lbcutil/gcs/builder/builder.go
Olaoluwa Osuntokun ab6388e0c6
gcs/builder: remove the AddScript method as it's no longer used (#121)
In this commit, we remoec the AddScript method as it's no longer used,
and AddEntry should be used in place for adding pkScripts to the
filters.
2018-07-06 18:06:48 -05:00

372 lines
11 KiB
Go

// Copyright (c) 2017 The btcsuite developers
// Copyright (c) 2017 The Lightning Network Developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package builder
import (
"crypto/rand"
"fmt"
"math"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil/gcs"
)
const (
// DefaultP is the default collision probability (2^-19)
DefaultP = 19
// DefaultM is the default value used for the hash range.
DefaultM uint64 = 784931
)
// GCSBuilder is a utility class that makes building GCS filters convenient.
type GCSBuilder struct {
p uint8
m uint64
key [gcs.KeySize]byte
// data is a set of entries represented as strings. This is done to
// deduplicate items as they are added.
data map[string]struct{}
err error
}
// RandomKey is a utility function that returns a cryptographically random
// [gcs.KeySize]byte usable as a key for a GCS filter.
func RandomKey() ([gcs.KeySize]byte, error) {
var key [gcs.KeySize]byte
// Read a byte slice from rand.Reader.
randKey := make([]byte, gcs.KeySize)
_, err := rand.Read(randKey)
// This shouldn't happen unless the user is on a system that doesn't
// have a system CSPRNG. OK to panic in this case.
if err != nil {
return key, err
}
// Copy the byte slice to a [gcs.KeySize]byte array and return it.
copy(key[:], randKey[:])
return key, nil
}
// DeriveKey is a utility function that derives a key from a chainhash.Hash by
// truncating the bytes of the hash to the appopriate key size.
func DeriveKey(keyHash *chainhash.Hash) [gcs.KeySize]byte {
var key [gcs.KeySize]byte
copy(key[:], keyHash.CloneBytes()[:])
return key
}
// Key retrieves the key with which the builder will build a filter. This is
// useful if the builder is created with a random initial key.
func (b *GCSBuilder) Key() ([gcs.KeySize]byte, error) {
// Do nothing if the builder's errored out.
if b.err != nil {
return [gcs.KeySize]byte{}, b.err
}
return b.key, nil
}
// SetKey sets the key with which the builder will build a filter to the passed
// [gcs.KeySize]byte.
func (b *GCSBuilder) SetKey(key [gcs.KeySize]byte) *GCSBuilder {
// Do nothing if the builder's already errored out.
if b.err != nil {
return b
}
copy(b.key[:], key[:])
return b
}
// SetKeyFromHash sets the key with which the builder will build a filter to a
// key derived from the passed chainhash.Hash using DeriveKey().
func (b *GCSBuilder) SetKeyFromHash(keyHash *chainhash.Hash) *GCSBuilder {
// Do nothing if the builder's already errored out.
if b.err != nil {
return b
}
return b.SetKey(DeriveKey(keyHash))
}
// SetP sets the filter's probability after calling Builder().
func (b *GCSBuilder) SetP(p uint8) *GCSBuilder {
// Do nothing if the builder's already errored out.
if b.err != nil {
return b
}
// Basic sanity check.
if p > 32 {
b.err = gcs.ErrPTooBig
return b
}
b.p = p
return b
}
// SetM sets the filter's modulous value after calling Builder().
func (b *GCSBuilder) SetM(m uint64) *GCSBuilder {
// Do nothing if the builder's already errored out.
if b.err != nil {
return b
}
// Basic sanity check.
if m > uint64(math.MaxUint32) {
b.err = gcs.ErrPTooBig
return b
}
b.m = m
return b
}
// Preallocate sets the estimated filter size after calling Builder() to reduce
// the probability of memory reallocations. If the builder has already had data
// added to it, Preallocate has no effect.
func (b *GCSBuilder) Preallocate(n uint32) *GCSBuilder {
// Do nothing if the builder's already errored out.
if b.err != nil {
return b
}
if b.data == nil {
b.data = make(map[string]struct{}, n)
}
return b
}
// AddEntry adds a []byte to the list of entries to be included in the GCS
// filter when it's built.
func (b *GCSBuilder) AddEntry(data []byte) *GCSBuilder {
// Do nothing if the builder's already errored out.
if b.err != nil {
return b
}
b.data[string(data)] = struct{}{}
return b
}
// AddEntries adds all the []byte entries in a [][]byte to the list of entries
// to be included in the GCS filter when it's built.
func (b *GCSBuilder) AddEntries(data [][]byte) *GCSBuilder {
// Do nothing if the builder's already errored out.
if b.err != nil {
return b
}
for _, entry := range data {
b.AddEntry(entry)
}
return b
}
// AddHash adds a chainhash.Hash to the list of entries to be included in the
// GCS filter when it's built.
func (b *GCSBuilder) AddHash(hash *chainhash.Hash) *GCSBuilder {
// Do nothing if the builder's already errored out.
if b.err != nil {
return b
}
return b.AddEntry(hash.CloneBytes())
}
// AddWitness adds each item of the passed filter stack to the filter, and then
// adds each item as a script.
func (b *GCSBuilder) AddWitness(witness wire.TxWitness) *GCSBuilder {
// Do nothing if the builder's already errored out.
if b.err != nil {
return b
}
return b.AddEntries(witness)
}
// Build returns a function which builds a GCS filter with the given parameters
// and data.
func (b *GCSBuilder) Build() (*gcs.Filter, error) {
// Do nothing if the builder's already errored out.
if b.err != nil {
return nil, b.err
}
// We'll ensure that all the parmaters we need to actually build the
// filter properly are set.
if b.p == 0 {
return nil, fmt.Errorf("p value is not set, cannot build")
}
if b.m == 0 {
return nil, fmt.Errorf("m value is not set, cannot build")
}
dataSlice := make([][]byte, 0, len(b.data))
for item := range b.data {
dataSlice = append(dataSlice, []byte(item))
}
return gcs.BuildGCSFilter(b.p, b.m, b.key, dataSlice)
}
// WithKeyPNM creates a GCSBuilder with specified key and the passed
// probability, modulus and estimated filter size.
func WithKeyPNM(key [gcs.KeySize]byte, p uint8, n uint32, m uint64) *GCSBuilder {
b := GCSBuilder{}
return b.SetKey(key).SetP(p).SetM(m).Preallocate(n)
}
// WithKeyPM creates a GCSBuilder with specified key and the passed
// probability. Estimated filter size is set to zero, which means more
// reallocations are done when building the filter.
func WithKeyPM(key [gcs.KeySize]byte, p uint8, m uint64) *GCSBuilder {
return WithKeyPNM(key, p, 0, m)
}
// WithKey creates a GCSBuilder with specified key. Probability is set to 19
// (2^-19 collision probability). Estimated filter size is set to zero, which
// means more reallocations are done when building the filter.
func WithKey(key [gcs.KeySize]byte) *GCSBuilder {
return WithKeyPNM(key, DefaultP, 0, DefaultM)
}
// WithKeyHashPNM creates a GCSBuilder with key derived from the specified
// chainhash.Hash and the passed probability and estimated filter size.
func WithKeyHashPNM(keyHash *chainhash.Hash, p uint8, n uint32,
m uint64) *GCSBuilder {
return WithKeyPNM(DeriveKey(keyHash), p, n, m)
}
// WithKeyHashPM creates a GCSBuilder with key derived from the specified
// chainhash.Hash and the passed probability. Estimated filter size is set to
// zero, which means more reallocations are done when building the filter.
func WithKeyHashPM(keyHash *chainhash.Hash, p uint8, m uint64) *GCSBuilder {
return WithKeyHashPNM(keyHash, p, 0, m)
}
// WithKeyHash creates a GCSBuilder with key derived from the specified
// chainhash.Hash. Probability is set to 20 (2^-20 collision probability).
// Estimated filter size is set to zero, which means more reallocations are
// done when building the filter.
func WithKeyHash(keyHash *chainhash.Hash) *GCSBuilder {
return WithKeyHashPNM(keyHash, DefaultP, 0, DefaultM)
}
// WithRandomKeyPNM creates a GCSBuilder with a cryptographically random key and
// the passed probability and estimated filter size.
func WithRandomKeyPNM(p uint8, n uint32, m uint64) *GCSBuilder {
key, err := RandomKey()
if err != nil {
b := GCSBuilder{err: err}
return &b
}
return WithKeyPNM(key, p, n, m)
}
// WithRandomKeyPM creates a GCSBuilder with a cryptographically random key and
// the passed probability. Estimated filter size is set to zero, which means
// more reallocations are done when building the filter.
func WithRandomKeyPM(p uint8, m uint64) *GCSBuilder {
return WithRandomKeyPNM(p, 0, m)
}
// WithRandomKey creates a GCSBuilder with a cryptographically random key.
// Probability is set to 20 (2^-20 collision probability). Estimated filter
// size is set to zero, which means more reallocations are done when
// building the filter.
func WithRandomKey() *GCSBuilder {
return WithRandomKeyPNM(DefaultP, 0, DefaultM)
}
// BuildBasicFilter builds a basic GCS filter from a block. A basic GCS filter
// will contain all the previous output scripts spent by inputs within a block,
// as well as the data pushes within all the outputs created within a block.
func BuildBasicFilter(block *wire.MsgBlock, prevOutScripts [][]byte) (*gcs.Filter, error) {
blockHash := block.BlockHash()
b := WithKeyHash(&blockHash)
// If the filter had an issue with the specified key, then we force it
// to bubble up here by calling the Key() function.
_, err := b.Key()
if err != nil {
return nil, err
}
// In order to build a basic filter, we'll range over the entire block,
// adding each whole script itself.
for _, tx := range block.Transactions {
// For each output in a transaction, we'll add each of the
// individual data pushes within the script.
for _, txOut := range tx.TxOut {
if len(txOut.PkScript) == 0 {
continue
}
// In order to allow the filters to later be committed
// to within an OP_RETURN output, we ignore all
// OP_RETURNs to avoid a circular dependency.
if txOut.PkScript[0] == txscript.OP_RETURN &&
txscript.IsPushOnlyScript(txOut.PkScript[1:]) {
continue
}
b.AddEntry(txOut.PkScript)
}
}
// In the second pass, we'll also add all the prevOutScripts
// individually as elements.
for _, prevScript := range prevOutScripts {
if len(prevScript) == 0 {
continue
}
b.AddEntry(prevScript)
}
return b.Build()
}
// GetFilterHash returns the double-SHA256 of the filter.
func GetFilterHash(filter *gcs.Filter) (chainhash.Hash, error) {
filterData, err := filter.NBytes()
if err != nil {
return chainhash.Hash{}, err
}
return chainhash.DoubleHashH(filterData), nil
}
// MakeHeaderForFilter makes a filter chain header for a filter, given the
// filter and the previous filter chain header.
func MakeHeaderForFilter(filter *gcs.Filter, prevHeader chainhash.Hash) (chainhash.Hash, error) {
filterTip := make([]byte, 2*chainhash.HashSize)
filterHash, err := GetFilterHash(filter)
if err != nil {
return chainhash.Hash{}, err
}
// In the buffer we created above we'll compute hash || prevHash as an
// intermediate value.
copy(filterTip, filterHash[:])
copy(filterTip[chainhash.HashSize:], prevHeader[:])
// The final filter hash is the double-sha256 of the hash computed
// above.
return chainhash.DoubleHashH(filterTip), nil
}