lbcutil/coinset/coins.go

395 lines
12 KiB
Go
Raw Normal View History

package coinset
import (
"container/list"
"errors"
"github.com/conformal/btcutil"
"github.com/conformal/btcwire"
"sort"
)
// Coin represents a spendable transaction outpoint
type Coin interface {
Hash() *btcwire.ShaHash
Index() uint32
Value() int64
PkScript() []byte
NumConfs() int64
ValueAge() int64
}
// Coins represents a set of Coins
type Coins interface {
Coins() []Coin
}
// CoinSet is a utility struct for the modifications of a set of
// Coins that implements the Coins interface. To create a CoinSet,
// you must call NewCoinSet with nil for an empty set or a slice of
// coins as the initial contents.
//
// It is important to note that the all the Coins being added or removed
// from a CoinSet must have a constant ValueAge() during the use of
// the CoinSet, otherwise the cached values will be incorrect.
type CoinSet struct {
coinList *list.List
totalValue int64
totalValueAge int64
}
// Ensure that CoinSet is a Coins
var _ Coins = NewCoinSet(nil)
// NewCoinSet creates a CoinSet containing the coins provided.
// To create an empty CoinSet, you may pass null as the coins input parameter.
func NewCoinSet(coins []Coin) *CoinSet {
newCoinSet := &CoinSet{
coinList: list.New(),
totalValue: 0,
totalValueAge: 0,
}
for _, coin := range coins {
newCoinSet.PushCoin(coin)
}
return newCoinSet
}
// Coins returns a new slice of the coins contained in the set.
func (cs *CoinSet) Coins() []Coin {
coins := make([]Coin, cs.coinList.Len())
for i, e := 0, cs.coinList.Front(); e != nil; i, e = i+1, e.Next() {
coins[i] = e.Value.(Coin)
}
return coins
}
// TotalValue returns the total value of the coins in the set.
func (cs *CoinSet) TotalValue() (value int64) {
return cs.totalValue
}
// TotalValueAge returns the total value * number of confirmations
// of the coins in the set.
func (cs *CoinSet) TotalValueAge() (valueAge int64) {
return cs.totalValueAge
}
// Num returns the number of coins in the set
func (cs *CoinSet) Num() int {
return cs.coinList.Len()
}
// PushCoin adds a coin to the end of the list and updates
// the cached value amounts.
func (cs *CoinSet) PushCoin(c Coin) {
cs.coinList.PushBack(c)
cs.totalValue += c.Value()
cs.totalValueAge += c.ValueAge()
}
// PopCoin removes the last coin on the list and returns it.
func (cs *CoinSet) PopCoin() Coin {
back := cs.coinList.Back()
if back == nil {
return nil
}
return cs.removeElement(back)
}
// ShiftCoin removes the first coin on the list and returns it.
func (cs *CoinSet) ShiftCoin() Coin {
front := cs.coinList.Front()
if front == nil {
return nil
}
return cs.removeElement(front)
}
// removeElement updates the cached value amounts in the CoinSet,
// removes the element from the list, then returns the Coin that
// was removed to the caller.
func (cs *CoinSet) removeElement(e *list.Element) Coin {
c := e.Value.(Coin)
cs.coinList.Remove(e)
cs.totalValue -= c.Value()
cs.totalValueAge -= c.ValueAge()
return c
}
// NewMsgTxWithInputCoins takes the coins in the CoinSet and makes them
// the inputs to a new btcwire.MsgTx which is returned.
func NewMsgTxWithInputCoins(inputCoins Coins) *btcwire.MsgTx {
msgTx := btcwire.NewMsgTx()
coins := inputCoins.Coins()
msgTx.TxIn = make([]*btcwire.TxIn, len(coins))
for i, coin := range coins {
msgTx.TxIn[i] = &btcwire.TxIn{
PreviousOutpoint: btcwire.OutPoint{
Hash: *coin.Hash(),
Index: coin.Index(),
},
SignatureScript: nil,
Sequence: btcwire.MaxTxInSequenceNum,
}
}
return msgTx
}
var (
// ErrCoinsNoSelectionAvailable is returned when a CoinSelector believes there is no
// possible combination of coins which can meet the requirements provided to the selector.
ErrCoinsNoSelectionAvailable = errors.New("no coin selection possible")
)
// satisfiesTargetValue checks that the totalValue is either exactly the targetValue
// or is greater than the targetValue by at least the minChange amount.
func satisfiesTargetValue(targetValue, minChange, totalValue int64) bool {
return (totalValue == targetValue || totalValue >= targetValue+minChange)
}
// CoinSelector is an interface that wraps the CoinSelect method.
//
// CoinSelect will attempt to select a subset of the coins which has at
// least the targetValue amount. CoinSelect is not guaranteed to return a
// selection of coins even if the total value of coins given is greater
// than the target value.
//
// The exact choice of coins in the subset will be implementation specific.
//
// It is important to note that the Coins being used as inputs need to have
// a constant ValueAge() during the execution of CoinSelect.
type CoinSelector interface {
CoinSelect(targetValue int64, coins []Coin) (Coins, error)
}
// MinIndexCoinSelector is a CoinSelector that attempts to construct a
// selection of coins whose total value is at least targetValue and prefers
// any number of lower indexes (as in the ordered array) over higher ones.
type MinIndexCoinSelector struct {
MaxInputs int
MinChangeAmount int64
}
// CoinSelect will attempt to select coins using the algorithm described
// in the MinIndexCoinSelector struct.
func (s MinIndexCoinSelector) CoinSelect(targetValue int64, coins []Coin) (Coins, error) {
cs := NewCoinSet(nil)
for n := 0; n < len(coins) && n < s.MaxInputs; n++ {
cs.PushCoin(coins[n])
if satisfiesTargetValue(targetValue, s.MinChangeAmount, cs.TotalValue()) {
return cs, nil
}
}
return nil, ErrCoinsNoSelectionAvailable
}
// MinNumberCoinSelector is a CoinSelector that attempts to construct
// a selection of coins whose total value is at least targetValue
// that uses as few of the inputs as possible.
type MinNumberCoinSelector struct {
MaxInputs int
MinChangeAmount int64
}
// CoinSelect will attempt to select coins using the algorithm described
// in the MinNumberCoinSelector struct.
func (s MinNumberCoinSelector) CoinSelect(targetValue int64, coins []Coin) (Coins, error) {
sortedCoins := make([]Coin, 0, len(coins))
sortedCoins = append(sortedCoins, coins...)
sort.Sort(sort.Reverse(byAmount(sortedCoins)))
return (&MinIndexCoinSelector{
MaxInputs: s.MaxInputs,
MinChangeAmount: s.MinChangeAmount,
}).CoinSelect(targetValue, sortedCoins)
}
// MaxValueAgeCoinSelector is a CoinSelector that attempts to construct
// a selection of coins whose total value is at least targetValue
// that has as much input value-age as possible.
//
// This would be useful in the case where you want to maximize
// likelihood of the inclusion of your transaction in the next mined
// block.
type MaxValueAgeCoinSelector struct {
MaxInputs int
MinChangeAmount int64
}
// CoinSelect will attempt to select coins using the algorithm described
// in the MaxValueAgeSelector struct.
func (s MaxValueAgeCoinSelector) CoinSelect(targetValue int64, coins []Coin) (Coins, error) {
sortedCoins := make([]Coin, 0, len(coins))
sortedCoins = append(sortedCoins, coins...)
sort.Sort(sort.Reverse(byValueAge(sortedCoins)))
return (&MinIndexCoinSelector{
MaxInputs: s.MaxInputs,
MinChangeAmount: s.MinChangeAmount,
}).CoinSelect(targetValue, sortedCoins)
}
// MinPriorityCoinSelector is a CoinSelector that attempts to construct
// a selection of coins whose total value is at least targetValue and
// whose average value-age per input is greater than MinAvgValueAgePerInput.
// If there is change, it must exceed MinChangeAmount to be a valid selection.
//
// When possible, MinPriorityCoinSelector will attempt to reduce the average
// input priority over the threshold, but no guarantees will be made as to
// minimality of the selection. The selection below is almost certainly
// suboptimal.
//
type MinPriorityCoinSelector struct {
MaxInputs int
MinChangeAmount int64
MinAvgValueAgePerInput int64
}
// CoinSelect will attempt to select coins using the algorithm described
// in the MinPriorityCoinSelector struct.
func (s MinPriorityCoinSelector) CoinSelect(targetValue int64, coins []Coin) (Coins, error) {
possibleCoins := make([]Coin, 0, len(coins))
possibleCoins = append(possibleCoins, coins...)
sort.Sort(byValueAge(possibleCoins))
// find the first coin with sufficient valueAge
cutoffIndex := -1
for i := 0; i < len(possibleCoins); i++ {
if possibleCoins[i].ValueAge() >= s.MinAvgValueAgePerInput {
cutoffIndex = i
break
}
}
if cutoffIndex < 0 {
return nil, ErrCoinsNoSelectionAvailable
}
// create sets of input coins that will obey minimum average valueAge
for i := cutoffIndex; i < len(possibleCoins); i++ {
possibleHighCoins := possibleCoins[cutoffIndex : i+1]
// choose a set of high-enough valueAge coins
highSelect, err := (&MinNumberCoinSelector{
MaxInputs: s.MaxInputs,
MinChangeAmount: s.MinChangeAmount,
}).CoinSelect(targetValue, possibleHighCoins)
if err != nil {
// attempt to add available low priority to make a solution
for numLow := 1; numLow <= cutoffIndex && numLow+(i-cutoffIndex) <= s.MaxInputs; numLow++ {
allHigh := NewCoinSet(possibleCoins[cutoffIndex : i+1])
newTargetValue := targetValue - allHigh.TotalValue()
newMaxInputs := allHigh.Num() + numLow
if newMaxInputs > numLow {
newMaxInputs = numLow
}
newMinAvgValueAge := ((s.MinAvgValueAgePerInput * int64(allHigh.Num()+numLow)) - allHigh.TotalValueAge()) / int64(numLow)
// find the minimum priority that can be added to set
lowSelect, err := (&MinPriorityCoinSelector{
MaxInputs: newMaxInputs,
MinChangeAmount: s.MinChangeAmount,
MinAvgValueAgePerInput: newMinAvgValueAge,
}).CoinSelect(newTargetValue, possibleCoins[0:cutoffIndex])
if err != nil {
continue
}
for _, coin := range lowSelect.Coins() {
allHigh.PushCoin(coin)
}
return allHigh, nil
}
// oh well, couldn't fix, try to add more high priority to the set.
} else {
extendedCoins := NewCoinSet(highSelect.Coins())
// attempt to lower priority towards target with lowest ones first
for n := 0; n < cutoffIndex; n++ {
if extendedCoins.Num() >= s.MaxInputs {
break
}
if possibleCoins[n].ValueAge() == 0 {
continue
}
extendedCoins.PushCoin(possibleCoins[n])
if extendedCoins.TotalValueAge()/int64(extendedCoins.Num()) < s.MinAvgValueAgePerInput {
extendedCoins.PopCoin()
continue
}
}
return extendedCoins, nil
}
}
return nil, ErrCoinsNoSelectionAvailable
}
type byValueAge []Coin
func (a byValueAge) Len() int { return len(a) }
func (a byValueAge) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a byValueAge) Less(i, j int) bool { return a[i].ValueAge() < a[j].ValueAge() }
type byAmount []Coin
func (a byAmount) Len() int { return len(a) }
func (a byAmount) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a byAmount) Less(i, j int) bool { return a[i].Value() < a[j].Value() }
// SimpleCoin defines a concrete instance of Coin that is backed by a
// btcutil.Tx, a specific outpoint index, and the number of confirmations
// that transaction has had.
type SimpleCoin struct {
Tx *btcutil.Tx
TxIndex uint32
TxNumConfs int64
}
// Ensure that SimpleCoin is a Coin
var _ Coin = &SimpleCoin{}
// Hash returns the hash value of the transaction on which the Coin is an output
func (c *SimpleCoin) Hash() *btcwire.ShaHash {
return c.Tx.Sha()
}
// Index returns the index of the output on the transaction which the Coin represents
func (c *SimpleCoin) Index() uint32 {
return c.TxIndex
}
// txOut returns the TxOut of the transaction the Coin represents
func (c *SimpleCoin) txOut() *btcwire.TxOut {
return c.Tx.MsgTx().TxOut[c.TxIndex]
}
// Value returns the value of the Coin
func (c *SimpleCoin) Value() int64 {
return c.txOut().Value
}
// PkScript returns the outpoint script of the Coin.
//
// This can be used to determine what type of script the Coin uses
// and extract standard addresses if possible using
// btcscript.ExtractPkScriptAddrs for example.
func (c *SimpleCoin) PkScript() []byte {
return c.txOut().PkScript
}
// NumConfs returns the number of confirmations that the transaction the Coin references
// has had.
func (c *SimpleCoin) NumConfs() int64 {
return c.TxNumConfs
}
// ValueAge returns the product of the value and the number of confirmations. This is
// used as an input to calculate the priority of the transaction.
func (c *SimpleCoin) ValueAge() int64 {
return c.TxNumConfs * c.Value()
}