gcs: extract fast reduce into distinct func, add comments

This commit is contained in:
Olaoluwa Osuntokun 2017-11-02 17:57:42 -07:00
parent 5151e0586d
commit 54b6d534d2

View file

@ -36,6 +36,43 @@ const (
KeySize = 16 KeySize = 16
) )
// fastReduction calculates a mapping that's more ore less equivalent to: x mod
// N. However, instead of using a mod operation, which using a non-power of two
// will lead to slowness on many processors due to unnecessary division, we
// instead use a "multiply-and-shift" trick which eliminates all divisions,
// described in:
// https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
//
// * v * N >> log_2(N)
//
// In our case, using 64-bit integers, log_2 is 64. As most processors don't
// support 128-bit arithmetic natively, we'll be super portable and unfold the
// operation into several operations with 64-bit arithmetic. As inputs, we the
// number to reduce, and our modulus N divided into its high 32-bits and lower
// 32-bits.
func fastReduction(v, nHi, nLo uint64) uint64 {
// First, we'll spit the item we need to reduce into its higher and
// lower bits.
vhi := v >> 32
vlo := uint64(uint32(v))
// Then, we distribute multiplication over each part.
vnphi := vhi * nHi
vnpmid := vhi * nLo
npvmid := nHi * vlo
vnplo := vlo * nLo
// We calculate the carry bit.
carry := (uint64(uint32(vnpmid)) + uint64(uint32(npvmid)) +
(vnplo >> 32)) >> 32
// Last, we add the high bits, the middle bits, and the carry.
v = vnphi + (vnpmid >> 32) + (npvmid >> 32) + carry
return v
}
// Filter describes an immutable filter that can be built from a set of data // Filter describes an immutable filter that can be built from a set of data
// elements, serialized, deserialized, and queried in a thread-safe manner. The // elements, serialized, deserialized, and queried in a thread-safe manner. The
// serialized form is compressed as a Golomb Coded Set (GCS), but does not // serialized form is compressed as a Golomb Coded Set (GCS), but does not
@ -79,31 +116,21 @@ func BuildGCSFilter(P uint8, key [KeySize]byte, data [][]byte) (*Filter, error)
// Build the filter. // Build the filter.
values := make(uint64Slice, 0, len(data)) values := make(uint64Slice, 0, len(data))
b := bstream.NewBStreamWriter(0) b := bstream.NewBStreamWriter(0)
// Insert the hash (fast-ranged over a space of N*P) of each data // Insert the hash (fast-ranged over a space of N*P) of each data
// element into a slice and sort the slice. This can be greatly // element into a slice and sort the slice. This can be greatly
// optimized with native 128-bit multiplication, but we're going to be // optimized with native 128-bit multiplication, but we're going to be
// fully portable for now. // fully portable for now.
var v, vhi, vlo, nphi, nplo, vnphi, vnpmid, npvmid, vnplo, carry uint64 //
// First, we cache the high and low bits of modulusNP for the // First, we cache the high and low bits of modulusNP for the
// multiplication of 2 64-bit integers into a 128-bit integer. // multiplication of 2 64-bit integers into a 128-bit integer.
nphi = f.modulusNP >> 32 nphi := f.modulusNP >> 32
nplo = uint64(uint32(f.modulusNP)) nplo := uint64(uint32(f.modulusNP))
for _, d := range data { for _, d := range data {
// For each datum, we assign the initial hash to a uint64. // For each datum, we assign the initial hash to a uint64.
v = siphash.Sum64(d, &key) v := siphash.Sum64(d, &key)
// Then, we split it into high bits and low bits.
vhi = v >> 32 v = fastReduction(v, nphi, nplo)
vlo = uint64(uint32(v))
// Then, we distribute multiplication over each part.
vnphi = vhi * nphi
vnpmid = vhi * nplo
npvmid = nphi * vlo
vnplo = vlo * nplo
// We calculate the carry bit.
carry = (uint64(uint32(vnpmid)) + uint64(uint32(npvmid)) +
(vnplo >> 32)) >> 32
// Last, we add the high bits, the middle bits, and the carry.
v = vnphi + (vnpmid >> 32) + (npvmid >> 32) + carry
values = append(values, v) values = append(values, v)
} }
sort.Sort(values) sort.Sort(values)
@ -241,21 +268,10 @@ func (f *Filter) Match(key [KeySize]byte, data []byte) (bool, error) {
// of 2 64-bit integers into a 128-bit integer. // of 2 64-bit integers into a 128-bit integer.
nphi := f.modulusNP >> 32 nphi := f.modulusNP >> 32
nplo := uint64(uint32(f.modulusNP)) nplo := uint64(uint32(f.modulusNP))
// Then we hash our search term with the same parameters as the filter. // Then we hash our search term with the same parameters as the filter.
term := siphash.Sum64(data, &key) term := siphash.Sum64(data, &key)
// Then, we split it into high bits and low bits. term = fastReduction(term, nphi, nplo)
vhi := term >> 32
vlo := uint64(uint32(term))
// Then, we distribute multiplication over each part.
vnphi := vhi * nphi
vnpmid := vhi * nplo
npvmid := nphi * vlo
vnplo := vlo * nplo
// We calculate the carry bit.
carry := (uint64(uint32(vnpmid)) + uint64(uint32(npvmid)) +
(vnplo >> 32)) >> 32
// Last, we add the high bits, the middle bits, and the carry.
term = vnphi + (vnpmid >> 32) + (npvmid >> 32) + carry
// Go through the search filter and look for the desired value. // Go through the search filter and look for the desired value.
var lastValue uint64 var lastValue uint64
@ -299,27 +315,18 @@ func (f *Filter) MatchAny(key [KeySize]byte, data [][]byte) (bool, error) {
// Create an uncompressed filter of the search values. // Create an uncompressed filter of the search values.
values := make(uint64Slice, 0, len(data)) values := make(uint64Slice, 0, len(data))
var v, vhi, vlo, nphi, nplo, vnphi, vnpmid, npvmid, vnplo, carry uint64
// First, we cache the high and low bits of modulusNP for the // First, we cache the high and low bits of modulusNP for the
// multiplication of 2 64-bit integers into a 128-bit integer. // multiplication of 2 64-bit integers into a 128-bit integer.
nphi = f.modulusNP >> 32 nphi := f.modulusNP >> 32
nplo = uint64(uint32(f.modulusNP)) nplo := uint64(uint32(f.modulusNP))
for _, d := range data { for _, d := range data {
// For each datum, we assign the initial hash to a uint64. // For each datum, we assign the initial hash to a uint64.
v = siphash.Sum64(d, &key) v := siphash.Sum64(d, &key)
// Then, we split it into high bits and low bits.
vhi = v >> 32 // We'll then reduce the value down to the range of our
vlo = uint64(uint32(v)) // modulus.
// Then, we distribute multiplication over each part. v = fastReduction(v, nphi, nplo)
vnphi = vhi * nphi
vnpmid = vhi * nplo
npvmid = nphi * vlo
vnplo = vlo * nplo
// We calculate the carry bit.
carry = (uint64(uint32(vnpmid)) + uint64(uint32(npvmid)) +
(vnplo >> 32)) >> 32
// Last, we add the high bits, the middle bits, and the carry.
v = vnphi + (vnpmid >> 32) + (npvmid >> 32) + carry
values = append(values, v) values = append(values, v)
} }
sort.Sort(values) sort.Sort(values)