lbcwallet/wallet/rescan.go
Josh Rickmar 4656a00705 Improve wallet atomicity.
This changes the database access APIs and each of the "manager"
packages (waddrmgr/wstakemgr) so that transactions are opened (only)
by the wallet package and the namespace buckets that each manager
expects to operate on are passed in as parameters.

This helps improve the atomicity situation as it means that many
calls to these APIs can be grouped together into a single
database transaction.

This change does not attempt to completely fix the "half-processed"
block problem.  Mined transactions are still added to the wallet
database under their own database transaction as this is how they are
notified by the consensus JSON-RPC server (as loose transactions,
without the rest of the block that contains them). It will make
updating to a fixed notification model significantly easier, as the
same "manager" APIs can still be used, but grouped into a single
atomic transaction.
2018-05-23 19:38:56 -07:00

283 lines
7.5 KiB
Go

// Copyright (c) 2013-2017 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package wallet
import (
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/btcsuite/btcwallet/chain"
"github.com/btcsuite/btcwallet/waddrmgr"
"github.com/btcsuite/btcwallet/walletdb"
"github.com/btcsuite/btcwallet/wtxmgr"
)
// RescanProgressMsg reports the current progress made by a rescan for a
// set of wallet addresses.
type RescanProgressMsg struct {
Addresses []btcutil.Address
Notification *chain.RescanProgress
}
// RescanFinishedMsg reports the addresses that were rescanned when a
// rescanfinished message was received rescanning a batch of addresses.
type RescanFinishedMsg struct {
Addresses []btcutil.Address
Notification *chain.RescanFinished
}
// RescanJob is a job to be processed by the RescanManager. The job includes
// a set of wallet addresses, a starting height to begin the rescan, and
// outpoints spendable by the addresses thought to be unspent. After the
// rescan completes, the error result of the rescan RPC is sent on the Err
// channel.
type RescanJob struct {
InitialSync bool
Addrs []btcutil.Address
OutPoints []*wire.OutPoint
BlockStamp waddrmgr.BlockStamp
err chan error
}
// rescanBatch is a collection of one or more RescanJobs that were merged
// together before a rescan is performed.
type rescanBatch struct {
initialSync bool
addrs []btcutil.Address
outpoints []*wire.OutPoint
bs waddrmgr.BlockStamp
errChans []chan error
}
// SubmitRescan submits a RescanJob to the RescanManager. A channel is
// returned with the final error of the rescan. The channel is buffered
// and does not need to be read to prevent a deadlock.
func (w *Wallet) SubmitRescan(job *RescanJob) <-chan error {
errChan := make(chan error, 1)
job.err = errChan
w.rescanAddJob <- job
return errChan
}
// batch creates the rescanBatch for a single rescan job.
func (job *RescanJob) batch() *rescanBatch {
return &rescanBatch{
initialSync: job.InitialSync,
addrs: job.Addrs,
outpoints: job.OutPoints,
bs: job.BlockStamp,
errChans: []chan error{job.err},
}
}
// merge merges the work from k into j, setting the starting height to
// the minimum of the two jobs. This method does not check for
// duplicate addresses or outpoints.
func (b *rescanBatch) merge(job *RescanJob) {
if job.InitialSync {
b.initialSync = true
}
b.addrs = append(b.addrs, job.Addrs...)
b.outpoints = append(b.outpoints, job.OutPoints...)
if job.BlockStamp.Height < b.bs.Height {
b.bs = job.BlockStamp
}
b.errChans = append(b.errChans, job.err)
}
// done iterates through all error channels, duplicating sending the error
// to inform callers that the rescan finished (or could not complete due
// to an error).
func (b *rescanBatch) done(err error) {
for _, c := range b.errChans {
c <- err
}
}
// rescanBatchHandler handles incoming rescan request, serializing rescan
// submissions, and possibly batching many waiting requests together so they
// can be handled by a single rescan after the current one completes.
func (w *Wallet) rescanBatchHandler() {
var curBatch, nextBatch *rescanBatch
quit := w.quitChan()
out:
for {
select {
case job := <-w.rescanAddJob:
if curBatch == nil {
// Set current batch as this job and send
// request.
curBatch = job.batch()
w.rescanBatch <- curBatch
} else {
// Create next batch if it doesn't exist, or
// merge the job.
if nextBatch == nil {
nextBatch = job.batch()
} else {
nextBatch.merge(job)
}
}
case n := <-w.rescanNotifications:
switch n := n.(type) {
case *chain.RescanProgress:
w.rescanProgress <- &RescanProgressMsg{
Addresses: curBatch.addrs,
Notification: n,
}
case *chain.RescanFinished:
if curBatch == nil {
log.Warnf("Received rescan finished " +
"notification but no rescan " +
"currently running")
continue
}
w.rescanFinished <- &RescanFinishedMsg{
Addresses: curBatch.addrs,
Notification: n,
}
curBatch, nextBatch = nextBatch, nil
if curBatch != nil {
w.rescanBatch <- curBatch
}
default:
// Unexpected message
panic(n)
}
case <-quit:
break out
}
}
w.wg.Done()
}
// rescanProgressHandler handles notifications for partially and fully completed
// rescans by marking each rescanned address as partially or fully synced.
func (w *Wallet) rescanProgressHandler() {
quit := w.quitChan()
out:
for {
// These can't be processed out of order since both chans are
// unbuffured and are sent from same context (the batch
// handler).
select {
case msg := <-w.rescanProgress:
n := msg.Notification
log.Infof("Rescanned through block %v (height %d)",
n.Hash, n.Height)
bs := waddrmgr.BlockStamp{
Hash: *n.Hash,
Height: n.Height,
}
err := walletdb.Update(w.db, func(tx walletdb.ReadWriteTx) error {
ns := tx.ReadWriteBucket(waddrmgrNamespaceKey)
return w.Manager.SetSyncedTo(ns, &bs)
})
if err != nil {
log.Errorf("Failed to update address manager "+
"sync state for hash %v (height %d): %v",
n.Hash, n.Height, err)
}
case msg := <-w.rescanFinished:
n := msg.Notification
addrs := msg.Addresses
noun := pickNoun(len(addrs), "address", "addresses")
log.Infof("Finished rescan for %d %s (synced to block "+
"%s, height %d)", len(addrs), noun, n.Hash,
n.Height)
bs := waddrmgr.BlockStamp{
Height: n.Height,
Hash: *n.Hash,
}
err := walletdb.Update(w.db, func(tx walletdb.ReadWriteTx) error {
ns := tx.ReadWriteBucket(waddrmgrNamespaceKey)
return w.Manager.SetSyncedTo(ns, &bs)
})
if err != nil {
log.Errorf("Failed to update address manager "+
"sync state for hash %v (height %d): %v",
n.Hash, n.Height, err)
continue
}
w.SetChainSynced(true)
go w.resendUnminedTxs()
case <-quit:
break out
}
}
w.wg.Done()
}
// rescanRPCHandler reads batch jobs sent by rescanBatchHandler and sends the
// RPC requests to perform a rescan. New jobs are not read until a rescan
// finishes.
func (w *Wallet) rescanRPCHandler() {
chainClient, err := w.requireChainClient()
if err != nil {
log.Errorf("rescanRPCHandler called without an RPC client")
w.wg.Done()
return
}
quit := w.quitChan()
out:
for {
select {
case batch := <-w.rescanBatch:
// Log the newly-started rescan.
numAddrs := len(batch.addrs)
noun := pickNoun(numAddrs, "address", "addresses")
log.Infof("Started rescan from block %v (height %d) for %d %s",
batch.bs.Hash, batch.bs.Height, numAddrs, noun)
err := chainClient.Rescan(&batch.bs.Hash, batch.addrs,
batch.outpoints)
if err != nil {
log.Errorf("Rescan for %d %s failed: %v", numAddrs,
noun, err)
}
batch.done(err)
case <-quit:
break out
}
}
w.wg.Done()
}
// Rescan begins a rescan for all active addresses and unspent outputs of
// a wallet. This is intended to be used to sync a wallet back up to the
// current best block in the main chain, and is considered an initial sync
// rescan.
func (w *Wallet) Rescan(addrs []btcutil.Address, unspent []wtxmgr.Credit) error {
outpoints := make([]*wire.OutPoint, len(unspent))
for i, output := range unspent {
outpoints[i] = &output.OutPoint
}
job := &RescanJob{
InitialSync: true,
Addrs: addrs,
OutPoints: outpoints,
BlockStamp: w.Manager.SyncedTo(),
}
// Submit merged job and block until rescan completes.
return <-w.SubmitRescan(job)
}