lbcwallet/wallet/wallet_test.go
Josh Rickmar 311d6176a8 Generate new addresses from pubkeys if keypool is depleted.
This change uses the ChainedPubKey function to create addresses from
the previous address's public key and the wallet chaincode, without
the need for the private key, if the keypool has been depleted and the
wallet is locked.  This is done since the next chained private key is
unsolvable without a locked wallet.

If a wallet contains any of these chained addresses with missing
private keys, the private keys are created during the next wallet
unlock, using ChainedPrivKey.
2014-01-16 19:37:34 -05:00

465 lines
14 KiB
Go

/*
* Copyright (c) 2013, 2014 Conformal Systems LLC <info@conformal.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package wallet
import (
"bytes"
"crypto/ecdsa"
"crypto/rand"
"encoding/hex"
"github.com/conformal/btcec"
"github.com/conformal/btcwire"
"github.com/davecgh/go-spew/spew"
"math/big"
"os"
"reflect"
"testing"
)
var _ = spew.Dump
func TestBtcAddressSerializer(t *testing.T) {
kdfp := &kdfParameters{
mem: 1024,
nIter: 5,
}
if _, err := rand.Read(kdfp.salt[:]); err != nil {
t.Error(err.Error())
return
}
key := Key([]byte("banana"), kdfp)
privKey := make([]byte, 32)
if _, err := rand.Read(privKey); err != nil {
t.Error(err.Error())
return
}
addr, err := newBtcAddress(privKey, nil, &BlockStamp{}, true)
if err != nil {
t.Error(err.Error())
return
}
err = addr.encrypt(key)
if err != nil {
t.Error(err.Error())
return
}
file, err := os.Create("btcaddress.bin")
if err != nil {
t.Error(err.Error())
return
}
defer file.Close()
if _, err := addr.WriteTo(file); err != nil {
t.Error(err.Error())
return
}
file.Seek(0, 0)
var readAddr btcAddress
_, err = readAddr.ReadFrom(file)
if err != nil {
t.Error(err.Error())
return
}
if _, err = readAddr.unlock(key); err != nil {
t.Error(err.Error())
return
}
if !reflect.DeepEqual(addr, &readAddr) {
t.Error("Original and read btcAddress differ.")
}
}
func TestWalletCreationSerialization(t *testing.T) {
createdAt := &BlockStamp{}
w1, err := NewWallet("banana wallet", "A wallet for testing.",
[]byte("banana"), btcwire.MainNet, createdAt, 100)
if err != nil {
t.Error("Error creating new wallet: " + err.Error())
return
}
file, err := os.Create("newwallet.bin")
if err != nil {
t.Error(err.Error())
return
}
defer file.Close()
if _, err := w1.WriteTo(file); err != nil {
t.Error("Error writing new wallet: " + err.Error())
return
}
file.Seek(0, 0)
w2 := new(Wallet)
_, err = w2.ReadFrom(file)
if err != nil {
t.Error("Error reading newly written wallet: " + err.Error())
return
}
w1.Lock()
w2.Lock()
if err = w1.Unlock([]byte("banana")); err != nil {
t.Error("Decrypting original wallet failed: " + err.Error())
return
}
if err = w2.Unlock([]byte("banana")); err != nil {
t.Error("Decrypting newly read wallet failed: " + err.Error())
return
}
if !reflect.DeepEqual(w1, w2) {
t.Error("Created and read-in wallets do not match.")
spew.Dump(w1, w2)
return
}
}
func TestChaining(t *testing.T) {
tests := []struct {
name string
cc []byte
origPrivateKey []byte
nextPrivateKeyUncompressed []byte
nextPrivateKeyCompressed []byte
nextPublicKeyUncompressed []byte
nextPublicKeyCompressed []byte
}{
{
name: "chaintest 1",
cc: []byte("3318959fff419ab8b556facb3c429a86"),
origPrivateKey: []byte("5ffc975976eaaa1f7b179f384ebbc053"),
nextPrivateKeyUncompressed: []byte{
0xd3, 0xfe, 0x2e, 0x96, 0x44, 0x12, 0x2d, 0xaa,
0x80, 0x8e, 0x36, 0x17, 0xb5, 0x9f, 0x8c, 0xd2,
0x72, 0x8c, 0xaf, 0xf1, 0xdb, 0xd6, 0x4a, 0x92,
0xd7, 0xc7, 0xee, 0x2b, 0x56, 0x34, 0xe2, 0x87,
},
nextPrivateKeyCompressed: []byte{
0x08, 0x56, 0x7a, 0x1b, 0x89, 0x56, 0x2e, 0xfa,
0xb4, 0x02, 0x59, 0x69, 0x10, 0xc3, 0x60, 0x1f,
0x34, 0xf0, 0x55, 0x02, 0x8a, 0xbf, 0x37, 0xf5,
0x22, 0x80, 0x9f, 0xd2, 0xe5, 0x42, 0x5b, 0x2d,
},
nextPublicKeyUncompressed: []byte{
0x04, 0xdd, 0x70, 0x31, 0xa5, 0xf9, 0x06, 0x70,
0xd3, 0x9a, 0x24, 0x5b, 0xd5, 0x73, 0xdd, 0xb6,
0x15, 0x81, 0x0b, 0x78, 0x19, 0xbc, 0xc8, 0x26,
0xc9, 0x16, 0x86, 0x73, 0xae, 0xe4, 0xc0, 0xed,
0x39, 0x81, 0xb4, 0x86, 0x2d, 0x19, 0x8c, 0x67,
0x9c, 0x93, 0x99, 0xf6, 0xd2, 0x3f, 0xd1, 0x53,
0x9e, 0xed, 0xbd, 0x07, 0xd6, 0x4f, 0xa9, 0x81,
0x61, 0x85, 0x46, 0x84, 0xb1, 0xa0, 0xed, 0xbc,
0xa7,
},
nextPublicKeyCompressed: []byte{
0x02, 0x2c, 0x48, 0x73, 0x37, 0x35, 0x74, 0x7f,
0x05, 0x58, 0xc1, 0x4e, 0x0d, 0x18, 0xc2, 0xbf,
0xcc, 0x83, 0xa2, 0x4d, 0x64, 0xab, 0xba, 0xea,
0xeb, 0x4c, 0xcd, 0x4c, 0x0c, 0x21, 0xc4, 0x30,
0x0f,
},
},
}
for _, test := range tests {
// Create both uncompressed and compressed public keys for original
// private key.
origPubUncompressed := pubkeyFromPrivkey(test.origPrivateKey, false)
origPubCompressed := pubkeyFromPrivkey(test.origPrivateKey, true)
// Create next chained private keys, chained from both the uncompressed
// and compressed pubkeys.
nextPrivUncompressed, err := ChainedPrivKey(test.origPrivateKey,
origPubUncompressed, test.cc)
if err != nil {
t.Errorf("%s: Uncompressed ChainedPrivKey failed: %v", test.name, err)
return
}
nextPrivCompressed, err := ChainedPrivKey(test.origPrivateKey,
origPubCompressed, test.cc)
if err != nil {
t.Errorf("%s: Compressed ChainedPrivKey failed: %v", test.name, err)
return
}
// Verify that the new private keys match the expected values
// in the test case.
if !bytes.Equal(nextPrivUncompressed, test.nextPrivateKeyUncompressed) {
t.Errorf("%s: Next private key (from uncompressed pubkey) does not match expected.\nGot: %s\nExpected: %s",
test.name, spew.Sdump(nextPrivUncompressed), spew.Sdump(test.nextPrivateKeyUncompressed))
return
}
if !bytes.Equal(nextPrivCompressed, test.nextPrivateKeyCompressed) {
t.Errorf("%s: Next private key (from compressed pubkey) does not match expected.\nGot: %s\nExpected: %s",
test.name, spew.Sdump(nextPrivCompressed), spew.Sdump(test.nextPrivateKeyCompressed))
return
}
// Create the next pubkeys generated from the next private keys.
nextPubUncompressedFromPriv := pubkeyFromPrivkey(nextPrivUncompressed, false)
nextPubCompressedFromPriv := pubkeyFromPrivkey(nextPrivCompressed, true)
// Create the next pubkeys by chaining directly off the original
// pubkeys (without using the original's private key).
nextPubUncompressedFromPub, err := ChainedPubKey(origPubUncompressed, test.cc)
if err != nil {
t.Errorf("%s: Uncompressed ChainedPubKey failed: %v", test.name, err)
return
}
nextPubCompressedFromPub, err := ChainedPubKey(origPubCompressed, test.cc)
if err != nil {
t.Errorf("%s: Compressed ChainedPubKey failed: %v", test.name, err)
return
}
// Public keys (used to generate the bitcoin address) MUST match.
if !bytes.Equal(nextPubUncompressedFromPriv, nextPubUncompressedFromPub) {
t.Errorf("%s: Uncompressed public keys do not match.", test.name)
}
if !bytes.Equal(nextPubCompressedFromPriv, nextPubCompressedFromPub) {
t.Errorf("%s: Compressed public keys do not match.", test.name)
}
// Verify that all generated public keys match the expected
// values in the test case.
if !bytes.Equal(nextPubUncompressedFromPub, test.nextPublicKeyUncompressed) {
t.Errorf("%s: Next uncompressed public keys do not match expected value.\nGot: %s\nExpected: %s",
test.name, spew.Sdump(nextPubUncompressedFromPub), spew.Sdump(test.nextPublicKeyUncompressed))
return
}
if !bytes.Equal(nextPubCompressedFromPub, test.nextPublicKeyCompressed) {
t.Errorf("%s: Next compressed public keys do not match expected value.\nGot: %s\nExpected: %s",
test.name, spew.Sdump(nextPubCompressedFromPub), spew.Sdump(test.nextPublicKeyCompressed))
return
}
// Sign data with the next private keys and verify signature with
// the next pubkeys.
pubkeyUncompressed, err := btcec.ParsePubKey(nextPubUncompressedFromPub, btcec.S256())
if err != nil {
t.Errorf("%s: Unable to parse next uncompressed pubkey: %v", test.name, err)
return
}
pubkeyCompressed, err := btcec.ParsePubKey(nextPubCompressedFromPub, btcec.S256())
if err != nil {
t.Errorf("%s: Unable to parse next compressed pubkey: %v", test.name, err)
return
}
privkeyUncompressed := &ecdsa.PrivateKey{
PublicKey: *pubkeyUncompressed,
D: new(big.Int).SetBytes(nextPrivUncompressed),
}
privkeyCompressed := &ecdsa.PrivateKey{
PublicKey: *pubkeyCompressed,
D: new(big.Int).SetBytes(nextPrivCompressed),
}
data := "String to sign."
r, s, err := ecdsa.Sign(rand.Reader, privkeyUncompressed, []byte(data))
if err != nil {
t.Errorf("%s: Unable to sign data with next private key (chained from uncompressed pubkey): %v",
test.name, err)
return
}
ok := ecdsa.Verify(&privkeyUncompressed.PublicKey, []byte(data), r, s)
if !ok {
t.Errorf("%s: ecdsa verification failed for next keypair (chained from uncompressed pubkey).",
test.name)
return
}
r, s, err = ecdsa.Sign(rand.Reader, privkeyCompressed, []byte(data))
if err != nil {
t.Errorf("%s: Unable to sign data with next private key (chained from compressed pubkey): %v",
test.name, err)
return
}
ok = ecdsa.Verify(&privkeyCompressed.PublicKey, []byte(data), r, s)
if !ok {
t.Errorf("%s: ecdsa verification failed for next keypair (chained from compressed pubkey).",
test.name)
return
}
}
}
func TestWalletPubkeyChaining(t *testing.T) {
// Set a reasonable keypool size that isn't too big nor too small for testing.
const keypoolSize = 5
w, err := NewWallet("banana wallet", "A wallet for testing.",
[]byte("banana"), btcwire.MainNet, &BlockStamp{}, keypoolSize)
if err != nil {
t.Error("Error creating new wallet: " + err.Error())
return
}
if !w.IsLocked() {
t.Error("New wallet is not locked.")
}
// Wallet should have a total of 6 addresses, one for the root, plus 5 in
// the keypool with their private keys set. Ask for as many new addresses
// as needed to deplete the pool.
for i := 0; i < keypoolSize; i++ {
_, err := w.NextChainedAddress(&BlockStamp{}, keypoolSize)
if err != nil {
t.Errorf("Error getting next address from keypool: %v", err)
return
}
}
// Get next chained address after depleting the keypool. This will extend
// the chain based on the last pubkey, not privkey.
addrWithoutPrivkey, err := w.NextChainedAddress(&BlockStamp{}, keypoolSize)
if err != nil {
t.Errorf("Failed to extend address chain from pubkey: %v", err)
return
}
// Lookup address info. This should succeed even without the private
// key available.
info, err := w.AddressInfo(addrWithoutPrivkey)
if err != nil {
t.Errorf("Failed to get info about address without private key: %v", err)
return
}
// sanity checks
if !info.Compressed {
t.Errorf("Pubkey should be compressed.")
return
}
if info.Imported {
t.Errorf("Should not be marked as imported.")
return
}
// Try to lookup it's private key. This should fail.
_, err = w.AddressKey(addrWithoutPrivkey)
if err == nil {
t.Errorf("Incorrectly returned nil error for looking up private key for address without one saved.")
return
}
// Deserialize w and serialize into a new wallet. The rest of the checks
// in this test test against both a fresh, as well as an "opened and closed"
// wallet with the missing private key.
serializedWallet := new(bytes.Buffer)
_, err = w.WriteTo(serializedWallet)
if err != nil {
t.Errorf("Error writing wallet with missing private key: %v", err)
return
}
w2 := new(Wallet)
_, err = w2.ReadFrom(serializedWallet)
if err != nil {
t.Errorf("Error reading wallet with missing private key: %v", err)
return
}
// Unlock wallet. This should trigger creating the private key for
// the address.
if err = w.Unlock([]byte("banana")); err != nil {
t.Errorf("Can't unlock original wallet: %v", err)
return
}
if err = w2.Unlock([]byte("banana")); err != nil {
t.Errorf("Can't unlock re-read wallet: %v", err)
return
}
// Same address, better variable name.
addrWithPrivKey := addrWithoutPrivkey
// Try a private key lookup again. The private key should now be available.
key1, err := w.AddressKey(addrWithPrivKey)
if err != nil {
t.Errorf("Private key for original wallet was not created! %v", err)
return
}
key2, err := w2.AddressKey(addrWithPrivKey)
if err != nil {
t.Errorf("Private key for re-read wallet was not created! %v", err)
return
}
// Keys returned by both wallets must match.
if !reflect.DeepEqual(key1, key2) {
t.Errorf("Private keys for address originally created without one mismtach between original and re-read wallet.")
return
}
// Sign some data with the private key, then verify signature with the pubkey.
hash := []byte("hash to sign")
r, s, err := ecdsa.Sign(rand.Reader, key1, hash)
if err != nil {
t.Errorf("Unable to sign hash with the created private key: %v", err)
return
}
pubKeyStr, _ := hex.DecodeString(info.Pubkey)
pubKey, err := btcec.ParsePubKey(pubKeyStr, btcec.S256())
ok := ecdsa.Verify(pubKey, hash, r, s)
if !ok {
t.Errorf("ECDSA verification failed; address's pubkey mismatches the privkey.")
return
}
// Test that normal keypool extension and address creation continues to
// work. With the wallet still unlocked, create a new address. This
// will cause the keypool to refill and return the first address from the
// keypool.
nextAddr, err := w.NextChainedAddress(&BlockStamp{}, keypoolSize)
if err != nil {
t.Errorf("Unable to create next address or refill keypool after finding the privkey: %v", err)
return
}
nextInfo, err := w.AddressInfo(nextAddr)
if err != nil {
t.Errorf("Couldn't get info about the next address in the chain: %v", err)
return
}
nextKey, err := w.AddressKey(nextAddr)
if err != nil {
t.Errorf("Couldn't get private key for the next address in the chain: %v", err)
return
}
// Do an ECDSA signature check here as well, this time for the next
// address after the one made without the private key.
r, s, err = ecdsa.Sign(rand.Reader, nextKey, hash)
if err != nil {
t.Errorf("Unable to sign hash with the created private key: %v", err)
return
}
pubKeyStr, _ = hex.DecodeString(nextInfo.Pubkey)
pubKey, err = btcec.ParsePubKey(pubKeyStr, btcec.S256())
ok = ecdsa.Verify(pubKey, hash, r, s)
if !ok {
t.Errorf("ECDSA verification failed; next address's keypair does not match.")
return
}
}