: %v", writeErr)
}
return err == nil, err
}
// isCurrent returns whether or not the chain believes it is current. Several
// factors are used to guess, but the key factors that allow the chain to
// believe it is current are:
// - Latest block height is after the latest checkpoint (if enabled)
// - Latest block has a timestamp newer than ~6 hours ago (as LBRY block time is one fourth of bitcoin)
//
// This function MUST be called with the chain state lock held (for reads).
func (b *BlockChain) isCurrent() bool {
// Not current if the latest main (best) chain height is before the
// latest known good checkpoint (when checkpoints are enabled).
checkpoint := b.LatestCheckpoint()
if checkpoint != nil && b.bestChain.Tip().height < checkpoint.Height {
return false
}
// Not current if the latest best block has a timestamp before 7 hours
// ago.
//
// The chain appears to be current if none of the checks reported
// otherwise.
hours := b.timeSource.AdjustedTime().Add(-7 * time.Hour).Unix()
return b.bestChain.Tip().timestamp >= hours
}
// IsCurrent returns whether or not the chain believes it is current. Several
// factors are used to guess, but the key factors that allow the chain to
// believe it is current are:
// - Latest block height is after the latest checkpoint (if enabled)
// - Latest block has a timestamp newer than 24 hours ago
//
// This function is safe for concurrent access.
func (b *BlockChain) IsCurrent() bool {
b.chainLock.RLock()
defer b.chainLock.RUnlock()
return b.isCurrent()
}
// BestSnapshot returns information about the current best chain block and
// related state as of the current point in time. The returned instance must be
// treated as immutable since it is shared by all callers.
//
// This function is safe for concurrent access.
func (b *BlockChain) BestSnapshot() *BestState {
b.stateLock.RLock()
snapshot := b.stateSnapshot
b.stateLock.RUnlock()
return snapshot
}
// HeaderByHash returns the block header identified by the given hash or an
// error if it doesn't exist. Note that this will return headers from both the
// main and side chains.
func (b *BlockChain) HeaderByHash(hash *chainhash.Hash) (wire.BlockHeader, error) {
node := b.index.LookupNode(hash)
if node == nil {
err := fmt.Errorf("block %s is not known", hash)
return wire.BlockHeader{}, err
}
return node.Header(), nil
}
// MainChainHasBlock returns whether or not the block with the given hash is in
// the main chain.
//
// This function is safe for concurrent access.
func (b *BlockChain) MainChainHasBlock(hash *chainhash.Hash) bool {
node := b.index.LookupNode(hash)
return node != nil && b.bestChain.Contains(node)
}
// BlockLocatorFromHash returns a block locator for the passed block hash.
// See BlockLocator for details on the algorithm used to create a block locator.
//
// In addition to the general algorithm referenced above, this function will
// return the block locator for the latest known tip of the main (best) chain if
// the passed hash is not currently known.
//
// This function is safe for concurrent access.
func (b *BlockChain) BlockLocatorFromHash(hash *chainhash.Hash) BlockLocator {
b.chainLock.RLock()
node := b.index.LookupNode(hash)
locator := b.bestChain.blockLocator(node)
b.chainLock.RUnlock()
return locator
}
// LatestBlockLocator returns a block locator for the latest known tip of the
// main (best) chain.
//
// This function is safe for concurrent access.
func (b *BlockChain) LatestBlockLocator() (BlockLocator, error) {
b.chainLock.RLock()
locator := b.bestChain.BlockLocator(nil)
b.chainLock.RUnlock()
return locator, nil
}
// BlockHeightByHash returns the height of the block with the given hash in the
// main chain.
//
// This function is safe for concurrent access.
func (b *BlockChain) BlockHeightByHash(hash *chainhash.Hash) (int32, error) {
node := b.index.LookupNode(hash)
if node == nil || !b.bestChain.Contains(node) {
str := fmt.Sprintf("block %s is not in the main chain", hash)
return 0, errNotInMainChain(str)
}
return node.height, nil
}
// BlockHashByHeight returns the hash of the block at the given height in the
// main chain.
//
// This function is safe for concurrent access.
func (b *BlockChain) BlockHashByHeight(blockHeight int32) (*chainhash.Hash, error) {
node := b.bestChain.NodeByHeight(blockHeight)
if node == nil {
str := fmt.Sprintf("no block at height %d exists", blockHeight)
return nil, errNotInMainChain(str)
}
return &node.hash, nil
}
// HeightRange returns a range of block hashes for the given start and end
// heights. It is inclusive of the start height and exclusive of the end
// height. The end height will be limited to the current main chain height.
//
// This function is safe for concurrent access.
func (b *BlockChain) HeightRange(startHeight, endHeight int32) ([]chainhash.Hash, error) {
// Ensure requested heights are sane.
if startHeight < 0 {
return nil, fmt.Errorf("start height of fetch range must not "+
"be less than zero - got %d", startHeight)
}
if endHeight < startHeight {
return nil, fmt.Errorf("end height of fetch range must not "+
"be less than the start height - got start %d, end %d",
startHeight, endHeight)
}
// There is nothing to do when the start and end heights are the same,
// so return now to avoid the chain view lock.
if startHeight == endHeight {
return nil, nil
}
// Grab a lock on the chain view to prevent it from changing due to a
// reorg while building the hashes.
b.bestChain.mtx.Lock()
defer b.bestChain.mtx.Unlock()
// When the requested start height is after the most recent best chain
// height, there is nothing to do.
latestHeight := b.bestChain.tip().height
if startHeight > latestHeight {
return nil, nil
}
// Limit the ending height to the latest height of the chain.
if endHeight > latestHeight+1 {
endHeight = latestHeight + 1
}
// Fetch as many as are available within the specified range.
hashes := make([]chainhash.Hash, 0, endHeight-startHeight)
for i := startHeight; i < endHeight; i++ {
hashes = append(hashes, b.bestChain.nodeByHeight(i).hash)
}
return hashes, nil
}
// HeightToHashRange returns a range of block hashes for the given start height
// and end hash, inclusive on both ends. The hashes are for all blocks that are
// ancestors of endHash with height greater than or equal to startHeight. The
// end hash must belong to a block that is known to be valid.
//
// This function is safe for concurrent access.
func (b *BlockChain) HeightToHashRange(startHeight int32,
endHash *chainhash.Hash, maxResults int) ([]chainhash.Hash, error) {
endNode := b.index.LookupNode(endHash)
if endNode == nil {
return nil, fmt.Errorf("no known block header with hash %v", endHash)
}
if !b.index.NodeStatus(endNode).KnownValid() {
return nil, fmt.Errorf("block %v is not yet validated", endHash)
}
endHeight := endNode.height
if startHeight < 0 {
return nil, fmt.Errorf("start height (%d) is below 0", startHeight)
}
if startHeight > endHeight {
return nil, fmt.Errorf("start height (%d) is past end height (%d)",
startHeight, endHeight)
}
resultsLength := int(endHeight - startHeight + 1)
if resultsLength > maxResults {
return nil, fmt.Errorf("number of results (%d) would exceed max (%d)",
resultsLength, maxResults)
}
// Walk backwards from endHeight to startHeight, collecting block hashes.
node := endNode
hashes := make([]chainhash.Hash, resultsLength)
for i := resultsLength - 1; i >= 0; i-- {
hashes[i] = node.hash
node = node.parent
}
return hashes, nil
}
// IntervalBlockHashes returns hashes for all blocks that are ancestors of
// endHash where the block height is a positive multiple of interval.
//
// This function is safe for concurrent access.
func (b *BlockChain) IntervalBlockHashes(endHash *chainhash.Hash, interval int,
) ([]chainhash.Hash, error) {
endNode := b.index.LookupNode(endHash)
if endNode == nil {
return nil, fmt.Errorf("no known block header with hash %v", endHash)
}
if !b.index.NodeStatus(endNode).KnownValid() {
return nil, fmt.Errorf("block %v is not yet validated", endHash)
}
endHeight := endNode.height
resultsLength := int(endHeight) / interval
hashes := make([]chainhash.Hash, resultsLength)
b.bestChain.mtx.Lock()
defer b.bestChain.mtx.Unlock()
blockNode := endNode
for index := int(endHeight) / interval; index > 0; index-- {
// Use the bestChain chainView for faster lookups once lookup intersects
// the best chain.
blockHeight := int32(index * interval)
if b.bestChain.contains(blockNode) {
blockNode = b.bestChain.nodeByHeight(blockHeight)
} else {
blockNode = blockNode.Ancestor(blockHeight)
}
hashes[index-1] = blockNode.hash
}
return hashes, nil
}
// locateInventory returns the node of the block after the first known block in
// the locator along with the number of subsequent nodes needed to either reach
// the provided stop hash or the provided max number of entries.
//
// In addition, there are two special cases:
//
// - When no locators are provided, the stop hash is treated as a request for
// that block, so it will either return the node associated with the stop hash
// if it is known, or nil if it is unknown
// - When locators are provided, but none of them are known, nodes starting
// after the genesis block will be returned
//
// This is primarily a helper function for the locateBlocks and locateHeaders
// functions.
//
// This function MUST be called with the chain state lock held (for reads).
func (b *BlockChain) locateInventory(locator BlockLocator, hashStop *chainhash.Hash, maxEntries uint32) (*blockNode, uint32) {
// There are no block locators so a specific block is being requested
// as identified by the stop hash.
stopNode := b.index.LookupNode(hashStop)
if len(locator) == 0 {
if stopNode == nil {
// No blocks with the stop hash were found so there is
// nothing to do.
return nil, 0
}
return stopNode, 1
}
// Find the most recent locator block hash in the main chain. In the
// case none of the hashes in the locator are in the main chain, fall
// back to the genesis block.
startNode := b.bestChain.Genesis()
for _, hash := range locator {
node := b.index.LookupNode(hash)
if node != nil && b.bestChain.Contains(node) {
startNode = node
break
}
}
// Start at the block after the most recently known block. When there
// is no next block it means the most recently known block is the tip of
// the best chain, so there is nothing more to do.
startNode = b.bestChain.Next(startNode)
if startNode == nil {
return nil, 0
}
// Calculate how many entries are needed.
total := uint32((b.bestChain.Tip().height - startNode.height) + 1)
if stopNode != nil && b.bestChain.Contains(stopNode) &&
stopNode.height >= startNode.height {
total = uint32((stopNode.height - startNode.height) + 1)
}
if total > maxEntries {
total = maxEntries
}
return startNode, total
}
// locateBlocks returns the hashes of the blocks after the first known block in
// the locator until the provided stop hash is reached, or up to the provided
// max number of block hashes.
//
// See the comment on the exported function for more details on special cases.
//
// This function MUST be called with the chain state lock held (for reads).
func (b *BlockChain) locateBlocks(locator BlockLocator, hashStop *chainhash.Hash, maxHashes uint32) []chainhash.Hash {
// Find the node after the first known block in the locator and the
// total number of nodes after it needed while respecting the stop hash
// and max entries.
node, total := b.locateInventory(locator, hashStop, maxHashes)
if total == 0 {
return nil
}
// Populate and return the found hashes.
hashes := make([]chainhash.Hash, 0, total)
for i := uint32(0); i < total; i++ {
hashes = append(hashes, node.hash)
node = b.bestChain.Next(node)
}
return hashes
}
// LocateBlocks returns the hashes of the blocks after the first known block in
// the locator until the provided stop hash is reached, or up to the provided
// max number of block hashes.
//
// In addition, there are two special cases:
//
// - When no locators are provided, the stop hash is treated as a request for
// that block, so it will either return the stop hash itself if it is known,
// or nil if it is unknown
// - When locators are provided, but none of them are known, hashes starting
// after the genesis block will be returned
//
// This function is safe for concurrent access.
func (b *BlockChain) LocateBlocks(locator BlockLocator, hashStop *chainhash.Hash, maxHashes uint32) []chainhash.Hash {
b.chainLock.RLock()
hashes := b.locateBlocks(locator, hashStop, maxHashes)
b.chainLock.RUnlock()
return hashes
}
// locateHeaders returns the headers of the blocks after the first known block
// in the locator until the provided stop hash is reached, or up to the provided
// max number of block headers.
//
// See the comment on the exported function for more details on special cases.
//
// This function MUST be called with the chain state lock held (for reads).
func (b *BlockChain) locateHeaders(locator BlockLocator, hashStop *chainhash.Hash, maxHeaders uint32) []wire.BlockHeader {
// Find the node after the first known block in the locator and the
// total number of nodes after it needed while respecting the stop hash
// and max entries.
node, total := b.locateInventory(locator, hashStop, maxHeaders)
if total == 0 {
return nil
}
// Populate and return the found headers.
headers := make([]wire.BlockHeader, 0, total)
for i := uint32(0); i < total; i++ {
headers = append(headers, node.Header())
node = b.bestChain.Next(node)
}
return headers
}
// LocateHeaders returns the headers of the blocks after the first known block
// in the locator until the provided stop hash is reached, or up to a max of
// wire.MaxBlockHeadersPerMsg headers.
//
// In addition, there are two special cases:
//
// - When no locators are provided, the stop hash is treated as a request for
// that header, so it will either return the header for the stop hash itself
// if it is known, or nil if it is unknown
// - When locators are provided, but none of them are known, headers starting
// after the genesis block will be returned
//
// This function is safe for concurrent access.
func (b *BlockChain) LocateHeaders(locator BlockLocator, hashStop *chainhash.Hash) []wire.BlockHeader {
b.chainLock.RLock()
headers := b.locateHeaders(locator, hashStop, wire.MaxBlockHeadersPerMsg)
b.chainLock.RUnlock()
return headers
}
// InvalidateBlock takes a block hash and invalidates it.
//
// This function is safe for concurrent access.
func (b *BlockChain) InvalidateBlock(hash *chainhash.Hash) error {
b.chainLock.Lock()
defer b.chainLock.Unlock()
return b.invalidateBlock(hash)
}
// invalidateBlock takes a block hash and invalidates it.
func (b *BlockChain) invalidateBlock(hash *chainhash.Hash) error {
node := b.index.LookupNode(hash)
if node == nil {
err := fmt.Errorf("block %s is not known", hash)
return err
}
// No need to invalidate if its already invalid.
if node.status.KnownInvalid() {
err := fmt.Errorf("block %s is already invalid", hash)
return err
}
if node.parent == nil {
err := fmt.Errorf("block %s has no parent", hash)
return err
}
b.index.SetStatusFlags(node, statusValidateFailed)
b.index.UnsetStatusFlags(node, statusValid)
detachNodes, attachNodes := b.getReorganizeNodes(node.parent)
err := b.reorganizeChain(detachNodes, attachNodes)
if err != nil {
return err
}
for i, e := 0, detachNodes.Front(); e != nil; i, e = i+1, e.Next() {
n := e.Value.(*blockNode)
b.index.SetStatusFlags(n, statusInvalidAncestor)
b.index.UnsetStatusFlags(n, statusValid)
}
if writeErr := b.index.flushToDB(); writeErr != nil {
log.Warnf("Error flushing block index changes to disk: %v", writeErr)
}
return nil
}
// ReconsiderBlock takes a block hash and allows it to be revalidated.
//
// This function is safe for concurrent access.
func (b *BlockChain) ReconsiderBlock(hash *chainhash.Hash) error {
return b.reconsiderBlock(hash)
}
// reconsiderBlock takes a block hash and allows it to be revalidated.
func (b *BlockChain) reconsiderBlock(hash *chainhash.Hash) error {
node := b.index.LookupNode(hash)
if node == nil {
err := fmt.Errorf("block %s is not known", hash)
return err
}
// No need to reconsider, it is already valid.
if node.status.KnownValid() && !node.status.KnownInvalid() { // second clause works around old bug
err := fmt.Errorf("block %s is already valid", hash)
return err
}
// Keep a reference to the first node in the chain of invalid
// blocks so we can reprocess after status flags are updated.
firstNode := node
// Find previous node to the point where the blocks are valid again.
for n := node; n.status.KnownInvalid(); n = n.parent {
b.index.UnsetStatusFlags(n, statusInvalidAncestor)
b.index.UnsetStatusFlags(n, statusValidateFailed)
firstNode = n
}
// do we need an rlock on chainstate for this section?
var blk *btcutil.Block
err := b.db.View(func(dbTx database.Tx) error {
var err error
blk, err = dbFetchBlockByNode(dbTx, firstNode)
return err
})
if err != nil {
return err
}
// Process it all again. This will take care of the
// orphans as well.
_, _, err = b.ProcessBlock(blk, BFNoDupBlockCheck)
if err != nil {
return err
}
if writeErr := b.index.flushToDB(); writeErr != nil {
log.Warnf("Error flushing block index changes to disk: %v", writeErr)
}
return nil
}
// ClaimTrie returns the claimTrie associated wit hthe chain.
func (b *BlockChain) ClaimTrie() *claimtrie.ClaimTrie {
return b.claimTrie
}
// IndexManager provides a generic interface that the is called when blocks are
// connected and disconnected to and from the tip of the main chain for the
// purpose of supporting optional indexes.
type IndexManager interface {
// Init is invoked during chain initialize in order to allow the index
// manager to initialize itself and any indexes it is managing. The
// channel parameter specifies a channel the caller can close to signal
// that the process should be interrupted. It can be nil if that
// behavior is not desired.
Init(*BlockChain, <-chan struct{}) error
// ConnectBlock is invoked when a new block has been connected to the
// main chain. The set of output spent within a block is also passed in
// so indexers can access the previous output scripts input spent if
// required.
ConnectBlock(database.Tx, *btcutil.Block, []SpentTxOut) error
// DisconnectBlock is invoked when a block has been disconnected from
// the main chain. The set of outputs scripts that were spent within
// this block is also returned so indexers can clean up the prior index
// state for this block.
DisconnectBlock(database.Tx, *btcutil.Block, []SpentTxOut) error
}
// Config is a descriptor which specifies the blockchain instance configuration.
type Config struct {
// DB defines the database which houses the blocks and will be used to
// store all metadata created by this package such as the utxo set.
//
// This field is required.
DB database.DB
// Interrupt specifies a channel the caller can close to signal that
// long running operations, such as catching up indexes or performing
// database migrations, should be interrupted.
//
// This field can be nil if the caller does not desire the behavior.
Interrupt <-chan struct{}
// ChainParams identifies which chain parameters the chain is associated
// with.
//
// This field is required.
ChainParams *chaincfg.Params
// Checkpoints hold caller-defined checkpoints that should be added to
// the default checkpoints in ChainParams. Checkpoints must be sorted
// by height.
//
// This field can be nil if the caller does not wish to specify any
// checkpoints.
Checkpoints []chaincfg.Checkpoint
// TimeSource defines the median time source to use for things such as
// block processing and determining whether or not the chain is current.
//
// The caller is expected to keep a reference to the time source as well
// and add time samples from other peers on the network so the local
// time is adjusted to be in agreement with other peers.
TimeSource MedianTimeSource
// SigCache defines a signature cache to use when when validating
// signatures. This is typically most useful when individual
// transactions are already being validated prior to their inclusion in
// a block such as what is usually done via a transaction memory pool.
//
// This field can be nil if the caller is not interested in using a
// signature cache.
SigCache *txscript.SigCache
// IndexManager defines an index manager to use when initializing the
// chain and connecting and disconnecting blocks.
//
// This field can be nil if the caller does not wish to make use of an
// index manager.
IndexManager IndexManager
// HashCache defines a transaction hash mid-state cache to use when
// validating transactions. This cache has the potential to greatly
// speed up transaction validation as re-using the pre-calculated
// mid-state eliminates the O(N^2) validation complexity due to the
// SigHashAll flag.
//
// This field can be nil if the caller is not interested in using a
// signature cache.
HashCache *txscript.HashCache
ClaimTrie *claimtrie.ClaimTrie
}
// New returns a BlockChain instance using the provided configuration details.
func New(config *Config) (*BlockChain, error) {
// Enforce required config fields.
if config.DB == nil {
return nil, AssertError("blockchain.New database is nil")
}
if config.ChainParams == nil {
return nil, AssertError("blockchain.New chain parameters nil")
}
if config.TimeSource == nil {
return nil, AssertError("blockchain.New timesource is nil")
}
// Generate a checkpoint by height map from the provided checkpoints
// and assert the provided checkpoints are sorted by height as required.
var checkpointsByHeight map[int32]*chaincfg.Checkpoint
var prevCheckpointHeight int32
if len(config.Checkpoints) > 0 {
checkpointsByHeight = make(map[int32]*chaincfg.Checkpoint)
for i := range config.Checkpoints {
checkpoint := &config.Checkpoints[i]
if checkpoint.Height <= prevCheckpointHeight {
return nil, AssertError("blockchain.New " +
"checkpoints are not sorted by height")
}
checkpointsByHeight[checkpoint.Height] = checkpoint
prevCheckpointHeight = checkpoint.Height
}
}
params := config.ChainParams
targetTimespan := int64(params.TargetTimespan / time.Second)
targetTimePerBlock := int64(params.TargetTimePerBlock / time.Second)
b := BlockChain{
checkpoints: config.Checkpoints,
checkpointsByHeight: checkpointsByHeight,
db: config.DB,
chainParams: params,
timeSource: config.TimeSource,
sigCache: config.SigCache,
indexManager: config.IndexManager,
minRetargetTimespan: targetTimespan - (targetTimespan / 8),
maxRetargetTimespan: targetTimespan + (targetTimespan / 2),
blocksPerRetarget: int32(targetTimespan / targetTimePerBlock),
index: newBlockIndex(config.DB, params),
hashCache: config.HashCache,
bestChain: newChainView(nil),
orphans: make(map[chainhash.Hash]*orphanBlock),
prevOrphans: make(map[chainhash.Hash][]*orphanBlock),
warningCaches: newThresholdCaches(vbNumBits),
deploymentCaches: newThresholdCaches(chaincfg.DefinedDeployments),
claimTrie: config.ClaimTrie,
}
// Initialize the chain state from the passed database. When the db
// does not yet contain any chain state, both it and the chain state
// will be initialized to contain only the genesis block.
if err := b.initChainState(); err != nil {
return nil, err
}
// Helper function to insert the output in genesis block in to the
// transaction database.
fn := func(dbTx database.Tx) error {
genesisBlock := btcutil.NewBlock(b.chainParams.GenesisBlock)
view := NewUtxoViewpoint()
if err := view.connectTransactions(genesisBlock, nil); err != nil {
return err
}
return dbPutUtxoView(dbTx, view)
}
if err := b.db.Update(fn); err != nil {
return nil, err
}
// Perform any upgrades to the various chain-specific buckets as needed.
if err := b.maybeUpgradeDbBuckets(config.Interrupt); err != nil {
return nil, err
}
// Initialize and catch up all of the currently active optional indexes
// as needed.
if config.IndexManager != nil {
err := config.IndexManager.Init(&b, config.Interrupt)
if err != nil {
return nil, err
}
}
// Initialize rule change threshold state caches.
if err := b.initThresholdCaches(); err != nil {
return nil, err
}
if b.claimTrie != nil {
err := rebuildMissingClaimTrieData(&b, config.Interrupt)
if err != nil {
b.claimTrie.Close()
return nil, err
}
}
bestNode := b.bestChain.Tip()
log.Infof("Chain state (height %d, hash %v, totaltx %d, work %v)",
bestNode.height, bestNode.hash, b.stateSnapshot.TotalTxns,
bestNode.workSum)
return &b, nil
}
func rebuildMissingClaimTrieData(b *BlockChain, done <-chan struct{}) error {
target := b.bestChain.Height()
if b.claimTrie.Height() == target {
return nil
}
if b.claimTrie.Height() > target {
return b.claimTrie.ResetHeight(target)
}
start := time.Now()
lastReport := time.Now()
// TODO: move this view inside the loop (or recreate it every 5 sec.)
// as accumulating all inputs has potential to use a huge amount of RAM
// but we need to get the spent inputs working for that to be possible
view := NewUtxoViewpoint()
for h := int32(0); h < target; h++ {
select {
case <-done:
return fmt.Errorf("rebuild unfinished at height %d", b.claimTrie.Height())
default:
}
n := b.bestChain.NodeByHeight(h + 1)
var block *btcutil.Block
err := b.db.View(func(dbTx database.Tx) error {
var err error
block, err = dbFetchBlockByNode(dbTx, n)
return err
})
if err != nil {
return err
}
err = view.fetchInputUtxos(b.db, block)
if err != nil {
return err
}
err = view.connectTransactions(block, nil)
if err != nil {
return err
}
if h >= b.claimTrie.Height() {
err = b.ParseClaimScripts(block, n, view, false)
if err != nil {
return err
}
}
if time.Since(lastReport) > time.Second*5 {
lastReport = time.Now()
log.Infof("Rebuilding claim trie data to %d. At: %d", target, h)
}
}
log.Infof("Completed rebuilding claim trie data to %d. Took %s ",
b.claimTrie.Height(), time.Since(start))
return nil
}