lbcwallet/wallet/wallet.go
Josh Rickmar 85425c2c80 Abstract out wallet tracking function.
This will soon be used to also implement tracking of utxo and txs for
address in this wallet.
2013-09-03 17:16:07 -04:00

1261 lines
31 KiB
Go

/*
* Copyright (c) 2013 Conformal Systems LLC <info@conformal.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package wallet
import (
"bytes"
"code.google.com/p/go.crypto/ripemd160"
"crypto/aes"
"crypto/cipher"
"crypto/rand"
"crypto/sha256"
"crypto/sha512"
"encoding/binary"
"errors"
"fmt"
"github.com/conformal/btcec"
"github.com/conformal/btcutil"
"github.com/conformal/btcwire"
"github.com/davecgh/go-spew/spew"
"hash"
"io"
"math"
"math/big"
"sync"
"time"
)
var _ = spew.Dump
const (
// Length in bytes of KDF output.
kdfOutputBytes = 32
// Maximum length in bytes of a comment that can have a size represented
// as a uint16.
maxCommentLen = (1 << 16) - 1
)
const (
defaultKdfComputeTime = 0.25
defaultKdfMaxMem = 32 * 1024 * 1024
)
// Possible errors when dealing with wallets.
var (
ChecksumErr = errors.New("Checksum mismatch")
MalformedEntryErr = errors.New("Malformed entry")
WalletDoesNotExist = errors.New("Non-existant wallet")
)
var (
// '\xbaWALLET\x00'
fileID = [8]byte{0xba, 0x57, 0x41, 0x4c, 0x4c, 0x45, 0x54, 0x00}
mainnetMagicBytes = [4]byte{0xf9, 0xbe, 0xb4, 0xd9}
testnetMagicBytes = [4]byte{0x0b, 0x11, 0x09, 0x07}
)
type entryHeader byte
const (
addrCommentHeader entryHeader = 1 << iota
txCommentHeader
deletedHeader
addrHeader entryHeader = 0
)
// We want to use binaryRead and binaryWrite instead of binary.Read
// and binary.Write because those from the binary package do not return
// the number of bytes actually written or read. We need to return
// this value to correctly support the io.ReaderFrom and io.WriterTo
// interfaces.
func binaryRead(r io.Reader, order binary.ByteOrder, data interface{}) (n int64, err error) {
var read int
buf := make([]byte, binary.Size(data))
if read, err = r.Read(buf); err != nil {
return int64(read), err
}
return int64(read), binary.Read(bytes.NewBuffer(buf), order, data)
}
// See comment for binaryRead().
func binaryWrite(w io.Writer, order binary.ByteOrder, data interface{}) (n int64, err error) {
var buf bytes.Buffer
if err = binary.Write(&buf, order, data); err != nil {
return 0, err
}
written, err := w.Write(buf.Bytes())
return int64(written), err
}
// Calculate the hash of hasher over buf.
func calcHash(buf []byte, hasher hash.Hash) []byte {
hasher.Write(buf)
return hasher.Sum(nil)
}
// calculate hash160 which is ripemd160(sha256(data))
func calcHash160(buf []byte) []byte {
return calcHash(calcHash(buf, sha256.New()), ripemd160.New())
}
// calculate hash256 which is sha256(sha256(data))
func calcHash256(buf []byte) []byte {
return calcHash(calcHash(buf, sha256.New()), sha256.New())
}
// First byte in uncompressed pubKey field.
const pubkeyUncompressed = 0x4
// pubkeyFromPrivkey creates a 65-byte encoded pubkey based on a
// 32-byte privkey.
func pubkeyFromPrivkey(privkey []byte) (pubkey []byte) {
x, y := btcec.S256().ScalarBaseMult(privkey)
pubkey = make([]byte, 65)
pubkey[0] = pubkeyUncompressed
copy(pubkey[1:33], x.Bytes())
copy(pubkey[33:], y.Bytes())
return pubkey
}
func keyOneIter(passphrase, salt []byte, memReqts uint64) []byte {
saltedpass := append(passphrase, salt...)
lutbl := make([]byte, memReqts)
// Seed for lookup table
seed := sha512.Sum512(saltedpass)
copy(lutbl[:sha512.Size], seed[:])
for nByte := 0; nByte < (int(memReqts) - sha512.Size); nByte += sha512.Size {
hash := sha512.Sum512(lutbl[nByte : nByte+sha512.Size])
copy(lutbl[nByte+sha512.Size:nByte+2*sha512.Size], hash[:])
}
x := lutbl[cap(lutbl)-sha512.Size:]
seqCt := uint32(memReqts / sha512.Size)
nLookups := seqCt / 2
for i := uint32(0); i < nLookups; i++ {
// Armory ignores endianness here. We assume LE.
newIdx := binary.LittleEndian.Uint32(x[cap(x)-4:]) % seqCt
// Index of hash result at newIdx
vIdx := newIdx * sha512.Size
v := lutbl[vIdx : vIdx+sha512.Size]
// XOR hash x with hash v
for j := 0; j < sha512.Size; j++ {
x[j] ^= v[j]
}
// Save new hash to x
hash := sha512.Sum512(x)
copy(x, hash[:])
}
return x[:kdfOutputBytes]
}
// Key implements the key derivation function used by Armory
// based on the ROMix algorithm described in Colin Percival's paper
// "Stronger Key Derivation via Sequential Memory-Hard Functions"
// (http://www.tarsnap.com/scrypt/scrypt.pdf).
func Key(passphrase []byte, params *kdfParameters) []byte {
masterKey := passphrase
for i := uint32(0); i < params.nIter; i++ {
masterKey = keyOneIter(masterKey, params.salt[:], params.mem)
}
return masterKey
}
// leftPad returns a new slice of length size. The contents of input are right
// aligned in the new slice.
func leftPad(input []byte, size int) (out []byte) {
n := len(input)
if n > size {
n = size
}
out = make([]byte, size)
copy(out[len(out)-n:], input)
return
}
// ChainedPrivKey deterministically generates new private key using a
// previous address and chaincode. privkey and chaincode must be 32
// bytes long, and pubkey may either be 65 bytes or nil (in which case it
// is generated by the privkey).
func ChainedPrivKey(privkey, pubkey, chaincode []byte) ([]byte, error) {
if len(privkey) != 32 {
return nil, fmt.Errorf("Invalid privkey length %d (must be 32)",
len(privkey))
}
if len(chaincode) != 32 {
return nil, fmt.Errorf("Invalid chaincode length %d (must be 32)",
len(chaincode))
}
if pubkey == nil {
pubkey = pubkeyFromPrivkey(privkey)
} else if len(pubkey) != 65 {
return nil, fmt.Errorf("Invalid pubkey length %d.", len(pubkey))
}
// This is a perfect example of YOLO crypto. Armory claims this XORing
// with the SHA256 hash of the pubkey is done to add extra entropy (why
// you'd want to add entropy to a deterministic function, I don't know),
// even though the pubkey is generated directly from the privkey. In
// terms of security or privacy, this is a complete waste of CPU cycles,
// but we do the same because we want to keep compatibility with
// Armory's chained address generation.
xorbytes := make([]byte, 32)
chainMod := calcHash256(pubkey)
for i, _ := range xorbytes {
xorbytes[i] = chainMod[i] ^ chaincode[i]
}
chainXor := new(big.Int).SetBytes(xorbytes)
privint := new(big.Int).SetBytes(privkey)
t := new(big.Int).Mul(chainXor, privint)
b := t.Mod(t, btcec.S256().N).Bytes()
return leftPad(b, 32), nil
}
type varEntries []io.WriterTo
func (v *varEntries) WriteTo(w io.Writer) (n int64, err error) {
ss := ([]io.WriterTo)(*v)
var written int64
for _, s := range ss {
var err error
if written, err = s.WriteTo(w); err != nil {
return n + written, err
}
n += written
}
return n, nil
}
func (v *varEntries) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
// Remove any previous entries.
*v = nil
wts := ([]io.WriterTo)(*v)
// Keep reading entries until an EOF is reached.
for {
var header entryHeader
if read, err = binaryRead(r, binary.LittleEndian, &header); err != nil {
// EOF here is not an error.
if err == io.EOF {
return n + read, nil
}
return n + read, err
}
n += read
var wt io.WriterTo = nil
switch header {
case addrHeader:
var entry addrEntry
if read, err = entry.ReadFrom(r); err != nil {
return n + read, err
}
n += read
wt = &entry
case addrCommentHeader:
var entry addrCommentEntry
if read, err = entry.ReadFrom(r); err != nil {
return n + read, err
}
n += read
wt = &entry
case txCommentHeader:
var entry txCommentEntry
if read, err = entry.ReadFrom(r); err != nil {
return n + read, err
}
n += read
wt = &entry
case deletedHeader:
var entry deletedEntry
if read, err = entry.ReadFrom(r); err != nil {
return n + read, err
}
n += read
default:
return n, fmt.Errorf("Unknown entry header: %d", uint8(header))
}
if wt != nil {
wts = append(wts, wt)
*v = wts
}
}
return n, nil
}
// Wallet represents an btcd/Armory wallet in memory. It
// implements the io.ReaderFrom and io.WriterTo interfaces to read
// from and write to any type of byte streams, including files.
// TODO(jrick) remove as many more magic numbers as possible.
type Wallet struct {
version uint32
net btcwire.BitcoinNet
flags walletFlags
uniqID [6]byte
createDate int64
name [32]byte
desc [256]byte
highestUsed int64
kdfParams kdfParameters
keyGenerator btcAddress
addrMap map[[ripemd160.Size]byte]*btcAddress
addrCommentMap map[[ripemd160.Size]byte]*[]byte
txCommentMap map[[sha256.Size]byte]*[]byte
// These are not serialized
key struct {
sync.Mutex
secret []byte
}
chainIdxMap map[int64]*[ripemd160.Size]byte
lastChainIdx int64
}
// NewWallet() creates and initializes a new Wallet. name's and
// desc's binary representation must not exceed 32 and 256 bytes,
// respectively. All address private keys are encrypted with passphrase.
// The wallet is returned unlocked.
func NewWallet(name, desc string, passphrase []byte) (*Wallet, error) {
if binary.Size(name) > 32 {
return nil, errors.New("name exceeds 32 byte maximum size")
}
if binary.Size(desc) > 256 {
return nil, errors.New("desc exceeds 256 byte maximum size")
}
kdfp := computeKdfParameters(defaultKdfComputeTime, defaultKdfMaxMem)
rootkey, chaincode := make([]byte, 32), make([]byte, 32)
rand.Read(rootkey)
rand.Read(chaincode)
root, err := newRootBtcAddress(rootkey, nil, chaincode)
if err != nil {
return nil, err
}
aeskey := Key([]byte(passphrase), kdfp)
if err := root.encrypt(aeskey); err != nil {
return nil, err
}
// Number of pregenerated addresses.
const pregenerated = 100
// TODO(jrick): not sure we will need uniqID, but would be good for
// compat with armory.
w := &Wallet{
version: 0, // TODO(jrick): implement versioning
net: btcwire.MainNet,
flags: walletFlags{
useEncryption: true,
watchingOnly: false,
},
createDate: time.Now().Unix(),
highestUsed: -1,
kdfParams: *kdfp,
keyGenerator: *root,
addrMap: make(map[[ripemd160.Size]byte]*btcAddress),
addrCommentMap: make(map[[ripemd160.Size]byte]*[]byte),
txCommentMap: make(map[[sha256.Size]byte]*[]byte),
chainIdxMap: make(map[int64]*[ripemd160.Size]byte),
lastChainIdx: pregenerated - 1,
}
// Add root address to maps.
w.addrMap[w.keyGenerator.pubKeyHash] = &w.keyGenerator
w.chainIdxMap[w.keyGenerator.chainIndex] = &w.keyGenerator.pubKeyHash
// Pre-generate 100 encrypted addresses and add to maps.
addr := &w.keyGenerator
cc := addr.chaincode[:]
for i := 0; i < pregenerated; i++ {
privkey, err := ChainedPrivKey(addr.privKeyCT, addr.pubKey[:], cc)
if err != nil {
return nil, err
}
newaddr, err := newBtcAddress(privkey, nil)
if err != nil {
return nil, err
}
if err = newaddr.encrypt(aeskey); err != nil {
return nil, err
}
w.addrMap[newaddr.pubKeyHash] = newaddr
newaddr.chainIndex = addr.chainIndex + 1
w.chainIdxMap[newaddr.chainIndex] = &newaddr.pubKeyHash
copy(newaddr.chaincode[:], cc) // armory does this.. but why?
addr = newaddr
}
copy(w.name[:], []byte(name))
copy(w.desc[:], []byte(desc))
return w, nil
}
func (w *Wallet) Name() string {
return string(w.name[:])
}
// ReadFrom reads data from a io.Reader and saves it to a Wallet,
// returning the number of bytes read and any errors encountered.
func (w *Wallet) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
w.addrMap = make(map[[ripemd160.Size]byte]*btcAddress)
w.addrCommentMap = make(map[[ripemd160.Size]byte]*[]byte)
w.chainIdxMap = make(map[int64]*[ripemd160.Size]byte)
w.txCommentMap = make(map[[sha256.Size]byte]*[]byte)
var id [8]byte
var appendedEntries varEntries
// Iterate through each entry needing to be read. If data
// implements io.ReaderFrom, use its ReadFrom func. Otherwise,
// data is a pointer to a fixed sized value.
datas := []interface{}{
&id,
&w.version,
&w.net,
&w.flags,
&w.uniqID,
&w.createDate,
&w.name,
&w.desc,
&w.highestUsed,
&w.kdfParams,
make([]byte, 256),
&w.keyGenerator,
make([]byte, 1024),
&appendedEntries,
}
for _, data := range datas {
var err error
if rf, ok := data.(io.ReaderFrom); ok {
read, err = rf.ReadFrom(r)
} else {
read, err = binaryRead(r, binary.LittleEndian, data)
}
n += read
if err != nil {
return n, err
}
}
if id != fileID {
return n, errors.New("Unknown File ID.")
}
// Add root address to address map
w.addrMap[w.keyGenerator.pubKeyHash] = &w.keyGenerator
w.chainIdxMap[w.keyGenerator.chainIndex] = &w.keyGenerator.pubKeyHash
// Fill unserializied fields.
wts := ([]io.WriterTo)(appendedEntries)
for _, wt := range wts {
switch wt.(type) {
case *addrEntry:
e := wt.(*addrEntry)
w.addrMap[e.pubKeyHash160] = &e.addr
w.chainIdxMap[e.addr.chainIndex] = &e.pubKeyHash160
if w.lastChainIdx < e.addr.chainIndex {
w.lastChainIdx = e.addr.chainIndex
}
case *addrCommentEntry:
e := wt.(*addrCommentEntry)
w.addrCommentMap[e.pubKeyHash160] = &e.comment
case *txCommentEntry:
e := wt.(*txCommentEntry)
w.txCommentMap[e.txHash] = &e.comment
default:
return n, errors.New("Unknown appended entry")
}
}
return n, nil
}
// WriteTo serializes a Wallet and writes it to a io.Writer,
// returning the number of bytes written and any errors encountered.
func (w *Wallet) WriteTo(wtr io.Writer) (n int64, err error) {
wts := make([]io.WriterTo, len(w.addrMap)-1)
for hash, addr := range w.addrMap {
if addr.chainIndex != -1 { // ignore root address
e := &addrEntry{
pubKeyHash160: hash,
addr: *addr,
}
wts[addr.chainIndex] = e
}
}
for hash, comment := range w.addrCommentMap {
e := &addrCommentEntry{
pubKeyHash160: hash,
comment: *comment,
}
wts = append(wts, e)
}
for hash, comment := range w.txCommentMap {
e := &txCommentEntry{
txHash: hash,
comment: *comment,
}
wts = append(wts, e)
}
appendedEntries := varEntries(wts)
// Iterate through each entry needing to be written. If data
// implements io.WriterTo, use its WriteTo func. Otherwise,
// data is a pointer to a fixed size value.
datas := []interface{}{
&fileID,
&w.version,
&w.net,
&w.flags,
&w.uniqID,
&w.createDate,
&w.name,
&w.desc,
&w.highestUsed,
&w.kdfParams,
make([]byte, 256),
&w.keyGenerator,
make([]byte, 1024),
&appendedEntries,
}
var written int64
for _, data := range datas {
if s, ok := data.(io.WriterTo); ok {
written, err = s.WriteTo(wtr)
} else {
written, err = binaryWrite(wtr, binary.LittleEndian, data)
}
n += written
if err != nil {
return n, err
}
}
return n, nil
}
// Unlock derives an AES key from passphrase and wallet's KDF
// parameters and unlocks the root key of the wallet.
func (w *Wallet) Unlock(passphrase []byte) error {
key := Key(passphrase, &w.kdfParams)
// Attempt unlocking root address
if err := w.keyGenerator.unlock(key); err != nil {
return err
} else {
w.key.Lock()
w.key.secret = key
w.key.Unlock()
return nil
}
}
// Lock does a best effort to zero the keys.
// Being go this might not succeed but try anway.
// TODO(jrick)
func (w *Wallet) Lock() (err error) {
// Remove clear text private keys from all entries.
for _, addr := range w.addrMap {
addr.privKeyCT = nil
}
w.key.Lock()
if w.key.secret != nil {
for i, _ := range w.key.secret {
w.key.secret[i] = 0
}
w.key.secret = nil
} else {
err = fmt.Errorf("Wallet already locked")
}
w.key.Unlock()
return nil
}
// IsLocked returns whether a wallet is unlocked (in which case the
// key is saved in memory), or locked.
func (w *Wallet) IsLocked() (locked bool) {
w.key.Lock()
locked = w.key.secret == nil
w.key.Unlock()
return locked
}
// Returns wallet version as string and int.
// TODO(jrick)
func (w *Wallet) Version() (string, int) {
return "", 0
}
// NextUnusedAddress attempts to get the next chained address. It
// currently relies on pre-generated addresses and will return an empty
// string if the address pool has run out. TODO(jrick)
func (w *Wallet) NextUnusedAddress() string {
_ = w.lastChainIdx
w.highestUsed++
new160, err := w.addr160ForIdx(w.highestUsed)
if err != nil {
return ""
}
addr := w.addrMap[*new160]
if addr != nil {
return btcutil.Base58Encode(addr.pubKeyHash[:])
} else {
return ""
}
}
func (w *Wallet) addr160ForIdx(idx int64) (*[ripemd160.Size]byte, error) {
if idx > w.lastChainIdx {
return nil, errors.New("Chain index out of range")
}
return w.chainIdxMap[idx], nil
}
// GetActiveAddresses returns all wallet addresses that have been
// requested to be generated. These do not include pre-generated
// addresses.
func (w *Wallet) GetActiveAddresses() []string {
addrs := []string{}
for i := int64(-1); i <= w.highestUsed; i++ {
addr160, err := w.addr160ForIdx(i)
if err != nil {
return addrs
}
addr := w.addrMap[*addr160]
addrs = append(addrs, btcutil.Base58Encode(addr.pubKeyHash[:]))
}
return addrs
}
type walletFlags struct {
useEncryption bool
watchingOnly bool
}
func (wf *walletFlags) ReadFrom(r io.Reader) (n int64, err error) {
raw := make([]byte, 8)
n, err = binaryRead(r, binary.LittleEndian, raw)
wf.useEncryption = raw[0] != 0
wf.watchingOnly = raw[1] != 0
return n, err
}
func (wf *walletFlags) WriteTo(w io.Writer) (n int64, err error) {
raw := make([]byte, 8)
if wf.useEncryption {
raw[0] = 1
}
if wf.watchingOnly {
raw[1] = 1
}
return binaryWrite(w, binary.LittleEndian, raw)
}
type addrFlags struct {
hasPrivKey bool
hasPubKey bool
encrypted bool
}
func (af *addrFlags) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
var b [8]byte
read, err = binaryRead(r, binary.LittleEndian, &b)
if err != nil {
return n + read, err
}
n += read
if b[0]&(1<<0) != 0 {
af.hasPrivKey = true
}
if b[0]&(1<<1) != 0 {
af.hasPubKey = true
}
if b[0]&(1<<2) == 0 {
return n, errors.New("Address flag specifies unencrypted address.")
}
af.encrypted = true
return n, nil
}
func (af *addrFlags) WriteTo(w io.Writer) (n int64, err error) {
var b [8]byte
if af.hasPrivKey {
b[0] |= 1 << 0
}
if af.hasPubKey {
b[0] |= 1 << 1
}
if !af.encrypted {
// We only support encrypted privkeys.
return n, errors.New("Address must be encrypted.")
}
b[0] |= 1 << 2
return binaryWrite(w, binary.LittleEndian, b)
}
type btcAddress struct {
pubKeyHash [ripemd160.Size]byte
flags addrFlags
chaincode [32]byte
chainIndex int64
chainDepth int64 // currently unused (will use when extending a locked wallet)
initVector [16]byte
privKey [32]byte
pubKey [65]byte
firstSeen uint64
lastSeen uint64
firstBlock uint32
lastBlock uint32
privKeyCT []byte // non-nil if unlocked.
}
// newBtcAddress initializes and returns a new address. privkey must
// be 32 bytes. iv must be 16 bytes, or nil (in which case it is
// randomly generated).
func newBtcAddress(privkey, iv []byte) (addr *btcAddress, err error) {
if len(privkey) != 32 {
return nil, errors.New("Private key is not 32 bytes.")
}
if iv == nil {
iv = make([]byte, 16)
rand.Read(iv)
} else if len(iv) != 16 {
return nil, errors.New("Init vector must be nil or 16 bytes large.")
}
addr = &btcAddress{
privKeyCT: privkey,
flags: addrFlags{
hasPrivKey: true,
hasPubKey: true,
},
firstSeen: math.MaxUint64,
firstBlock: math.MaxUint32,
}
copy(addr.initVector[:], iv)
pub := pubkeyFromPrivkey(privkey)
copy(addr.pubKey[:], pub)
copy(addr.pubKeyHash[:], calcHash160(pub))
return addr, nil
}
// newRootBtcAddress generates a new address, also setting the
// chaincode and chain index to represent this address as a root
// address.
func newRootBtcAddress(privKey, iv, chaincode []byte) (addr *btcAddress, err error) {
if len(chaincode) != 32 {
return nil, errors.New("Chaincode is not 32 bytes.")
}
addr, err = newBtcAddress(privKey, iv)
if err != nil {
return nil, err
}
copy(addr.chaincode[:], chaincode)
addr.chainIndex = -1
return addr, err
}
// ReadFrom reads an encrypted address from an io.Reader.
func (addr *btcAddress) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
// Checksums
var chkPubKeyHash uint32
var chkChaincode uint32
var chkInitVector uint32
var chkPrivKey uint32
var chkPubKey uint32
// Read serialized wallet into addr fields and checksums.
datas := []interface{}{
&addr.pubKeyHash,
&chkPubKeyHash,
make([]byte, 4), // version
&addr.flags,
&addr.chaincode,
&chkChaincode,
&addr.chainIndex,
&addr.chainDepth,
&addr.initVector,
&chkInitVector,
&addr.privKey,
&chkPrivKey,
&addr.pubKey,
&chkPubKey,
&addr.firstSeen,
&addr.lastSeen,
&addr.firstBlock,
&addr.lastBlock,
}
for _, data := range datas {
if rf, ok := data.(io.ReaderFrom); ok {
read, err = rf.ReadFrom(r)
} else {
read, err = binaryRead(r, binary.LittleEndian, data)
}
if err != nil {
return n + read, err
}
n += read
}
// Verify checksums, correct errors where possible.
checks := []struct {
data []byte
chk uint32
}{
{addr.pubKeyHash[:], chkPubKeyHash},
{addr.chaincode[:], chkChaincode},
{addr.initVector[:], chkInitVector},
{addr.privKey[:], chkPrivKey},
{addr.pubKey[:], chkPubKey},
}
for i, _ := range checks {
if err = verifyAndFix(checks[i].data, checks[i].chk); err != nil {
return n, err
}
}
return n, nil
}
func (addr *btcAddress) WriteTo(w io.Writer) (n int64, err error) {
var written int64
datas := []interface{}{
&addr.pubKeyHash,
walletHash(addr.pubKeyHash[:]),
make([]byte, 4), //version
&addr.flags,
&addr.chaincode,
walletHash(addr.chaincode[:]),
&addr.chainIndex,
&addr.chainDepth,
&addr.initVector,
walletHash(addr.initVector[:]),
&addr.privKey,
walletHash(addr.privKey[:]),
&addr.pubKey,
walletHash(addr.pubKey[:]),
&addr.firstSeen,
&addr.lastSeen,
&addr.firstBlock,
&addr.lastBlock,
}
for _, data := range datas {
if wt, ok := data.(io.WriterTo); ok {
written, err = wt.WriteTo(w)
} else {
written, err = binaryWrite(w, binary.LittleEndian, data)
}
if err != nil {
return n + written, err
}
n += written
}
return n, nil
}
// encrypt attempts to encrypt an address's clear text private key,
// failing if the address is already encrypted or if the private key is
// not 32 bytes. If successful, the encryption flag is set.
func (a *btcAddress) encrypt(key []byte) error {
if a.flags.encrypted {
return errors.New("Address already encrypted.")
}
if len(a.privKeyCT) != 32 {
return errors.New("Invalid clear text private key.")
}
aesBlockEncrypter, err := aes.NewCipher(key)
if err != nil {
return err
}
aesEncrypter := cipher.NewCFBEncrypter(aesBlockEncrypter, a.initVector[:])
aesEncrypter.XORKeyStream(a.privKey[:], a.privKeyCT)
a.flags.encrypted = true
return nil
}
// lock removes the reference this address holds to its clear text
// private key. This function fails if the address is not encrypted.
func (a *btcAddress) lock() error {
if !a.flags.encrypted {
return errors.New("Unable to lock unencrypted address.")
}
a.privKeyCT = nil
return nil
}
// unlock decrypts and stores a pointer to this address's private key,
// failing if the address is not encrypted, or the provided key is
// incorrect.
func (a *btcAddress) unlock(key []byte) error {
if !a.flags.encrypted {
return errors.New("Unable to unlock unencrypted address.")
}
aesBlockDecrypter, err := aes.NewCipher(key)
if err != nil {
return err
}
aesDecrypter := cipher.NewCFBDecrypter(aesBlockDecrypter, a.initVector[:])
ct := make([]byte, 32)
aesDecrypter.XORKeyStream(ct, a.privKey[:])
pubKey, err := btcec.ParsePubKey(a.pubKey[:], btcec.S256())
if err != nil {
return fmt.Errorf("ParsePubKey faild:", err)
}
x, y := btcec.S256().ScalarBaseMult(ct)
if x.Cmp(pubKey.X) != 0 || y.Cmp(pubKey.Y) != 0 {
return errors.New("Decryption failed.")
}
a.privKeyCT = ct
return nil
}
// TODO(jrick)
func (addr *btcAddress) changeEncryptionKey(oldkey, newkey []byte) error {
return nil
}
func walletHash(b []byte) uint32 {
sum := btcwire.DoubleSha256(b)
return binary.LittleEndian.Uint32(sum)
}
// TODO(jrick) add error correction.
func verifyAndFix(b []byte, chk uint32) error {
if walletHash(b) != chk {
return ChecksumErr
}
return nil
}
type kdfParameters struct {
mem uint64
nIter uint32
salt [32]byte
}
// computeKdfParameters returns best guess parameters to the
// memory-hard key derivation function to make the computation last
// targetSec seconds, while using no more than maxMem bytes of memory.
func computeKdfParameters(targetSec float64, maxMem uint64) *kdfParameters {
params := &kdfParameters{}
rand.Read(params.salt[:])
testKey := []byte("This is an example key to test KDF iteration speed")
memoryReqtBytes := uint64(1024)
approxSec := float64(0)
for approxSec <= targetSec/4 && memoryReqtBytes < maxMem {
memoryReqtBytes *= 2
before := time.Now()
_ = keyOneIter(testKey, params.salt[:], memoryReqtBytes)
approxSec = time.Since(before).Seconds()
}
allItersSec := float64(0)
nIter := uint32(1)
for allItersSec < 0.02 { // This is a magic number straight from armory's source.
nIter *= 2
before := time.Now()
for i := uint32(0); i < nIter; i++ {
_ = keyOneIter(testKey, params.salt[:], memoryReqtBytes)
}
allItersSec = time.Since(before).Seconds()
}
params.mem = memoryReqtBytes
params.nIter = nIter
return params
}
func (params *kdfParameters) WriteTo(w io.Writer) (n int64, err error) {
var written int64
memBytes := make([]byte, 8)
nIterBytes := make([]byte, 4)
binary.LittleEndian.PutUint64(memBytes, params.mem)
binary.LittleEndian.PutUint32(nIterBytes, params.nIter)
chkedBytes := append(memBytes, nIterBytes...)
chkedBytes = append(chkedBytes, params.salt[:]...)
datas := []interface{}{
&params.mem,
&params.nIter,
&params.salt,
walletHash(chkedBytes),
make([]byte, 256-(binary.Size(params)+4)), // padding
}
for _, data := range datas {
if written, err = binaryWrite(w, binary.LittleEndian, data); err != nil {
return n + written, err
}
n += written
}
return n, nil
}
func (params *kdfParameters) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
// These must be read in but are not saved directly to params.
chkedBytes := make([]byte, 44)
var chk uint32
padding := make([]byte, 256-(binary.Size(params)+4))
datas := []interface{}{
chkedBytes,
&chk,
padding,
}
for _, data := range datas {
if read, err = binaryRead(r, binary.LittleEndian, data); err != nil {
return n + read, err
}
n += read
}
// Verify checksum
if err = verifyAndFix(chkedBytes, chk); err != nil {
return n, err
}
// Read params
buf := bytes.NewBuffer(chkedBytes)
datas = []interface{}{
&params.mem,
&params.nIter,
&params.salt,
}
for _, data := range datas {
if err = binary.Read(buf, binary.LittleEndian, data); err != nil {
return n, err
}
}
return n, nil
}
type addrEntry struct {
pubKeyHash160 [ripemd160.Size]byte
addr btcAddress
}
func (e *addrEntry) WriteTo(w io.Writer) (n int64, err error) {
var written int64
// Write header
if written, err = binaryWrite(w, binary.LittleEndian, addrHeader); err != nil {
return n + written, err
}
n += written
// Write hash
if written, err = binaryWrite(w, binary.LittleEndian, &e.pubKeyHash160); err != nil {
return n + written, err
}
n += written
// Write btcAddress
written, err = e.addr.WriteTo(w)
n += written
return n, err
}
func (e *addrEntry) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
if read, err = binaryRead(r, binary.LittleEndian, &e.pubKeyHash160); err != nil {
return n + read, err
}
n += read
read, err = e.addr.ReadFrom(r)
return n + read, err
}
type addrCommentEntry struct {
pubKeyHash160 [ripemd160.Size]byte
comment []byte
}
func (e *addrCommentEntry) WriteTo(w io.Writer) (n int64, err error) {
var written int64
// Comments shall not overflow their entry.
if len(e.comment) > maxCommentLen {
return n, MalformedEntryErr
}
// Write header
if written, err = binaryWrite(w, binary.LittleEndian, addrCommentHeader); err != nil {
return n + written, err
}
n += written
// Write hash
if written, err = binaryWrite(w, binary.LittleEndian, &e.pubKeyHash160); err != nil {
return n + written, err
}
n += written
// Write length
if written, err = binaryWrite(w, binary.LittleEndian, uint16(len(e.comment))); err != nil {
return n + written, err
}
n += written
// Write comment
written, err = binaryWrite(w, binary.LittleEndian, e.comment)
return n + written, err
}
func (e *addrCommentEntry) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
if read, err = binaryRead(r, binary.LittleEndian, &e.pubKeyHash160); err != nil {
return n + read, err
}
n += read
var clen uint16
if read, err = binaryRead(r, binary.LittleEndian, &clen); err != nil {
return n + read, err
}
n += read
e.comment = make([]byte, clen)
read, err = binaryRead(r, binary.LittleEndian, e.comment)
return n + read, err
}
type txCommentEntry struct {
txHash [sha256.Size]byte
comment []byte
}
func (e *txCommentEntry) WriteTo(w io.Writer) (n int64, err error) {
var written int64
// Comments shall not overflow their entry.
if len(e.comment) > maxCommentLen {
return n, MalformedEntryErr
}
// Write header
if written, err = binaryWrite(w, binary.LittleEndian, txCommentHeader); err != nil {
return n + written, err
}
n += written
// Write length
if written, err = binaryWrite(w, binary.LittleEndian, uint16(len(e.comment))); err != nil {
return n + written, err
}
// Write comment
written, err = binaryWrite(w, binary.LittleEndian, e.comment)
return n + written, err
}
func (e *txCommentEntry) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
if read, err = binaryRead(r, binary.LittleEndian, &e.txHash); err != nil {
return n + read, err
}
n += read
var clen uint16
if read, err = binaryRead(r, binary.LittleEndian, &clen); err != nil {
return n + read, err
}
n += read
e.comment = make([]byte, clen)
read, err = binaryRead(r, binary.LittleEndian, e.comment)
return n + read, err
}
type deletedEntry struct {
}
func (e *deletedEntry) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
var ulen uint16
if read, err = binaryRead(r, binary.LittleEndian, &ulen); err != nil {
return n + read, err
}
n += read
unused := make([]byte, ulen)
if nRead, err := r.Read(unused); err == io.EOF {
return n + int64(nRead), nil
} else {
return n + int64(nRead), err
}
}
type UTXOStore struct {
}
type utxo struct {
pubKeyHash [ripemd160.Size]byte
*btcwire.TxOut
block int64
}