lbcutil/gcs/gcs_test.go

367 lines
10 KiB
Go
Raw Normal View History

// Copyright (c) 2016-2017 The btcsuite developers
// Copyright (c) 2016-2017 The Lightning Network Developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package gcs_test
import (
"bytes"
"encoding/binary"
"math/rand"
"testing"
"github.com/btcsuite/btcutil/gcs"
)
var (
// No need to allocate an err variable in every test
err error
// Collision probability for the tests (1/2**19)
P = uint8(19)
// Modulus value for the tests.
M uint64 = 784931
// Filters are conserved between tests but we must define with an
// interface which functions we're testing because the gcsFilter type
// isn't exported
filter, filter2, filter3, filter4, filter5 *gcs.Filter
// We need to use the same key for building and querying the filters
key [gcs.KeySize]byte
// List of values for building a filter
contents = [][]byte{
[]byte("Alex"),
[]byte("Bob"),
[]byte("Charlie"),
[]byte("Dick"),
[]byte("Ed"),
[]byte("Frank"),
[]byte("George"),
[]byte("Harry"),
[]byte("Ilya"),
[]byte("John"),
[]byte("Kevin"),
[]byte("Larry"),
[]byte("Michael"),
[]byte("Nate"),
[]byte("Owen"),
[]byte("Paul"),
[]byte("Quentin"),
}
// List of values for querying a filter using MatchAny()
contents2 = [][]byte{
[]byte("Alice"),
[]byte("Betty"),
[]byte("Charmaine"),
[]byte("Donna"),
[]byte("Edith"),
[]byte("Faina"),
[]byte("Georgia"),
[]byte("Hannah"),
[]byte("Ilsbeth"),
[]byte("Jennifer"),
[]byte("Kayla"),
[]byte("Lena"),
[]byte("Michelle"),
[]byte("Natalie"),
[]byte("Ophelia"),
[]byte("Peggy"),
[]byte("Queenie"),
}
)
// TestGCSFilterBuild builds a test filter with a randomized key. For Bitcoin
// use, deterministic filter generation is desired. Therefore, a key that's
// derived deterministically would be required.
func TestGCSFilterBuild(t *testing.T) {
for i := 0; i < gcs.KeySize; i += 4 {
binary.BigEndian.PutUint32(key[i:], rand.Uint32())
}
filter, err = gcs.BuildGCSFilter(P, M, key, contents)
if err != nil {
t.Fatalf("Filter build failed: %s", err.Error())
}
}
2019-04-25 02:04:27 +02:00
// TestGCSMatchZeroHash ensures that Match and MatchAny properly match an item
// if it's hash after the reduction is zero. This is accomplished by brute
// forcing a specific target whose hash is zero given a certain (P, M, key,
// len(elements)) combination. In this case, P and M are the default, key was
// chosen randomly, and len(elements) is 13. The target 4-byte value of 16060032
// is the first such 32-bit value, thus we use the number 0-11 as the other
// elements in the filter since we know they won't collide. We test both the
// positive and negative cases, when the zero hash item is in the filter and
// when it is excluded. In the negative case, the 32-bit value of 12 is added to
// the filter instead of the target.
func TestGCSMatchZeroHash(t *testing.T) {
t.Run("include zero", func(t *testing.T) {
testGCSMatchZeroHash(t, true)
})
t.Run("exclude zero", func(t *testing.T) {
testGCSMatchZeroHash(t, false)
})
}
func testGCSMatchZeroHash(t *testing.T, includeZeroHash bool) {
key := [gcs.KeySize]byte{
0x25, 0x28, 0x0d, 0x25, 0x26, 0xe1, 0xd3, 0xc7,
0xa5, 0x71, 0x85, 0x34, 0x92, 0xa5, 0x7e, 0x68,
}
// Construct the target data to match, whose hash is zero after applying
// the reduction with the parameters in the test.
target := make([]byte, 4)
binary.BigEndian.PutUint32(target, 16060032)
// Construct the set of 13 items including the target, using the 32-bit
// values of 0 through 11 as the first 12 items. We known none of these
// hash to zero since the brute force ended well beyond them.
elements := make([][]byte, 0, 13)
for i := 0; i < 12; i++ {
data := make([]byte, 4)
binary.BigEndian.PutUint32(data, uint32(i))
elements = append(elements, data)
}
// If the filter should include the zero hash element, add the target
// which we know hashes to zero. Otherwise add 32-bit value of 12 which
// we know does not hash to zero.
if includeZeroHash {
elements = append(elements, target)
} else {
data := make([]byte, 4)
binary.BigEndian.PutUint32(data, 12)
elements = append(elements, data)
}
filter, err := gcs.BuildGCSFilter(P, M, key, elements)
if err != nil {
t.Fatalf("unable to build filter: %v", err)
}
match, err := filter.Match(key, target)
if err != nil {
t.Fatalf("unable to match: %v", err)
}
// We should only get a match iff the target was included.
if match != includeZeroHash {
t.Fatalf("expected match from Match: %t, got %t",
includeZeroHash, match)
}
match, err = filter.MatchAny(key, [][]byte{target})
if err != nil {
t.Fatalf("unable to match any: %v", err)
}
// We should only get a match iff the target was included.
if match != includeZeroHash {
t.Fatalf("expected match from MatchAny: %t, got %t",
includeZeroHash, match)
}
}
// TestGCSFilterCopy deserializes and serializes a filter to create a copy.
func TestGCSFilterCopy(t *testing.T) {
serialized2, err := filter.Bytes()
if err != nil {
t.Fatalf("Filter Bytes() failed: %v", err)
}
filter2, err = gcs.FromBytes(filter.N(), P, M, serialized2)
if err != nil {
t.Fatalf("Filter copy failed: %s", err.Error())
}
serialized3, err := filter.NBytes()
if err != nil {
t.Fatalf("Filter NBytes() failed: %v", err)
}
filter3, err = gcs.FromNBytes(filter.P(), M, serialized3)
if err != nil {
t.Fatalf("Filter copy failed: %s", err.Error())
}
}
// TestGCSFilterMetadata checks that the filter metadata is built and copied
// correctly.
func TestGCSFilterMetadata(t *testing.T) {
if filter.P() != P {
t.Fatal("P not correctly stored in filter metadata")
}
if filter.N() != uint32(len(contents)) {
t.Fatal("N not correctly stored in filter metadata")
}
if filter.P() != filter2.P() {
t.Fatal("P doesn't match between copied filters")
}
if filter.P() != filter3.P() {
t.Fatal("P doesn't match between copied filters")
}
if filter.N() != filter2.N() {
t.Fatal("N doesn't match between copied filters")
}
if filter.N() != filter3.N() {
t.Fatal("N doesn't match between copied filters")
}
serialized, err := filter.Bytes()
if err != nil {
t.Fatalf("Filter Bytes() failed: %v", err)
}
serialized2, err := filter2.Bytes()
if err != nil {
t.Fatalf("Filter Bytes() failed: %v", err)
}
if !bytes.Equal(serialized, serialized2) {
t.Fatal("Bytes don't match between copied filters")
}
serialized3, err := filter3.Bytes()
if err != nil {
t.Fatalf("Filter Bytes() failed: %v", err)
}
if !bytes.Equal(serialized, serialized3) {
t.Fatal("Bytes don't match between copied filters")
}
serialized4, err := filter3.Bytes()
if err != nil {
t.Fatalf("Filter Bytes() failed: %v", err)
}
if !bytes.Equal(serialized, serialized4) {
t.Fatal("Bytes don't match between copied filters")
}
}
// TestGCSFilterMatch checks that both the built and copied filters match
// correctly, logging any false positives without failing on them.
func TestGCSFilterMatch(t *testing.T) {
match, err := filter.Match(key, []byte("Nate"))
if err != nil {
t.Fatalf("Filter match failed: %s", err.Error())
}
if !match {
t.Fatal("Filter didn't match when it should have!")
}
match, err = filter2.Match(key, []byte("Nate"))
if err != nil {
t.Fatalf("Filter match failed: %s", err.Error())
}
if !match {
t.Fatal("Filter didn't match when it should have!")
}
match, err = filter.Match(key, []byte("Quentin"))
if err != nil {
t.Fatalf("Filter match failed: %s", err.Error())
}
if !match {
t.Fatal("Filter didn't match when it should have!")
}
match, err = filter2.Match(key, []byte("Quentin"))
if err != nil {
t.Fatalf("Filter match failed: %s", err.Error())
}
if !match {
t.Fatal("Filter didn't match when it should have!")
}
match, err = filter.Match(key, []byte("Nates"))
if err != nil {
t.Fatalf("Filter match failed: %s", err.Error())
}
if match {
t.Logf("False positive match, should be 1 in 2**%d!", P)
}
match, err = filter2.Match(key, []byte("Nates"))
if err != nil {
t.Fatalf("Filter match failed: %s", err.Error())
}
if match {
t.Logf("False positive match, should be 1 in 2**%d!", P)
}
match, err = filter.Match(key, []byte("Quentins"))
if err != nil {
t.Fatalf("Filter match failed: %s", err.Error())
}
if match {
t.Logf("False positive match, should be 1 in 2**%d!", P)
}
match, err = filter2.Match(key, []byte("Quentins"))
if err != nil {
t.Fatalf("Filter match failed: %s", err.Error())
}
if match {
t.Logf("False positive match, should be 1 in 2**%d!", P)
}
}
// AnyMatcher is the function signature of our matching algorithms.
type AnyMatcher func(key [gcs.KeySize]byte, data [][]byte) (bool, error)
// TestGCSFilterMatchAnySuite checks that all of our matching algorithms
// properly match a list correctly when using built or copied filters, logging
// any false positives without failing on them.
func TestGCSFilterMatchAnySuite(t *testing.T) {
funcs := []struct {
name string
matchAny func(*gcs.Filter) AnyMatcher
}{
{
"default",
func(f *gcs.Filter) AnyMatcher {
return f.MatchAny
},
},
{
"hash",
func(f *gcs.Filter) AnyMatcher {
return f.HashMatchAny
},
},
{
"zip",
func(f *gcs.Filter) AnyMatcher {
return f.ZipMatchAny
},
},
}
for _, test := range funcs {
t.Run(test.name, func(t *testing.T) {
contentsCopy := make([][]byte, len(contents2))
copy(contentsCopy, contents2)
match, err := test.matchAny(filter)(key, contentsCopy)
if err != nil {
t.Fatalf("Filter match any failed: %s", err.Error())
}
if match {
t.Logf("False positive match, should be 1 in 2**%d!", P)
}
match, err = test.matchAny(filter2)(key, contentsCopy)
if err != nil {
t.Fatalf("Filter match any failed: %s", err.Error())
}
if match {
t.Logf("False positive match, should be 1 in 2**%d!", P)
}
contentsCopy = append(contentsCopy, []byte("Nate"))
match, err = test.matchAny(filter)(key, contentsCopy)
if err != nil {
t.Fatalf("Filter match any failed: %s", err.Error())
}
if !match {
t.Fatal("Filter didn't match any when it should have!")
}
match, err = test.matchAny(filter2)(key, contentsCopy)
if err != nil {
t.Fatalf("Filter match any failed: %s", err.Error())
}
if !match {
t.Fatal("Filter didn't match any when it should have!")
}
})
}
}