280 lines
7.5 KiB
Go
280 lines
7.5 KiB
Go
// Copyright (c) 2016-2017 The btcsuite developers
|
|
// Copyright (c) 2016-2017 The Lightning Network Developers
|
|
// Use of this source code is governed by an ISC
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package gcs
|
|
|
|
import (
|
|
"fmt"
|
|
"io"
|
|
"sort"
|
|
|
|
"github.com/aead/siphash"
|
|
"github.com/kkdai/bstream"
|
|
)
|
|
|
|
// Inspired by https://github.com/rasky/gcs
|
|
|
|
var (
|
|
// ErrNTooBig signifies that the filter can't handle N items.
|
|
ErrNTooBig = fmt.Errorf("N is too big to fit in uint32")
|
|
|
|
// ErrPTooBig signifies that the filter can't handle `1/2**P`
|
|
// collision probability.
|
|
ErrPTooBig = fmt.Errorf("P is too big to fit in uint32")
|
|
|
|
// ErrNoData signifies that an empty slice was passed.
|
|
ErrNoData = fmt.Errorf("No data provided")
|
|
)
|
|
|
|
const (
|
|
//KeySize is the size of the byte array required for key material for
|
|
// the SipHash keyed hash function.
|
|
KeySize = 16
|
|
)
|
|
|
|
// Filter describes an immutable filter that can be built from
|
|
// a set of data elements, serialized, deserialized, and queried
|
|
// in a thread-safe manner. The serialized form is compressed as
|
|
// a Golomb Coded Set (GCS), but does not include N or P to allow
|
|
// the user to encode the metadata separately if necessary. The
|
|
// hash function used is SipHash, a keyed function; the key used
|
|
// in building the filter is required in order to match filter
|
|
// values and is not included in the serialized form.
|
|
type Filter struct {
|
|
n uint32
|
|
p uint8
|
|
modulusP uint64
|
|
modulusNP uint64
|
|
filterData []byte
|
|
}
|
|
|
|
// BuildGCSFilter builds a new GCS filter with the collision probability of
|
|
// `1/(2**P)`, key `key`, and including every `[]byte` in `data` as a member of
|
|
// the set.
|
|
func BuildGCSFilter(P uint8, key [KeySize]byte,
|
|
data [][]byte) (*Filter, error) {
|
|
|
|
// Some initial parameter checks: make sure we have data from which to
|
|
// build the filter, and make sure our parameters will fit the hash
|
|
// function we're using.
|
|
if len(data) == 0 {
|
|
return nil, ErrNoData
|
|
}
|
|
if len(data) > ((1 << 32) - 1) {
|
|
return nil, ErrNTooBig
|
|
}
|
|
if P > 32 {
|
|
return nil, ErrPTooBig
|
|
}
|
|
|
|
// Create the filter object and insert metadata.
|
|
f := Filter{
|
|
n: uint32(len(data)),
|
|
p: P,
|
|
}
|
|
f.modulusP = uint64(1 << f.p)
|
|
f.modulusNP = uint64(f.n) * f.modulusP
|
|
|
|
// Build the filter.
|
|
var values uint64Slice
|
|
b := bstream.NewBStreamWriter(0)
|
|
|
|
// Insert the hash (modulo N*P) of each data element into a slice and
|
|
// sort the slice.
|
|
for _, d := range data {
|
|
v := siphash.Sum64(d, &key) % f.modulusNP
|
|
values = append(values, v)
|
|
}
|
|
sort.Sort(values)
|
|
|
|
// Write the sorted list of values into the filter bitstream,
|
|
// compressing it using Golomb coding.
|
|
var value, lastValue, remainder uint64
|
|
for _, v := range values {
|
|
// Calculate the difference between this value and the last,
|
|
// modulo P.
|
|
remainder = (v - lastValue) % f.modulusP
|
|
// Calculate the difference between this value and the last,
|
|
// divided by P.
|
|
value = (v - lastValue - remainder) / f.modulusP
|
|
lastValue = v
|
|
// Write the P multiple into the bitstream in unary; the
|
|
// average should be around 1 (2 bits - 0b10).
|
|
for value > 0 {
|
|
b.WriteBit(true)
|
|
value--
|
|
}
|
|
b.WriteBit(false)
|
|
// Write the remainder as a big-endian integer with enough bits
|
|
// to represent the appropriate collision probability.
|
|
b.WriteBits(remainder, int(f.p))
|
|
}
|
|
|
|
// Copy the bitstream into the filter object and return the object.
|
|
f.filterData = b.Bytes()
|
|
return &f, nil
|
|
}
|
|
|
|
// FromBytes deserializes a GCS filter from a known N, P, and serialized
|
|
// filter as returned by Bytes().
|
|
func FromBytes(N uint32, P uint8, d []byte) (*Filter, error) {
|
|
|
|
// Basic sanity check.
|
|
if P > 32 {
|
|
return nil, ErrPTooBig
|
|
}
|
|
|
|
// Create the filter object and insert metadata.
|
|
f := &Filter{
|
|
n: N,
|
|
p: P,
|
|
}
|
|
f.modulusP = uint64(1 << f.p)
|
|
f.modulusNP = uint64(f.n) * f.modulusP
|
|
|
|
// Copy the filter.
|
|
f.filterData = make([]byte, len(d))
|
|
copy(f.filterData, d)
|
|
return f, nil
|
|
}
|
|
|
|
// Bytes returns the serialized format of the GCS filter, which does not
|
|
// include N or P (returned by separate methods) or the key used by SipHash.
|
|
func (f *Filter) Bytes() []byte {
|
|
filterData := make([]byte, len(f.filterData))
|
|
copy(filterData, f.filterData)
|
|
return filterData
|
|
}
|
|
|
|
// P returns the filter's collision probability as a negative power of 2 (that
|
|
// is, a collision probability of `1/2**20` is represented as 20).
|
|
func (f *Filter) P() uint8 {
|
|
return f.p
|
|
}
|
|
|
|
// N returns the size of the data set used to build the filter.
|
|
func (f *Filter) N() uint32 {
|
|
return f.n
|
|
}
|
|
|
|
// Match checks whether a []byte value is likely (within collision
|
|
// probability) to be a member of the set represented by the filter.
|
|
func (f *Filter) Match(key [KeySize]byte, data []byte) (bool, error) {
|
|
|
|
// Create a filter bitstream.
|
|
filterData := f.Bytes()
|
|
b := bstream.NewBStreamReader(filterData)
|
|
|
|
// Hash our search term with the same parameters as the filter.
|
|
term := siphash.Sum64(data, &key) % f.modulusNP
|
|
|
|
// Go through the search filter and look for the desired value.
|
|
var lastValue uint64
|
|
for lastValue < term {
|
|
// Read the difference between previous and new value
|
|
// from bitstream.
|
|
value, err := f.readFullUint64(b)
|
|
if err != nil {
|
|
if err == io.EOF {
|
|
return false, nil
|
|
}
|
|
return false, err
|
|
}
|
|
// Add the previous value to it.
|
|
value += lastValue
|
|
if value == term {
|
|
return true, nil
|
|
}
|
|
lastValue = value
|
|
}
|
|
return false, nil
|
|
}
|
|
|
|
// MatchAny returns checks whether any []byte value is likely (within
|
|
// collision probability) to be a member of the set represented by the
|
|
// filter faster than calling Match() for each value individually.
|
|
func (f *Filter) MatchAny(key [KeySize]byte, data [][]byte) (bool, error) {
|
|
|
|
// Basic sanity check.
|
|
if len(data) == 0 {
|
|
return false, ErrNoData
|
|
}
|
|
|
|
// Create a filter bitstream.
|
|
filterData := f.Bytes()
|
|
b := bstream.NewBStreamReader(filterData)
|
|
|
|
// Create an uncompressed filter of the search values.
|
|
var values uint64Slice
|
|
for _, d := range data {
|
|
v := siphash.Sum64(d, &key) % f.modulusNP
|
|
values = append(values, v)
|
|
}
|
|
sort.Sort(values)
|
|
|
|
// Zip down the filters, comparing values until we either run out of
|
|
// values to compare in one of the filters or we reach a matching value.
|
|
var lastValue1, lastValue2 uint64
|
|
lastValue2 = values[0]
|
|
i := 1
|
|
for lastValue1 != lastValue2 {
|
|
// Check which filter to advance to make sure we're comparing
|
|
// the right values.
|
|
switch {
|
|
case lastValue1 > lastValue2:
|
|
// Advance filter created from search terms or return
|
|
// false if we're at the end because nothing matched.
|
|
if i < len(values) {
|
|
lastValue2 = values[i]
|
|
i++
|
|
} else {
|
|
return false, nil
|
|
}
|
|
case lastValue2 > lastValue1:
|
|
// Advance filter we're searching or return false if
|
|
// we're at the end because nothing matched.
|
|
value, err := f.readFullUint64(b)
|
|
if err != nil {
|
|
if err == io.EOF {
|
|
return false, nil
|
|
}
|
|
return false, err
|
|
}
|
|
lastValue1 += value
|
|
}
|
|
}
|
|
// If we've made it this far, an element matched between filters so
|
|
// we return true.
|
|
return true, nil
|
|
}
|
|
|
|
// readFullUint64 reads a value represented by the sum of a unary multiple
|
|
// of the filter's P modulus (`2**P`) and a big-endian P-bit remainder.
|
|
func (f *Filter) readFullUint64(b *bstream.BStream) (uint64, error) {
|
|
var v uint64
|
|
|
|
// Count the 1s until we reach a 0.
|
|
c, err := b.ReadBit()
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
for c {
|
|
v++
|
|
c, err = b.ReadBit()
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
}
|
|
|
|
// Read P bits.
|
|
remainder, err := b.ReadBits(int(f.p))
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
// Add the multiple and the remainder.
|
|
v = v*f.modulusP + remainder
|
|
return v, nil
|
|
}
|