22c91fa80a
This updates all code in the main package and subpackages to make use of the new chainhash package since the old wire.ShaHash type and functions have been removed in favor of the abstracted package. Also, since this required API changes anyways and the hash algorithm is no longer tied specifically to SHA, all other functions throughout the code base which had "Sha" in their name have been changed to Hash so they are not incorrectly implying the hash algorithm. The following is an overview of the changes: - Update all references to wire.ShaHash to the new chainhash.Hash type - Rename the following functions and update all references: - Block.Sha -> Hash - Block.TxSha -> TxHash - Tx.Sha -> Hash - bloom.Filter.AddShaHash -> AddHash - Rename all variables that included sha in their name to include hash instead - Add license headers to coinset package files
555 lines
20 KiB
Go
555 lines
20 KiB
Go
// Copyright (c) 2014-2016 The btcsuite developers
|
|
// Use of this source code is governed by an ISC
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package hdkeychain
|
|
|
|
// References:
|
|
// [BIP32]: BIP0032 - Hierarchical Deterministic Wallets
|
|
// https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
|
|
|
|
import (
|
|
"bytes"
|
|
"crypto/hmac"
|
|
"crypto/rand"
|
|
"crypto/sha512"
|
|
"encoding/binary"
|
|
"errors"
|
|
"fmt"
|
|
"math/big"
|
|
|
|
"github.com/btcsuite/btcd/btcec"
|
|
"github.com/btcsuite/btcd/chaincfg"
|
|
"github.com/btcsuite/btcd/chaincfg/chainhash"
|
|
"github.com/btcsuite/btcutil"
|
|
"github.com/btcsuite/btcutil/base58"
|
|
)
|
|
|
|
const (
|
|
// RecommendedSeedLen is the recommended length in bytes for a seed
|
|
// to a master node.
|
|
RecommendedSeedLen = 32 // 256 bits
|
|
|
|
// HardenedKeyStart is the index at which a hardended key starts. Each
|
|
// extended key has 2^31 normal child keys and 2^31 hardned child keys.
|
|
// Thus the range for normal child keys is [0, 2^31 - 1] and the range
|
|
// for hardened child keys is [2^31, 2^32 - 1].
|
|
HardenedKeyStart = 0x80000000 // 2^31
|
|
|
|
// MinSeedBytes is the minimum number of bytes allowed for a seed to
|
|
// a master node.
|
|
MinSeedBytes = 16 // 128 bits
|
|
|
|
// MaxSeedBytes is the maximum number of bytes allowed for a seed to
|
|
// a master node.
|
|
MaxSeedBytes = 64 // 512 bits
|
|
|
|
// serializedKeyLen is the length of a serialized public or private
|
|
// extended key. It consists of 4 bytes version, 1 byte depth, 4 bytes
|
|
// fingerprint, 4 bytes child number, 32 bytes chain code, and 33 bytes
|
|
// public/private key data.
|
|
serializedKeyLen = 4 + 1 + 4 + 4 + 32 + 33 // 78 bytes
|
|
)
|
|
|
|
var (
|
|
// ErrDeriveHardFromPublic describes an error in which the caller
|
|
// attempted to derive a hardened extended key from a public key.
|
|
ErrDeriveHardFromPublic = errors.New("cannot derive a hardened key " +
|
|
"from a public key")
|
|
|
|
// ErrNotPrivExtKey describes an error in which the caller attempted
|
|
// to extract a private key from a public extended key.
|
|
ErrNotPrivExtKey = errors.New("unable to create private keys from a " +
|
|
"public extended key")
|
|
|
|
// ErrInvalidChild describes an error in which the child at a specific
|
|
// index is invalid due to the derived key falling outside of the valid
|
|
// range for secp256k1 private keys. This error indicates the caller
|
|
// should simply ignore the invalid child extended key at this index and
|
|
// increment to the next index.
|
|
ErrInvalidChild = errors.New("the extended key at this index is invalid")
|
|
|
|
// ErrUnusableSeed describes an error in which the provided seed is not
|
|
// usable due to the derived key falling outside of the valid range for
|
|
// secp256k1 private keys. This error indicates the caller must choose
|
|
// another seed.
|
|
ErrUnusableSeed = errors.New("unusable seed")
|
|
|
|
// ErrInvalidSeedLen describes an error in which the provided seed or
|
|
// seed length is not in the allowed range.
|
|
ErrInvalidSeedLen = fmt.Errorf("seed length must be between %d and %d "+
|
|
"bits", MinSeedBytes*8, MaxSeedBytes*8)
|
|
|
|
// ErrBadChecksum describes an error in which the checksum encoded with
|
|
// a serialized extended key does not match the calculated value.
|
|
ErrBadChecksum = errors.New("bad extended key checksum")
|
|
|
|
// ErrInvalidKeyLen describes an error in which the provided serialized
|
|
// key is not the expected length.
|
|
ErrInvalidKeyLen = errors.New("the provided serialized extended key " +
|
|
"length is invalid")
|
|
)
|
|
|
|
// masterKey is the master key used along with a random seed used to generate
|
|
// the master node in the hierarchical tree.
|
|
var masterKey = []byte("Bitcoin seed")
|
|
|
|
// ExtendedKey houses all the information needed to support a hierarchical
|
|
// deterministic extended key. See the package overview documentation for
|
|
// more details on how to use extended keys.
|
|
type ExtendedKey struct {
|
|
key []byte // This will be the pubkey for extended pub keys
|
|
pubKey []byte // This will only be set for extended priv keys
|
|
chainCode []byte
|
|
depth uint16
|
|
parentFP []byte
|
|
childNum uint32
|
|
version []byte
|
|
isPrivate bool
|
|
}
|
|
|
|
// newExtendedKey returns a new instance of an extended key with the given
|
|
// fields. No error checking is performed here as it's only intended to be a
|
|
// convenience method used to create a populated struct.
|
|
func newExtendedKey(version, key, chainCode, parentFP []byte, depth uint16,
|
|
childNum uint32, isPrivate bool) *ExtendedKey {
|
|
|
|
// NOTE: The pubKey field is intentionally left nil so it is only
|
|
// computed and memoized as required.
|
|
return &ExtendedKey{
|
|
key: key,
|
|
chainCode: chainCode,
|
|
depth: depth,
|
|
parentFP: parentFP,
|
|
childNum: childNum,
|
|
version: version,
|
|
isPrivate: isPrivate,
|
|
}
|
|
}
|
|
|
|
// pubKeyBytes returns bytes for the serialized compressed public key associated
|
|
// with this extended key in an efficient manner including memoization as
|
|
// necessary.
|
|
//
|
|
// When the extended key is already a public key, the key is simply returned as
|
|
// is since it's already in the correct form. However, when the extended key is
|
|
// a private key, the public key will be calculated and memoized so future
|
|
// accesses can simply return the cached result.
|
|
func (k *ExtendedKey) pubKeyBytes() []byte {
|
|
// Just return the key if it's already an extended public key.
|
|
if !k.isPrivate {
|
|
return k.key
|
|
}
|
|
|
|
// This is a private extended key, so calculate and memoize the public
|
|
// key if needed.
|
|
if len(k.pubKey) == 0 {
|
|
pkx, pky := btcec.S256().ScalarBaseMult(k.key)
|
|
pubKey := btcec.PublicKey{Curve: btcec.S256(), X: pkx, Y: pky}
|
|
k.pubKey = pubKey.SerializeCompressed()
|
|
}
|
|
|
|
return k.pubKey
|
|
}
|
|
|
|
// IsPrivate returns whether or not the extended key is a private extended key.
|
|
//
|
|
// A private extended key can be used to derive both hardened and non-hardened
|
|
// child private and public extended keys. A public extended key can only be
|
|
// used to derive non-hardened child public extended keys.
|
|
func (k *ExtendedKey) IsPrivate() bool {
|
|
return k.isPrivate
|
|
}
|
|
|
|
// ParentFingerprint returns a fingerprint of the parent extended key from which
|
|
// this one was derived.
|
|
func (k *ExtendedKey) ParentFingerprint() uint32 {
|
|
return binary.BigEndian.Uint32(k.parentFP)
|
|
}
|
|
|
|
// Child returns a derived child extended key at the given index. When this
|
|
// extended key is a private extended key (as determined by the IsPrivate
|
|
// function), a private extended key will be derived. Otherwise, the derived
|
|
// extended key will be also be a public extended key.
|
|
//
|
|
// When the index is greater to or equal than the HardenedKeyStart constant, the
|
|
// derived extended key will be a hardened extended key. It is only possible to
|
|
// derive a hardended extended key from a private extended key. Consequently,
|
|
// this function will return ErrDeriveHardFromPublic if a hardened child
|
|
// extended key is requested from a public extended key.
|
|
//
|
|
// A hardened extended key is useful since, as previously mentioned, it requires
|
|
// a parent private extended key to derive. In other words, normal child
|
|
// extended public keys can be derived from a parent public extended key (no
|
|
// knowledge of the parent private key) whereas hardened extended keys may not
|
|
// be.
|
|
//
|
|
// NOTE: There is an extremely small chance (< 1 in 2^127) the specific child
|
|
// index does not derive to a usable child. The ErrInvalidChild error will be
|
|
// returned if this should occur, and the caller is expected to ignore the
|
|
// invalid child and simply increment to the next index.
|
|
func (k *ExtendedKey) Child(i uint32) (*ExtendedKey, error) {
|
|
// There are four scenarios that could happen here:
|
|
// 1) Private extended key -> Hardened child private extended key
|
|
// 2) Private extended key -> Non-hardened child private extended key
|
|
// 3) Public extended key -> Non-hardened child public extended key
|
|
// 4) Public extended key -> Hardened child public extended key (INVALID!)
|
|
|
|
// Case #4 is invalid, so error out early.
|
|
// A hardened child extended key may not be created from a public
|
|
// extended key.
|
|
isChildHardened := i >= HardenedKeyStart
|
|
if !k.isPrivate && isChildHardened {
|
|
return nil, ErrDeriveHardFromPublic
|
|
}
|
|
|
|
// The data used to derive the child key depends on whether or not the
|
|
// child is hardened per [BIP32].
|
|
//
|
|
// For hardened children:
|
|
// 0x00 || ser256(parentKey) || ser32(i)
|
|
//
|
|
// For normal children:
|
|
// serP(parentPubKey) || ser32(i)
|
|
keyLen := 33
|
|
data := make([]byte, keyLen+4)
|
|
if isChildHardened {
|
|
// Case #1.
|
|
// When the child is a hardened child, the key is known to be a
|
|
// private key due to the above early return. Pad it with a
|
|
// leading zero as required by [BIP32] for deriving the child.
|
|
copy(data[1:], k.key)
|
|
} else {
|
|
// Case #2 or #3.
|
|
// This is either a public or private extended key, but in
|
|
// either case, the data which is used to derive the child key
|
|
// starts with the secp256k1 compressed public key bytes.
|
|
copy(data, k.pubKeyBytes())
|
|
}
|
|
binary.BigEndian.PutUint32(data[keyLen:], i)
|
|
|
|
// Take the HMAC-SHA512 of the current key's chain code and the derived
|
|
// data:
|
|
// I = HMAC-SHA512(Key = chainCode, Data = data)
|
|
hmac512 := hmac.New(sha512.New, k.chainCode)
|
|
hmac512.Write(data)
|
|
ilr := hmac512.Sum(nil)
|
|
|
|
// Split "I" into two 32-byte sequences Il and Ir where:
|
|
// Il = intermediate key used to derive the child
|
|
// Ir = child chain code
|
|
il := ilr[:len(ilr)/2]
|
|
childChainCode := ilr[len(ilr)/2:]
|
|
|
|
// Both derived public or private keys rely on treating the left 32-byte
|
|
// sequence calculated above (Il) as a 256-bit integer that must be
|
|
// within the valid range for a secp256k1 private key. There is a small
|
|
// chance (< 1 in 2^127) this condition will not hold, and in that case,
|
|
// a child extended key can't be created for this index and the caller
|
|
// should simply increment to the next index.
|
|
ilNum := new(big.Int).SetBytes(il)
|
|
if ilNum.Cmp(btcec.S256().N) >= 0 || ilNum.Sign() == 0 {
|
|
return nil, ErrInvalidChild
|
|
}
|
|
|
|
// The algorithm used to derive the child key depends on whether or not
|
|
// a private or public child is being derived.
|
|
//
|
|
// For private children:
|
|
// childKey = parse256(Il) + parentKey
|
|
//
|
|
// For public children:
|
|
// childKey = serP(point(parse256(Il)) + parentKey)
|
|
var isPrivate bool
|
|
var childKey []byte
|
|
if k.isPrivate {
|
|
// Case #1 or #2.
|
|
// Add the parent private key to the intermediate private key to
|
|
// derive the final child key.
|
|
//
|
|
// childKey = parse256(Il) + parenKey
|
|
keyNum := new(big.Int).SetBytes(k.key)
|
|
ilNum.Add(ilNum, keyNum)
|
|
ilNum.Mod(ilNum, btcec.S256().N)
|
|
childKey = ilNum.Bytes()
|
|
isPrivate = true
|
|
} else {
|
|
// Case #3.
|
|
// Calculate the corresponding intermediate public key for
|
|
// intermediate private key.
|
|
ilx, ily := btcec.S256().ScalarBaseMult(il)
|
|
if ilx.Sign() == 0 || ily.Sign() == 0 {
|
|
return nil, ErrInvalidChild
|
|
}
|
|
|
|
// Convert the serialized compressed parent public key into X
|
|
// and Y coordinates so it can be added to the intermediate
|
|
// public key.
|
|
pubKey, err := btcec.ParsePubKey(k.key, btcec.S256())
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Add the intermediate public key to the parent public key to
|
|
// derive the final child key.
|
|
//
|
|
// childKey = serP(point(parse256(Il)) + parentKey)
|
|
childX, childY := btcec.S256().Add(ilx, ily, pubKey.X, pubKey.Y)
|
|
pk := btcec.PublicKey{Curve: btcec.S256(), X: childX, Y: childY}
|
|
childKey = pk.SerializeCompressed()
|
|
}
|
|
|
|
// The fingerprint of the parent for the derived child is the first 4
|
|
// bytes of the RIPEMD160(SHA256(parentPubKey)).
|
|
parentFP := btcutil.Hash160(k.pubKeyBytes())[:4]
|
|
return newExtendedKey(k.version, childKey, childChainCode, parentFP,
|
|
k.depth+1, i, isPrivate), nil
|
|
}
|
|
|
|
// Neuter returns a new extended public key from this extended private key. The
|
|
// same extended key will be returned unaltered if it is already an extended
|
|
// public key.
|
|
//
|
|
// As the name implies, an extended public key does not have access to the
|
|
// private key, so it is not capable of signing transactions or deriving
|
|
// child extended private keys. However, it is capable of deriving further
|
|
// child extended public keys.
|
|
func (k *ExtendedKey) Neuter() (*ExtendedKey, error) {
|
|
// Already an extended public key.
|
|
if !k.isPrivate {
|
|
return k, nil
|
|
}
|
|
|
|
// Get the associated public extended key version bytes.
|
|
version, err := chaincfg.HDPrivateKeyToPublicKeyID(k.version)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Convert it to an extended public key. The key for the new extended
|
|
// key will simply be the pubkey of the current extended private key.
|
|
//
|
|
// This is the function N((k,c)) -> (K, c) from [BIP32].
|
|
return newExtendedKey(version, k.pubKeyBytes(), k.chainCode, k.parentFP,
|
|
k.depth, k.childNum, false), nil
|
|
}
|
|
|
|
// ECPubKey converts the extended key to a btcec public key and returns it.
|
|
func (k *ExtendedKey) ECPubKey() (*btcec.PublicKey, error) {
|
|
return btcec.ParsePubKey(k.pubKeyBytes(), btcec.S256())
|
|
}
|
|
|
|
// ECPrivKey converts the extended key to a btcec private key and returns it.
|
|
// As you might imagine this is only possible if the extended key is a private
|
|
// extended key (as determined by the IsPrivate function). The ErrNotPrivExtKey
|
|
// error will be returned if this function is called on a public extended key.
|
|
func (k *ExtendedKey) ECPrivKey() (*btcec.PrivateKey, error) {
|
|
if !k.isPrivate {
|
|
return nil, ErrNotPrivExtKey
|
|
}
|
|
|
|
privKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), k.key)
|
|
return privKey, nil
|
|
}
|
|
|
|
// Address converts the extended key to a standard bitcoin pay-to-pubkey-hash
|
|
// address for the passed network.
|
|
func (k *ExtendedKey) Address(net *chaincfg.Params) (*btcutil.AddressPubKeyHash, error) {
|
|
pkHash := btcutil.Hash160(k.pubKeyBytes())
|
|
return btcutil.NewAddressPubKeyHash(pkHash, net)
|
|
}
|
|
|
|
// paddedAppend appends the src byte slice to dst, returning the new slice.
|
|
// If the length of the source is smaller than the passed size, leading zero
|
|
// bytes are appended to the dst slice before appending src.
|
|
func paddedAppend(size uint, dst, src []byte) []byte {
|
|
for i := 0; i < int(size)-len(src); i++ {
|
|
dst = append(dst, 0)
|
|
}
|
|
return append(dst, src...)
|
|
}
|
|
|
|
// String returns the extended key as a human-readable base58-encoded string.
|
|
func (k *ExtendedKey) String() string {
|
|
if len(k.key) == 0 {
|
|
return "zeroed extended key"
|
|
}
|
|
|
|
var childNumBytes [4]byte
|
|
depthByte := byte(k.depth % 256)
|
|
binary.BigEndian.PutUint32(childNumBytes[:], k.childNum)
|
|
|
|
// The serialized format is:
|
|
// version (4) || depth (1) || parent fingerprint (4)) ||
|
|
// child num (4) || chain code (32) || key data (33) || checksum (4)
|
|
serializedBytes := make([]byte, 0, serializedKeyLen+4)
|
|
serializedBytes = append(serializedBytes, k.version...)
|
|
serializedBytes = append(serializedBytes, depthByte)
|
|
serializedBytes = append(serializedBytes, k.parentFP...)
|
|
serializedBytes = append(serializedBytes, childNumBytes[:]...)
|
|
serializedBytes = append(serializedBytes, k.chainCode...)
|
|
if k.isPrivate {
|
|
serializedBytes = append(serializedBytes, 0x00)
|
|
serializedBytes = paddedAppend(32, serializedBytes, k.key)
|
|
} else {
|
|
serializedBytes = append(serializedBytes, k.pubKeyBytes()...)
|
|
}
|
|
|
|
checkSum := chainhash.DoubleHashB(serializedBytes)[:4]
|
|
serializedBytes = append(serializedBytes, checkSum...)
|
|
return base58.Encode(serializedBytes)
|
|
}
|
|
|
|
// IsForNet returns whether or not the extended key is associated with the
|
|
// passed bitcoin network.
|
|
func (k *ExtendedKey) IsForNet(net *chaincfg.Params) bool {
|
|
return bytes.Equal(k.version, net.HDPrivateKeyID[:]) ||
|
|
bytes.Equal(k.version, net.HDPublicKeyID[:])
|
|
}
|
|
|
|
// SetNet associates the extended key, and any child keys yet to be derived from
|
|
// it, with the passed network.
|
|
func (k *ExtendedKey) SetNet(net *chaincfg.Params) {
|
|
if k.isPrivate {
|
|
k.version = net.HDPrivateKeyID[:]
|
|
} else {
|
|
k.version = net.HDPublicKeyID[:]
|
|
}
|
|
}
|
|
|
|
// zero sets all bytes in the passed slice to zero. This is used to
|
|
// explicitly clear private key material from memory.
|
|
func zero(b []byte) {
|
|
lenb := len(b)
|
|
for i := 0; i < lenb; i++ {
|
|
b[i] = 0
|
|
}
|
|
}
|
|
|
|
// Zero manually clears all fields and bytes in the extended key. This can be
|
|
// used to explicitly clear key material from memory for enhanced security
|
|
// against memory scraping. This function only clears this particular key and
|
|
// not any children that have already been derived.
|
|
func (k *ExtendedKey) Zero() {
|
|
zero(k.key)
|
|
zero(k.pubKey)
|
|
zero(k.chainCode)
|
|
zero(k.parentFP)
|
|
k.version = nil
|
|
k.key = nil
|
|
k.depth = 0
|
|
k.childNum = 0
|
|
k.isPrivate = false
|
|
}
|
|
|
|
// NewMaster creates a new master node for use in creating a hierarchical
|
|
// deterministic key chain. The seed must be between 128 and 512 bits and
|
|
// should be generated by a cryptographically secure random generation source.
|
|
//
|
|
// NOTE: There is an extremely small chance (< 1 in 2^127) the provided seed
|
|
// will derive to an unusable secret key. The ErrUnusable error will be
|
|
// returned if this should occur, so the caller must check for it and generate a
|
|
// new seed accordingly.
|
|
func NewMaster(seed []byte, net *chaincfg.Params) (*ExtendedKey, error) {
|
|
// Per [BIP32], the seed must be in range [MinSeedBytes, MaxSeedBytes].
|
|
if len(seed) < MinSeedBytes || len(seed) > MaxSeedBytes {
|
|
return nil, ErrInvalidSeedLen
|
|
}
|
|
|
|
// First take the HMAC-SHA512 of the master key and the seed data:
|
|
// I = HMAC-SHA512(Key = "Bitcoin seed", Data = S)
|
|
hmac512 := hmac.New(sha512.New, masterKey)
|
|
hmac512.Write(seed)
|
|
lr := hmac512.Sum(nil)
|
|
|
|
// Split "I" into two 32-byte sequences Il and Ir where:
|
|
// Il = master secret key
|
|
// Ir = master chain code
|
|
secretKey := lr[:len(lr)/2]
|
|
chainCode := lr[len(lr)/2:]
|
|
|
|
// Ensure the key in usable.
|
|
secretKeyNum := new(big.Int).SetBytes(secretKey)
|
|
if secretKeyNum.Cmp(btcec.S256().N) >= 0 || secretKeyNum.Sign() == 0 {
|
|
return nil, ErrUnusableSeed
|
|
}
|
|
|
|
parentFP := []byte{0x00, 0x00, 0x00, 0x00}
|
|
return newExtendedKey(net.HDPrivateKeyID[:], secretKey, chainCode,
|
|
parentFP, 0, 0, true), nil
|
|
}
|
|
|
|
// NewKeyFromString returns a new extended key instance from a base58-encoded
|
|
// extended key.
|
|
func NewKeyFromString(key string) (*ExtendedKey, error) {
|
|
// The base58-decoded extended key must consist of a serialized payload
|
|
// plus an additional 4 bytes for the checksum.
|
|
decoded := base58.Decode(key)
|
|
if len(decoded) != serializedKeyLen+4 {
|
|
return nil, ErrInvalidKeyLen
|
|
}
|
|
|
|
// The serialized format is:
|
|
// version (4) || depth (1) || parent fingerprint (4)) ||
|
|
// child num (4) || chain code (32) || key data (33) || checksum (4)
|
|
|
|
// Split the payload and checksum up and ensure the checksum matches.
|
|
payload := decoded[:len(decoded)-4]
|
|
checkSum := decoded[len(decoded)-4:]
|
|
expectedCheckSum := chainhash.DoubleHashB(payload)[:4]
|
|
if !bytes.Equal(checkSum, expectedCheckSum) {
|
|
return nil, ErrBadChecksum
|
|
}
|
|
|
|
// Deserialize each of the payload fields.
|
|
version := payload[:4]
|
|
depth := uint16(payload[4:5][0])
|
|
parentFP := payload[5:9]
|
|
childNum := binary.BigEndian.Uint32(payload[9:13])
|
|
chainCode := payload[13:45]
|
|
keyData := payload[45:78]
|
|
|
|
// The key data is a private key if it starts with 0x00. Serialized
|
|
// compressed pubkeys either start with 0x02 or 0x03.
|
|
isPrivate := keyData[0] == 0x00
|
|
if isPrivate {
|
|
// Ensure the private key is valid. It must be within the range
|
|
// of the order of the secp256k1 curve and not be 0.
|
|
keyData = keyData[1:]
|
|
keyNum := new(big.Int).SetBytes(keyData)
|
|
if keyNum.Cmp(btcec.S256().N) >= 0 || keyNum.Sign() == 0 {
|
|
return nil, ErrUnusableSeed
|
|
}
|
|
} else {
|
|
// Ensure the public key parses correctly and is actually on the
|
|
// secp256k1 curve.
|
|
_, err := btcec.ParsePubKey(keyData, btcec.S256())
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
return newExtendedKey(version, keyData, chainCode, parentFP, depth,
|
|
childNum, isPrivate), nil
|
|
}
|
|
|
|
// GenerateSeed returns a cryptographically secure random seed that can be used
|
|
// as the input for the NewMaster function to generate a new master node.
|
|
//
|
|
// The length is in bytes and it must be between 16 and 64 (128 to 512 bits).
|
|
// The recommended length is 32 (256 bits) as defined by the RecommendedSeedLen
|
|
// constant.
|
|
func GenerateSeed(length uint8) ([]byte, error) {
|
|
// Per [BIP32], the seed must be in range [MinSeedBytes, MaxSeedBytes].
|
|
if length < MinSeedBytes || length > MaxSeedBytes {
|
|
return nil, ErrInvalidSeedLen
|
|
}
|
|
|
|
buf := make([]byte, length)
|
|
_, err := rand.Read(buf)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return buf, nil
|
|
}
|