This commit makes nextAddresses add a function to the transactions
OnCommit handler used to update the cache on successful database
transaction commit. Before this we would risk the cache and database of
get out of sync if the database transaction failed or was aborted after
the cache was updated.
In this commit, we add the new DerivationInfo method to the current
default implementation of the ManagedPubKeyAddress interface. In doing
this, we replace the account field with the derivationPath, as we can
obtain the account field from the derivationPath itself.
This commit resolves a deadlock observed when attempting
to generate addresses. There were a few cases, particularly
in chainAddressRowToManaged and loadAccountInfo, which accessed
the public IsLocked() method of the Manager, even though the
shared mutex had already been acquired.
The solution is to create an internal isLocked() method, which
can be safely called assuming the manager's mutex has already been
acquired. As the comments above both of the methods in question
specify, we can assume the Manager's mutex *is* already acquired.
This commit also reduces some unnecessary code duplication, since
the recent changes left both a Locked() and IsLocked() method that
perform the same functionality. IsLocked() was favored as it more
clearly indicates that the returned value is a boolean.
In this commit, we create a new struct that houses the key derivation,
address management, and account management for a particular scope. A
scope consists of a (purpose, cointype) tuple. Additionally, each
ScopedKeyManager is able to generate internal/external addresses for a
specific *address type*. This make rescans easier as for each scope, we
know what type of output to look for within the chain.
The ScopedKeyManagers have two new primary methods that weren’t
previously present within the regular Manager:
* DeriveFromKeyPath
* NewRawAccount
These two methods allow callers a greater degree of control over the
way that accounted are created and addressed derived.
In this commit, we introduce the concept of scopes for individual key
managers. Each scope will lock down a key manager to a particular
purpose and coin type within the BIP0043 hierarchy. Each scope will
also have a set address type schema. This schema will be consulted when
creating addresses for a particular scoped key manager.
Finally, we introduce 3 new default scopes:
* BIP 44
* BIP 84
* BIP 49++ (BIP49 but uses p2wkh for change addresses)