gcs: extract fast reduce into distinct func, add comments
This commit is contained in:
parent
5151e0586d
commit
54b6d534d2
1 changed files with 54 additions and 47 deletions
101
gcs/gcs.go
101
gcs/gcs.go
|
@ -36,6 +36,43 @@ const (
|
|||
KeySize = 16
|
||||
)
|
||||
|
||||
// fastReduction calculates a mapping that's more ore less equivalent to: x mod
|
||||
// N. However, instead of using a mod operation, which using a non-power of two
|
||||
// will lead to slowness on many processors due to unnecessary division, we
|
||||
// instead use a "multiply-and-shift" trick which eliminates all divisions,
|
||||
// described in:
|
||||
// https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
|
||||
//
|
||||
// * v * N >> log_2(N)
|
||||
//
|
||||
// In our case, using 64-bit integers, log_2 is 64. As most processors don't
|
||||
// support 128-bit arithmetic natively, we'll be super portable and unfold the
|
||||
// operation into several operations with 64-bit arithmetic. As inputs, we the
|
||||
// number to reduce, and our modulus N divided into its high 32-bits and lower
|
||||
// 32-bits.
|
||||
func fastReduction(v, nHi, nLo uint64) uint64 {
|
||||
|
||||
// First, we'll spit the item we need to reduce into its higher and
|
||||
// lower bits.
|
||||
vhi := v >> 32
|
||||
vlo := uint64(uint32(v))
|
||||
|
||||
// Then, we distribute multiplication over each part.
|
||||
vnphi := vhi * nHi
|
||||
vnpmid := vhi * nLo
|
||||
npvmid := nHi * vlo
|
||||
vnplo := vlo * nLo
|
||||
|
||||
// We calculate the carry bit.
|
||||
carry := (uint64(uint32(vnpmid)) + uint64(uint32(npvmid)) +
|
||||
(vnplo >> 32)) >> 32
|
||||
|
||||
// Last, we add the high bits, the middle bits, and the carry.
|
||||
v = vnphi + (vnpmid >> 32) + (npvmid >> 32) + carry
|
||||
|
||||
return v
|
||||
}
|
||||
|
||||
// Filter describes an immutable filter that can be built from a set of data
|
||||
// elements, serialized, deserialized, and queried in a thread-safe manner. The
|
||||
// serialized form is compressed as a Golomb Coded Set (GCS), but does not
|
||||
|
@ -79,31 +116,21 @@ func BuildGCSFilter(P uint8, key [KeySize]byte, data [][]byte) (*Filter, error)
|
|||
// Build the filter.
|
||||
values := make(uint64Slice, 0, len(data))
|
||||
b := bstream.NewBStreamWriter(0)
|
||||
|
||||
// Insert the hash (fast-ranged over a space of N*P) of each data
|
||||
// element into a slice and sort the slice. This can be greatly
|
||||
// optimized with native 128-bit multiplication, but we're going to be
|
||||
// fully portable for now.
|
||||
var v, vhi, vlo, nphi, nplo, vnphi, vnpmid, npvmid, vnplo, carry uint64
|
||||
//
|
||||
// First, we cache the high and low bits of modulusNP for the
|
||||
// multiplication of 2 64-bit integers into a 128-bit integer.
|
||||
nphi = f.modulusNP >> 32
|
||||
nplo = uint64(uint32(f.modulusNP))
|
||||
nphi := f.modulusNP >> 32
|
||||
nplo := uint64(uint32(f.modulusNP))
|
||||
for _, d := range data {
|
||||
// For each datum, we assign the initial hash to a uint64.
|
||||
v = siphash.Sum64(d, &key)
|
||||
// Then, we split it into high bits and low bits.
|
||||
vhi = v >> 32
|
||||
vlo = uint64(uint32(v))
|
||||
// Then, we distribute multiplication over each part.
|
||||
vnphi = vhi * nphi
|
||||
vnpmid = vhi * nplo
|
||||
npvmid = nphi * vlo
|
||||
vnplo = vlo * nplo
|
||||
// We calculate the carry bit.
|
||||
carry = (uint64(uint32(vnpmid)) + uint64(uint32(npvmid)) +
|
||||
(vnplo >> 32)) >> 32
|
||||
// Last, we add the high bits, the middle bits, and the carry.
|
||||
v = vnphi + (vnpmid >> 32) + (npvmid >> 32) + carry
|
||||
v := siphash.Sum64(d, &key)
|
||||
|
||||
v = fastReduction(v, nphi, nplo)
|
||||
values = append(values, v)
|
||||
}
|
||||
sort.Sort(values)
|
||||
|
@ -241,21 +268,10 @@ func (f *Filter) Match(key [KeySize]byte, data []byte) (bool, error) {
|
|||
// of 2 64-bit integers into a 128-bit integer.
|
||||
nphi := f.modulusNP >> 32
|
||||
nplo := uint64(uint32(f.modulusNP))
|
||||
|
||||
// Then we hash our search term with the same parameters as the filter.
|
||||
term := siphash.Sum64(data, &key)
|
||||
// Then, we split it into high bits and low bits.
|
||||
vhi := term >> 32
|
||||
vlo := uint64(uint32(term))
|
||||
// Then, we distribute multiplication over each part.
|
||||
vnphi := vhi * nphi
|
||||
vnpmid := vhi * nplo
|
||||
npvmid := nphi * vlo
|
||||
vnplo := vlo * nplo
|
||||
// We calculate the carry bit.
|
||||
carry := (uint64(uint32(vnpmid)) + uint64(uint32(npvmid)) +
|
||||
(vnplo >> 32)) >> 32
|
||||
// Last, we add the high bits, the middle bits, and the carry.
|
||||
term = vnphi + (vnpmid >> 32) + (npvmid >> 32) + carry
|
||||
term = fastReduction(term, nphi, nplo)
|
||||
|
||||
// Go through the search filter and look for the desired value.
|
||||
var lastValue uint64
|
||||
|
@ -299,27 +315,18 @@ func (f *Filter) MatchAny(key [KeySize]byte, data [][]byte) (bool, error) {
|
|||
|
||||
// Create an uncompressed filter of the search values.
|
||||
values := make(uint64Slice, 0, len(data))
|
||||
var v, vhi, vlo, nphi, nplo, vnphi, vnpmid, npvmid, vnplo, carry uint64
|
||||
|
||||
// First, we cache the high and low bits of modulusNP for the
|
||||
// multiplication of 2 64-bit integers into a 128-bit integer.
|
||||
nphi = f.modulusNP >> 32
|
||||
nplo = uint64(uint32(f.modulusNP))
|
||||
nphi := f.modulusNP >> 32
|
||||
nplo := uint64(uint32(f.modulusNP))
|
||||
for _, d := range data {
|
||||
// For each datum, we assign the initial hash to a uint64.
|
||||
v = siphash.Sum64(d, &key)
|
||||
// Then, we split it into high bits and low bits.
|
||||
vhi = v >> 32
|
||||
vlo = uint64(uint32(v))
|
||||
// Then, we distribute multiplication over each part.
|
||||
vnphi = vhi * nphi
|
||||
vnpmid = vhi * nplo
|
||||
npvmid = nphi * vlo
|
||||
vnplo = vlo * nplo
|
||||
// We calculate the carry bit.
|
||||
carry = (uint64(uint32(vnpmid)) + uint64(uint32(npvmid)) +
|
||||
(vnplo >> 32)) >> 32
|
||||
// Last, we add the high bits, the middle bits, and the carry.
|
||||
v = vnphi + (vnpmid >> 32) + (npvmid >> 32) + carry
|
||||
v := siphash.Sum64(d, &key)
|
||||
|
||||
// We'll then reduce the value down to the range of our
|
||||
// modulus.
|
||||
v = fastReduction(v, nphi, nplo)
|
||||
values = append(values, v)
|
||||
}
|
||||
sort.Sort(values)
|
||||
|
|
Loading…
Reference in a new issue