lbcwallet/waddrmgr/manager.go
2018-05-23 19:38:56 -07:00

1788 lines
58 KiB
Go

// Copyright (c) 2014-2016 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package waddrmgr
import (
"crypto/rand"
"crypto/sha512"
"fmt"
"sync"
"time"
"github.com/roasbeef/btcd/chaincfg"
"github.com/roasbeef/btcutil"
"github.com/roasbeef/btcutil/hdkeychain"
"github.com/roasbeef/btcwallet/internal/zero"
"github.com/roasbeef/btcwallet/snacl"
"github.com/roasbeef/btcwallet/walletdb"
)
const (
// MaxAccountNum is the maximum allowed account number. This value was
// chosen because accounts are hardened children and therefore must not
// exceed the hardened child range of extended keys and it provides a
// reserved account at the top of the range for supporting imported
// addresses.
MaxAccountNum = hdkeychain.HardenedKeyStart - 2 // 2^31 - 2
// MaxAddressesPerAccount is the maximum allowed number of addresses
// per account number. This value is based on the limitation of the
// underlying hierarchical deterministic key derivation.
MaxAddressesPerAccount = hdkeychain.HardenedKeyStart - 1
// ImportedAddrAccount is the account number to use for all imported
// addresses. This is useful since normal accounts are derived from
// the root hierarchical deterministic key and imported addresses do
// not fit into that model.
ImportedAddrAccount = MaxAccountNum + 1 // 2^31 - 1
// ImportedAddrAccountName is the name of the imported account.
ImportedAddrAccountName = "imported"
// DefaultAccountNum is the number of the default account.
DefaultAccountNum = 0
// defaultAccountName is the initial name of the default account. Note
// that the default account may be renamed and is not a reserved name,
// so the default account might not be named "default" and non-default
// accounts may be named "default".
//
// Account numbers never change, so the DefaultAccountNum should be
// used to refer to (and only to) the default account.
defaultAccountName = "default"
// The hierarchy described by BIP0043 is:
// m/<purpose>'/*
// This is further extended by BIP0044 to:
// m/44'/<coin type>'/<account>'/<branch>/<address index>
//
// The branch is 0 for external addresses and 1 for internal addresses.
// maxCoinType is the maximum allowed coin type used when structuring
// the BIP0044 multi-account hierarchy. This value is based on the
// limitation of the underlying hierarchical deterministic key
// derivation.
maxCoinType = hdkeychain.HardenedKeyStart - 1
// ExternalBranch is the child number to use when performing BIP0044
// style hierarchical deterministic key derivation for the external
// branch.
ExternalBranch uint32 = 0
// InternalBranch is the child number to use when performing BIP0044
// style hierarchical deterministic key derivation for the internal
// branch.
InternalBranch uint32 = 1
// saltSize is the number of bytes of the salt used when hashing
// private passphrases.
saltSize = 32
)
// isReservedAccountName returns true if the account name is reserved.
// Reserved accounts may never be renamed, and other accounts may not be
// renamed to a reserved name.
func isReservedAccountName(name string) bool {
return name == ImportedAddrAccountName
}
// isReservedAccountNum returns true if the account number is reserved.
// Reserved accounts may not be renamed.
func isReservedAccountNum(acct uint32) bool {
return acct == ImportedAddrAccount
}
// ScryptOptions is used to hold the scrypt parameters needed when deriving new
// passphrase keys.
type ScryptOptions struct {
N, R, P int
}
// OpenCallbacks houses caller-provided callbacks that may be called when
// opening an existing manager. The open blocks on the execution of these
// functions.
type OpenCallbacks struct {
// ObtainSeed is a callback function that is potentially invoked during
// upgrades. It is intended to be used to request the wallet seed
// from the user (or any other mechanism the caller deems fit).
ObtainSeed ObtainUserInputFunc
// ObtainPrivatePass is a callback function that is potentially invoked
// during upgrades. It is intended to be used to request the wallet
// private passphrase from the user (or any other mechanism the caller
// deems fit).
ObtainPrivatePass ObtainUserInputFunc
}
// DefaultScryptOptions is the default options used with scrypt.
var DefaultScryptOptions = ScryptOptions{
N: 262144, // 2^18
R: 8,
P: 1,
}
// addrKey is used to uniquely identify an address even when those addresses
// would end up being the same bitcoin address (as is the case for
// pay-to-pubkey and pay-to-pubkey-hash style of addresses).
type addrKey string
// accountInfo houses the current state of the internal and external branches
// of an account along with the extended keys needed to derive new keys. It
// also handles locking by keeping an encrypted version of the serialized
// private extended key so the unencrypted versions can be cleared from memory
// when the address manager is locked.
type accountInfo struct {
acctName string
// The account key is used to derive the branches which in turn derive
// the internal and external addresses. The accountKeyPriv will be nil
// when the address manager is locked.
acctKeyEncrypted []byte
acctKeyPriv *hdkeychain.ExtendedKey
acctKeyPub *hdkeychain.ExtendedKey
// The external branch is used for all addresses which are intended for
// external use.
nextExternalIndex uint32
lastExternalAddr ManagedAddress
// The internal branch is used for all adddresses which are only
// intended for internal wallet use such as change addresses.
nextInternalIndex uint32
lastInternalAddr ManagedAddress
}
// AccountProperties contains properties associated with each account, such as
// the account name, number, and the nubmer of derived and imported keys.
type AccountProperties struct {
AccountNumber uint32
AccountName string
ExternalKeyCount uint32
InternalKeyCount uint32
ImportedKeyCount uint32
}
// unlockDeriveInfo houses the information needed to derive a private key for a
// managed address when the address manager is unlocked. See the
// deriveOnUnlock field in the Manager struct for more details on how this is
// used.
type unlockDeriveInfo struct {
managedAddr ManagedAddress
branch uint32
index uint32
}
// defaultNewSecretKey returns a new secret key. See newSecretKey.
func defaultNewSecretKey(passphrase *[]byte, config *ScryptOptions) (*snacl.SecretKey, error) {
return snacl.NewSecretKey(passphrase, config.N, config.R, config.P)
}
// newSecretKey is used as a way to replace the new secret key generation
// function used so tests can provide a version that fails for testing error
// paths.
var newSecretKey = defaultNewSecretKey
// EncryptorDecryptor provides an abstraction on top of snacl.CryptoKey so that
// our tests can use dependency injection to force the behaviour they need.
type EncryptorDecryptor interface {
Encrypt(in []byte) ([]byte, error)
Decrypt(in []byte) ([]byte, error)
Bytes() []byte
CopyBytes([]byte)
Zero()
}
// cryptoKey extends snacl.CryptoKey to implement EncryptorDecryptor.
type cryptoKey struct {
snacl.CryptoKey
}
// Bytes returns a copy of this crypto key's byte slice.
func (ck *cryptoKey) Bytes() []byte {
return ck.CryptoKey[:]
}
// CopyBytes copies the bytes from the given slice into this CryptoKey.
func (ck *cryptoKey) CopyBytes(from []byte) {
copy(ck.CryptoKey[:], from)
}
// defaultNewCryptoKey returns a new CryptoKey. See newCryptoKey.
func defaultNewCryptoKey() (EncryptorDecryptor, error) {
key, err := snacl.GenerateCryptoKey()
if err != nil {
return nil, err
}
return &cryptoKey{*key}, nil
}
// CryptoKeyType is used to differentiate between different kinds of
// crypto keys.
type CryptoKeyType byte
// Crypto key types.
const (
// CKTPrivate specifies the key that is used for encryption of private
// key material such as derived extended private keys and imported
// private keys.
CKTPrivate CryptoKeyType = iota
// CKTScript specifies the key that is used for encryption of scripts.
CKTScript
// CKTPublic specifies the key that is used for encryption of public
// key material such as dervied extended public keys and imported public
// keys.
CKTPublic
)
// newCryptoKey is used as a way to replace the new crypto key generation
// function used so tests can provide a version that fails for testing error
// paths.
var newCryptoKey = defaultNewCryptoKey
// Manager represents a concurrency safe crypto currency address manager and
// key store.
type Manager struct {
mtx sync.RWMutex
// scopedManager is a mapping of scope of scoped manager, the manager
// itself loaded into memory.
scopedManagers map[KeyScope]*ScopedKeyManager
externalAddrSchemas map[AddressType][]KeyScope
internalAddrSchemas map[AddressType][]KeyScope
syncState syncState
watchingOnly bool
birthday time.Time
locked bool
closed bool
chainParams *chaincfg.Params
// masterKeyPub is the secret key used to secure the cryptoKeyPub key
// and masterKeyPriv is the secret key used to secure the cryptoKeyPriv
// key. This approach is used because it makes changing the passwords
// much simpler as it then becomes just changing these keys. It also
// provides future flexibility.
//
// NOTE: This is not the same thing as BIP0032 master node extended
// key.
//
// The underlying master private key will be zeroed when the address
// manager is locked.
masterKeyPub *snacl.SecretKey
masterKeyPriv *snacl.SecretKey
// cryptoKeyPub is the key used to encrypt public extended keys and
// addresses.
cryptoKeyPub EncryptorDecryptor
// cryptoKeyPriv is the key used to encrypt private data such as the
// master hierarchical deterministic extended key.
//
// This key will be zeroed when the address manager is locked.
cryptoKeyPrivEncrypted []byte
cryptoKeyPriv EncryptorDecryptor
// cryptoKeyScript is the key used to encrypt script data.
//
// This key will be zeroed when the address manager is locked.
cryptoKeyScriptEncrypted []byte
cryptoKeyScript EncryptorDecryptor
// privPassphraseSalt and hashedPrivPassphrase allow for the secure
// detection of a correct passphrase on manager unlock when the
// manager is already unlocked. The hash is zeroed each lock.
privPassphraseSalt [saltSize]byte
hashedPrivPassphrase [sha512.Size]byte
}
// WatchOnly returns true if the root manager is in watch only mode, and false
// otherwise.
func (m *Manager) WatchOnly() bool {
m.mtx.RLock()
defer m.mtx.RUnlock()
return m.watchingOnly
}
// lock performs a best try effort to remove and zero all secret keys associated
// with the address manager.
//
// This function MUST be called with the manager lock held for writes.
func (m *Manager) lock() {
for _, manager := range m.scopedManagers {
// Clear all of the account private keys.
for _, acctInfo := range manager.acctInfo {
if acctInfo.acctKeyPriv != nil {
acctInfo.acctKeyPriv.Zero()
}
acctInfo.acctKeyPriv = nil
}
}
// Remove clear text private keys and scripts from all address entries.
for _, manager := range m.scopedManagers {
for _, ma := range manager.addrs {
switch addr := ma.(type) {
case *managedAddress:
addr.lock()
case *scriptAddress:
addr.lock()
}
}
}
// Remove clear text private master and crypto keys from memory.
m.cryptoKeyScript.Zero()
m.cryptoKeyPriv.Zero()
m.masterKeyPriv.Zero()
// Zero the hashed passphrase.
zero.Bytea64(&m.hashedPrivPassphrase)
// NOTE: m.cryptoKeyPub is intentionally not cleared here as the address
// manager needs to be able to continue to read and decrypt public data
// which uses a separate derived key from the database even when it is
// locked.
m.locked = true
}
// Close cleanly shuts down the manager. It makes a best try effort to remove
// and zero all private key and sensitive public key material associated with
// the address manager from memory.
func (m *Manager) Close() {
m.mtx.Lock()
defer m.mtx.Unlock()
if m.closed {
return
}
for _, manager := range m.scopedManagers {
// Zero out the account keys (if any) of all sub key managers.
manager.Close()
}
// Attempt to clear private key material from memory.
if !m.watchingOnly && !m.locked {
m.lock()
}
// Remove clear text public master and crypto keys from memory.
m.cryptoKeyPub.Zero()
m.masterKeyPub.Zero()
m.closed = true
return
}
// NewScopedKeyManager creates a new scoped key manager from the root manager. A
// scoped key manager is a sub-manager that only has the coin type key of a
// particular coin type and BIP0043 purpose. This is useful as it enables
// callers to create an arbitrary BIP0043 like schema with a stand alone
// manager. Note that a new scoped manager cannot be created if: the wallet is
// watch only, the manager hasn't been unlocked, or the root key has been.
// neutered from the database.
//
// TODO(roasbeef): addrtype of raw key means it'll look in scripts to possibly
// mark as gucci?
func (m *Manager) NewScopedKeyManager(ns walletdb.ReadWriteBucket, scope KeyScope,
addrSchema ScopeAddrSchema) (*ScopedKeyManager, error) {
m.mtx.Lock()
defer m.mtx.Unlock()
// If the manager is locked, then we can't create a new scoped manager.
if m.locked {
return nil, managerError(ErrLocked, errLocked, nil)
}
// Now that we know the manager is unlocked, we'll need to fetch the
// root master HD private key. This is required as we'll be attempting
// the following derivation: m/purpose'/cointype'
//
// Note that the path to the coin type is requires hardened derivation,
// therefore this can only be done if the wallet's root key hasn't been
// neutered.
masterRootPrivEnc, _, err := fetchMasterHDKeys(ns)
if err != nil {
return nil, err
}
// If the master root private key isn't found within the database, but
// we need to bail here as we can't create the cointype key without the
// master root private key.
if masterRootPrivEnc == nil {
return nil, managerError(ErrWatchingOnly, "", nil)
}
// Before we can derive any new scoped managers using this key, we'll
// need to fully decrypt it.
serializedMasterRootPriv, err := m.cryptoKeyPriv.Decrypt(masterRootPrivEnc)
if err != nil {
str := fmt.Sprintf("failed to decrypt master root serialized private key")
return nil, managerError(ErrLocked, str, err)
}
// Now that we know the root priv is within the database, we'll decode
// it into a usable object.
rootPriv, err := hdkeychain.NewKeyFromString(
string(serializedMasterRootPriv),
)
zero.Bytes(serializedMasterRootPriv)
if err != nil {
str := fmt.Sprintf("failed to create master extended private key")
return nil, managerError(ErrKeyChain, str, err)
}
// Now that we have the root private key, we'll fetch the scope bucket
// so we can create the proper internal name spaces.
scopeBucket := ns.NestedReadWriteBucket(scopeBucketName)
// Now that we know it's possible to actually create a new scoped
// manager, we'll carve out its bucket space within the database.
if err := createScopedManagerNS(scopeBucket, &scope); err != nil {
return nil, err
}
// With the database state created, we'll now write down the address
// schema of this particular scope type.
scopeSchemas := ns.NestedReadWriteBucket(scopeSchemaBucketName)
if scopeSchemas == nil {
str := "scope schema bucket not found"
return nil, managerError(ErrDatabase, str, nil)
}
scopeKey := scopeToBytes(&scope)
schemaBytes := scopeSchemaToBytes(&addrSchema)
err = scopeSchemas.Put(scopeKey[:], schemaBytes)
if err != nil {
return nil, err
}
// With the database state created, we'll now derive the cointype key
// using the master HD private key, then encrypt it along with the
// first account using our crypto keys.
err = createManagerKeyScope(
ns, scope, rootPriv, m.cryptoKeyPub, m.cryptoKeyPriv,
)
if err != nil {
return nil, err
}
// Finally, we'll register this new scoped manager with the root
// manager.
m.scopedManagers[scope] = &ScopedKeyManager{
scope: scope,
addrSchema: addrSchema,
rootManager: m,
addrs: make(map[addrKey]ManagedAddress),
acctInfo: make(map[uint32]*accountInfo),
}
m.externalAddrSchemas[addrSchema.ExternalAddrType] = append(
m.externalAddrSchemas[addrSchema.ExternalAddrType], scope,
)
m.internalAddrSchemas[addrSchema.InternalAddrType] = append(
m.internalAddrSchemas[addrSchema.InternalAddrType], scope,
)
return m.scopedManagers[scope], nil
}
// FetchScopedKeyManager attempts to fetch an active scoped manager according to
// its registered scope. If the manger is found, then a nil error is returned
// along with the active scoped manager. Otherwise, a nil manager and a non-nil
// error will be returned.
func (m *Manager) FetchScopedKeyManager(scope KeyScope) (*ScopedKeyManager, error) {
m.mtx.RLock()
defer m.mtx.RUnlock()
sm, ok := m.scopedManagers[scope]
if !ok {
str := fmt.Sprintf("scope %v not found", scope)
return nil, managerError(ErrScopeNotFound, str, nil)
}
return sm, nil
}
// ActiveScopedKeyManagers returns a slice of all the active scoped key
// managers currently known by the root key manager.
func (m *Manager) ActiveScopedKeyManagers() []*ScopedKeyManager {
m.mtx.RLock()
defer m.mtx.RUnlock()
var scopedManagers []*ScopedKeyManager
for _, smgr := range m.scopedManagers {
scopedManagers = append(scopedManagers, smgr)
}
return scopedManagers
}
// ScopesForExternalAddrTypes returns the set of key scopes that are able to
// produce the target address type as external addresses.
func (m *Manager) ScopesForExternalAddrType(addrType AddressType) []KeyScope {
m.mtx.RLock()
defer m.mtx.RUnlock()
scopes, _ := m.externalAddrSchemas[addrType]
return scopes
}
// ScopesForInternalAddrTypes returns the set of key scopes that are able to
// produce the target address type as internal addresses.
func (m *Manager) ScopesForInternalAddrTypes(addrType AddressType) []KeyScope {
m.mtx.RLock()
defer m.mtx.RUnlock()
scopes, _ := m.internalAddrSchemas[addrType]
return scopes
}
// NeuterRootKey is a special method that should be used once a caller is
// *certain* that no further scoped managers are to be created. This method
// will *delete* the encrypted master HD root private key from the database.
func (m *Manager) NeuterRootKey(ns walletdb.ReadWriteBucket) error {
m.mtx.Lock()
defer m.mtx.Unlock()
// First, we'll fetch the current master HD keys from the database.
masterRootPrivEnc, _, err := fetchMasterHDKeys(ns)
if err != nil {
return err
}
// If the root master private key is already nil, then we'll return a
// nil error here as the root key has already been permanently
// neutered.
if masterRootPrivEnc == nil {
return nil
}
zero.Bytes(masterRootPrivEnc)
// Otherwise, we'll neuter the root key permanently by deleting the
// encrypted master HD key from the database.
return ns.NestedReadWriteBucket(mainBucketName).Delete(masterHDPrivName)
}
// Address returns a managed address given the passed address if it is known to
// the address manager. A managed address differs from the passed address in
// that it also potentially contains extra information needed to sign
// transactions such as the associated private key for pay-to-pubkey and
// pay-to-pubkey-hash addresses and the script associated with
// pay-to-script-hash addresses.
func (m *Manager) Address(ns walletdb.ReadBucket,
address btcutil.Address) (ManagedAddress, error) {
m.mtx.RLock()
defer m.mtx.RUnlock()
// We'll iterate through each of the known scoped managers, and see if
// any of them now of the target address.
for _, scopedMgr := range m.scopedManagers {
addr, err := scopedMgr.Address(ns, address)
if err != nil {
continue
}
return addr, nil
}
// If the address wasn't known to any of the scoped managers, then
// we'll return an error.
str := fmt.Sprintf("unable to find key for addr %v", address)
return nil, managerError(ErrAddressNotFound, str, nil)
}
// MarkUsed updates the used flag for the provided address.
func (m *Manager) MarkUsed(ns walletdb.ReadWriteBucket, address btcutil.Address) error {
m.mtx.RLock()
defer m.mtx.RUnlock()
// Run through all the known scoped managers, and attempt to mark the
// address as used for each one.
// First, we'll figure out which scoped manager this address belong to.
for _, scopedMgr := range m.scopedManagers {
if _, err := scopedMgr.Address(ns, address); err != nil {
continue
}
// We've found the manager that this address belongs to, so we
// can mark the address as used and return.
return scopedMgr.MarkUsed(ns, address)
}
// If we get to this point, then we weren't able to find the address in
// any of the managers, so we'll exit with an error.
str := fmt.Sprintf("unable to find key for addr %v", address)
return managerError(ErrAddressNotFound, str, nil)
}
// AddrAccount returns the account to which the given address belongs. We also
// return the scoped manager that owns the addr+account combo.
func (m *Manager) AddrAccount(ns walletdb.ReadBucket,
address btcutil.Address) (*ScopedKeyManager, uint32, error) {
m.mtx.RLock()
defer m.mtx.RUnlock()
for _, scopedMgr := range m.scopedManagers {
if _, err := scopedMgr.Address(ns, address); err != nil {
continue
}
// We've found the manager that this address belongs to, so we
// can retrieve the address' account along with the manager
// that the addr belongs to.
accNo, err := scopedMgr.AddrAccount(ns, address)
if err != nil {
return nil, 0, err
}
return scopedMgr, accNo, err
}
// If we get to this point, then we weren't able to find the address in
// any of the managers, so we'll exit with an error.
str := fmt.Sprintf("unable to find key for addr %v", address)
return nil, 0, managerError(ErrAddressNotFound, str, nil)
}
// ForEachActiveAccountAddress calls the given function with each active
// address of the given account stored in the manager, across all active
// scopes, breaking early on error.
//
// TODO(tuxcanfly): actually return only active addresses
func (m *Manager) ForEachActiveAccountAddress(ns walletdb.ReadBucket,
account uint32, fn func(maddr ManagedAddress) error) error {
m.mtx.RLock()
defer m.mtx.RUnlock()
for _, scopedMgr := range m.scopedManagers {
err := scopedMgr.ForEachActiveAccountAddress(ns, account, fn)
if err != nil {
return err
}
}
return nil
}
// ForEachActiveAddress calls the given function with each active address
// stored in the manager, breaking early on error.
func (m *Manager) ForEachActiveAddress(ns walletdb.ReadBucket, fn func(addr btcutil.Address) error) error {
m.mtx.RLock()
defer m.mtx.RUnlock()
for _, scopedMgr := range m.scopedManagers {
err := scopedMgr.ForEachActiveAddress(ns, fn)
if err != nil {
return err
}
}
return nil
}
// ForEachAccountAddress calls the given function with each address of
// the given account stored in the manager, breaking early on error.
func (m *Manager) ForEachAccountAddress(ns walletdb.ReadBucket, account uint32,
fn func(maddr ManagedAddress) error) error {
m.mtx.RLock()
defer m.mtx.RUnlock()
for _, scopedMgr := range m.scopedManagers {
err := scopedMgr.ForEachAccountAddress(ns, account, fn)
if err != nil {
return err
}
}
return nil
}
// ChainParams returns the chain parameters for this address manager.
func (m *Manager) ChainParams() *chaincfg.Params {
// NOTE: No need for mutex here since the net field does not change
// after the manager instance is created.
return m.chainParams
}
// ChangePassphrase changes either the public or private passphrase to the
// provided value depending on the private flag. In order to change the
// private password, the address manager must not be watching-only. The new
// passphrase keys are derived using the scrypt parameters in the options, so
// changing the passphrase may be used to bump the computational difficulty
// needed to brute force the passphrase.
func (m *Manager) ChangePassphrase(ns walletdb.ReadWriteBucket, oldPassphrase,
newPassphrase []byte, private bool, config *ScryptOptions) error {
// No private passphrase to change for a watching-only address manager.
if private && m.watchingOnly {
return managerError(ErrWatchingOnly, errWatchingOnly, nil)
}
m.mtx.Lock()
defer m.mtx.Unlock()
// Ensure the provided old passphrase is correct. This check is done
// using a copy of the appropriate master key depending on the private
// flag to ensure the current state is not altered. The temp key is
// cleared when done to avoid leaving a copy in memory.
var keyName string
secretKey := snacl.SecretKey{Key: &snacl.CryptoKey{}}
if private {
keyName = "private"
secretKey.Parameters = m.masterKeyPriv.Parameters
} else {
keyName = "public"
secretKey.Parameters = m.masterKeyPub.Parameters
}
if err := secretKey.DeriveKey(&oldPassphrase); err != nil {
if err == snacl.ErrInvalidPassword {
str := fmt.Sprintf("invalid passphrase for %s master "+
"key", keyName)
return managerError(ErrWrongPassphrase, str, nil)
}
str := fmt.Sprintf("failed to derive %s master key", keyName)
return managerError(ErrCrypto, str, err)
}
defer secretKey.Zero()
// Generate a new master key from the passphrase which is used to secure
// the actual secret keys.
newMasterKey, err := newSecretKey(&newPassphrase, config)
if err != nil {
str := "failed to create new master private key"
return managerError(ErrCrypto, str, err)
}
newKeyParams := newMasterKey.Marshal()
if private {
// Technically, the locked state could be checked here to only
// do the decrypts when the address manager is locked as the
// clear text keys are already available in memory when it is
// unlocked, but this is not a hot path, decryption is quite
// fast, and it's less cyclomatic complexity to simply decrypt
// in either case.
// Create a new salt that will be used for hashing the new
// passphrase each unlock.
var passphraseSalt [saltSize]byte
_, err := rand.Read(passphraseSalt[:])
if err != nil {
str := "failed to read random source for passhprase salt"
return managerError(ErrCrypto, str, err)
}
// Re-encrypt the crypto private key using the new master
// private key.
decPriv, err := secretKey.Decrypt(m.cryptoKeyPrivEncrypted)
if err != nil {
str := "failed to decrypt crypto private key"
return managerError(ErrCrypto, str, err)
}
encPriv, err := newMasterKey.Encrypt(decPriv)
zero.Bytes(decPriv)
if err != nil {
str := "failed to encrypt crypto private key"
return managerError(ErrCrypto, str, err)
}
// Re-encrypt the crypto script key using the new master
// private key.
decScript, err := secretKey.Decrypt(m.cryptoKeyScriptEncrypted)
if err != nil {
str := "failed to decrypt crypto script key"
return managerError(ErrCrypto, str, err)
}
encScript, err := newMasterKey.Encrypt(decScript)
zero.Bytes(decScript)
if err != nil {
str := "failed to encrypt crypto script key"
return managerError(ErrCrypto, str, err)
}
// When the manager is locked, ensure the new clear text master
// key is cleared from memory now that it is no longer needed.
// If unlocked, create the new passphrase hash with the new
// passphrase and salt.
var hashedPassphrase [sha512.Size]byte
if m.locked {
newMasterKey.Zero()
} else {
saltedPassphrase := append(passphraseSalt[:],
newPassphrase...)
hashedPassphrase = sha512.Sum512(saltedPassphrase)
zero.Bytes(saltedPassphrase)
}
// Save the new keys and params to the db in a single
// transaction.
err = putCryptoKeys(ns, nil, encPriv, encScript)
if err != nil {
return maybeConvertDbError(err)
}
err = putMasterKeyParams(ns, nil, newKeyParams)
if err != nil {
return maybeConvertDbError(err)
}
// Now that the db has been successfully updated, clear the old
// key and set the new one.
copy(m.cryptoKeyPrivEncrypted[:], encPriv)
copy(m.cryptoKeyScriptEncrypted[:], encScript)
m.masterKeyPriv.Zero() // Clear the old key.
m.masterKeyPriv = newMasterKey
m.privPassphraseSalt = passphraseSalt
m.hashedPrivPassphrase = hashedPassphrase
} else {
// Re-encrypt the crypto public key using the new master public
// key.
encryptedPub, err := newMasterKey.Encrypt(m.cryptoKeyPub.Bytes())
if err != nil {
str := "failed to encrypt crypto public key"
return managerError(ErrCrypto, str, err)
}
// Save the new keys and params to the the db in a single
// transaction.
err = putCryptoKeys(ns, encryptedPub, nil, nil)
if err != nil {
return maybeConvertDbError(err)
}
err = putMasterKeyParams(ns, newKeyParams, nil)
if err != nil {
return maybeConvertDbError(err)
}
// Now that the db has been successfully updated, clear the old
// key and set the new one.
m.masterKeyPub.Zero()
m.masterKeyPub = newMasterKey
}
return nil
}
// ConvertToWatchingOnly converts the current address manager to a locked
// watching-only address manager.
//
// WARNING: This function removes private keys from the existing address manager
// which means they will no longer be available. Typically the caller will make
// a copy of the existing wallet database and modify the copy since otherwise it
// would mean permanent loss of any imported private keys and scripts.
//
// Executing this function on a manager that is already watching-only will have
// no effect.
func (m *Manager) ConvertToWatchingOnly(ns walletdb.ReadWriteBucket) error {
m.mtx.Lock()
defer m.mtx.Unlock()
// Exit now if the manager is already watching-only.
if m.watchingOnly {
return nil
}
var err error
// Remove all private key material and mark the new database as
// watching only.
if err := deletePrivateKeys(ns); err != nil {
return maybeConvertDbError(err)
}
err = putWatchingOnly(ns, true)
if err != nil {
return maybeConvertDbError(err)
}
// Lock the manager to remove all clear text private key material from
// memory if needed.
if !m.locked {
m.lock()
}
// This section clears and removes the encrypted private key material
// that is ordinarily used to unlock the manager. Since the the manager
// is being converted to watching-only, the encrypted private key
// material is no longer needed.
// Clear and remove all of the encrypted acount private keys.
for _, manager := range m.scopedManagers {
for _, acctInfo := range manager.acctInfo {
zero.Bytes(acctInfo.acctKeyEncrypted)
acctInfo.acctKeyEncrypted = nil
}
}
// Clear and remove encrypted private keys and encrypted scripts from
// all address entries.
for _, manager := range m.scopedManagers {
for _, ma := range manager.addrs {
switch addr := ma.(type) {
case *managedAddress:
zero.Bytes(addr.privKeyEncrypted)
addr.privKeyEncrypted = nil
case *scriptAddress:
zero.Bytes(addr.scriptEncrypted)
addr.scriptEncrypted = nil
}
}
}
// Clear and remove encrypted private and script crypto keys.
zero.Bytes(m.cryptoKeyScriptEncrypted)
m.cryptoKeyScriptEncrypted = nil
m.cryptoKeyScript = nil
zero.Bytes(m.cryptoKeyPrivEncrypted)
m.cryptoKeyPrivEncrypted = nil
m.cryptoKeyPriv = nil
// The master private key is derived from a passphrase when the manager
// is unlocked, so there is no encrypted version to zero. However,
// it is no longer needed, so nil it.
m.masterKeyPriv = nil
// Mark the manager watching-only.
m.watchingOnly = true
return nil
}
// IsLocked returns whether or not the address managed is locked. When it is
// unlocked, the decryption key needed to decrypt private keys used for signing
// is in memory.
func (m *Manager) IsLocked() bool {
m.mtx.RLock()
defer m.mtx.RUnlock()
return m.isLocked()
}
// isLocked is an internal method returning whether or not the address manager
// is locked via an unprotected read.
//
// NOTE: The caller *MUST* acquire the Manager's mutex before invocation to
// avoid data races.
func (m *Manager) isLocked() bool {
return m.locked
}
// Lock performs a best try effort to remove and zero all secret keys associated
// with the address manager.
//
// This function will return an error if invoked on a watching-only address
// manager.
func (m *Manager) Lock() error {
// A watching-only address manager can't be locked.
if m.watchingOnly {
return managerError(ErrWatchingOnly, errWatchingOnly, nil)
}
m.mtx.Lock()
defer m.mtx.Unlock()
// Error on attempt to lock an already locked manager.
if m.locked {
return managerError(ErrLocked, errLocked, nil)
}
m.lock()
return nil
}
// Unlock derives the master private key from the specified passphrase. An
// invalid passphrase will return an error. Otherwise, the derived secret key
// is stored in memory until the address manager is locked. Any failures that
// occur during this function will result in the address manager being locked,
// even if it was already unlocked prior to calling this function.
//
// This function will return an error if invoked on a watching-only address
// manager.
func (m *Manager) Unlock(ns walletdb.ReadBucket, passphrase []byte) error {
// A watching-only address manager can't be unlocked.
if m.watchingOnly {
return managerError(ErrWatchingOnly, errWatchingOnly, nil)
}
m.mtx.Lock()
defer m.mtx.Unlock()
// Avoid actually unlocking if the manager is already unlocked
// and the passphrases match.
if !m.locked {
saltedPassphrase := append(m.privPassphraseSalt[:],
passphrase...)
hashedPassphrase := sha512.Sum512(saltedPassphrase)
zero.Bytes(saltedPassphrase)
if hashedPassphrase != m.hashedPrivPassphrase {
m.lock()
str := "invalid passphrase for master private key"
return managerError(ErrWrongPassphrase, str, nil)
}
return nil
}
// Derive the master private key using the provided passphrase.
if err := m.masterKeyPriv.DeriveKey(&passphrase); err != nil {
m.lock()
if err == snacl.ErrInvalidPassword {
str := "invalid passphrase for master private key"
return managerError(ErrWrongPassphrase, str, nil)
}
str := "failed to derive master private key"
return managerError(ErrCrypto, str, err)
}
// Use the master private key to decrypt the crypto private key.
decryptedKey, err := m.masterKeyPriv.Decrypt(m.cryptoKeyPrivEncrypted)
if err != nil {
m.lock()
str := "failed to decrypt crypto private key"
return managerError(ErrCrypto, str, err)
}
m.cryptoKeyPriv.CopyBytes(decryptedKey)
zero.Bytes(decryptedKey)
// Use the crypto private key to decrypt all of the account private
// extended keys.
for account, acctInfo := range m.acctInfo {
decrypted, err := m.cryptoKeyPriv.Decrypt(acctInfo.acctKeyEncrypted)
if err != nil {
m.lock()
str := fmt.Sprintf("failed to decrypt account %d "+
"private key", account)
return managerError(ErrCrypto, str, err)
}
acctKeyPriv, err := hdkeychain.NewKeyFromString(string(decrypted))
zero.Bytes(decrypted)
if err != nil {
m.lock()
str := fmt.Sprintf("failed to regenerate account %d "+
"extended key", account)
return managerError(ErrKeyChain, str, err)
}
acctInfo.acctKeyPriv = acctKeyPriv
}
// Derive any private keys that are pending due to them being created
// while the address manager was locked.
for _, info := range m.deriveOnUnlock {
addressKey, err := m.deriveKeyFromPath(ns, info.managedAddr.account,
info.branch, info.index, true)
if err != nil {
m.lock()
return err
}
// It's ok to ignore the error here since it can only fail if
// the extended key is not private, however it was just derived
// as a private key.
privKey, _ := addressKey.ECPrivKey()
addressKey.Zero()
privKeyBytes := privKey.Serialize()
privKeyEncrypted, err := m.cryptoKeyPriv.Encrypt(privKeyBytes)
zero.BigInt(privKey.D)
if err != nil {
m.lock()
str := fmt.Sprintf("failed to encrypt private key for "+
"address %s", info.managedAddr.Address())
return managerError(ErrCrypto, str, err)
}
// TODO(roasbeef): don't need to do anythign further?
switch a := info.managedAddr.(type) {
case *managedAddress:
a.privKeyEncrypted = privKeyEncrypted
a.privKeyCT = privKeyBytes
case *scriptAddress:
}
// Avoid re-deriving this key on subsequent unlocks.
m.deriveOnUnlock[0] = nil
m.deriveOnUnlock = m.deriveOnUnlock[1:]
}
m.locked = false
saltedPassphrase := append(m.privPassphraseSalt[:], passphrase...)
m.hashedPrivPassphrase = sha512.Sum512(saltedPassphrase)
zero.Bytes(saltedPassphrase)
return nil
}
// ValidateAccountName validates the given account name and returns an error, if any.
func ValidateAccountName(name string) error {
if name == "" {
str := "accounts may not be named the empty string"
return managerError(ErrInvalidAccount, str, nil)
}
if isReservedAccountName(name) {
str := "reserved account name"
return managerError(ErrInvalidAccount, str, nil)
}
return nil
}
// selectCryptoKey selects the appropriate crypto key based on the key type. An
// error is returned when an invalid key type is specified or the requested key
// requires the manager to be unlocked when it isn't.
//
// This function MUST be called with the manager lock held for reads.
func (m *Manager) selectCryptoKey(keyType CryptoKeyType) (EncryptorDecryptor, error) {
if keyType == CKTPrivate || keyType == CKTScript {
// The manager must be unlocked to work with the private keys.
if m.locked || m.watchingOnly {
return nil, managerError(ErrLocked, errLocked, nil)
}
}
var cryptoKey EncryptorDecryptor
switch keyType {
case CKTPrivate:
cryptoKey = m.cryptoKeyPriv
case CKTScript:
cryptoKey = m.cryptoKeyScript
case CKTPublic:
cryptoKey = m.cryptoKeyPub
default:
return nil, managerError(ErrInvalidKeyType, "invalid key type",
nil)
}
return cryptoKey, nil
}
// Encrypt in using the crypto key type specified by keyType.
func (m *Manager) Encrypt(keyType CryptoKeyType, in []byte) ([]byte, error) {
// Encryption must be performed under the manager mutex since the
// keys are cleared when the manager is locked.
m.mtx.Lock()
defer m.mtx.Unlock()
cryptoKey, err := m.selectCryptoKey(keyType)
if err != nil {
return nil, err
}
encrypted, err := cryptoKey.Encrypt(in)
if err != nil {
return nil, managerError(ErrCrypto, "failed to encrypt", err)
}
return encrypted, nil
}
// Decrypt in using the crypto key type specified by keyType.
func (m *Manager) Decrypt(keyType CryptoKeyType, in []byte) ([]byte, error) {
// Decryption must be performed under the manager mutex since the keys
// are cleared when the manager is locked.
m.mtx.Lock()
defer m.mtx.Unlock()
cryptoKey, err := m.selectCryptoKey(keyType)
if err != nil {
return nil, err
}
decrypted, err := cryptoKey.Decrypt(in)
if err != nil {
return nil, managerError(ErrCrypto, "failed to decrypt", err)
}
return decrypted, nil
}
// newManager returns a new locked address manager with the given parameters.
func newManager(chainParams *chaincfg.Params, masterKeyPub *snacl.SecretKey,
masterKeyPriv *snacl.SecretKey, cryptoKeyPub EncryptorDecryptor,
cryptoKeyPrivEncrypted, cryptoKeyScriptEncrypted []byte, syncInfo *syncState,
birthday time.Time, privPassphraseSalt [saltSize]byte,
scopedManagers map[KeyScope]*ScopedKeyManager) *Manager {
m := &Manager{
chainParams: chainParams,
syncState: *syncInfo,
locked: true,
birthday: birthday,
masterKeyPub: masterKeyPub,
masterKeyPriv: masterKeyPriv,
cryptoKeyPub: cryptoKeyPub,
cryptoKeyPrivEncrypted: cryptoKeyPrivEncrypted,
cryptoKeyPriv: &cryptoKey{},
cryptoKeyScriptEncrypted: cryptoKeyScriptEncrypted,
cryptoKeyScript: &cryptoKey{},
privPassphraseSalt: privPassphraseSalt,
scopedManagers: scopedManagers,
externalAddrSchemas: make(map[AddressType][]KeyScope),
internalAddrSchemas: make(map[AddressType][]KeyScope),
}
for _, sMgr := range m.scopedManagers {
externalType := sMgr.AddrSchema().ExternalAddrType
internalType := sMgr.AddrSchema().InternalAddrType
scope := sMgr.Scope()
m.externalAddrSchemas[externalType] = append(
m.externalAddrSchemas[externalType], scope,
)
m.internalAddrSchemas[internalType] = append(
m.internalAddrSchemas[internalType], scope,
)
}
return m
}
// deriveCoinTypeKey derives the cointype key which can be used to derive the
// extended key for an account according to the hierarchy described by BIP0044
// given the coin type key.
//
// In particular this is the hierarchical deterministic extended key path:
// m/purpose'/<coin type>'
func deriveCoinTypeKey(masterNode *hdkeychain.ExtendedKey,
scope KeyScope) (*hdkeychain.ExtendedKey, error) {
// Enforce maximum coin type.
if scope.Coin > maxCoinType {
err := managerError(ErrCoinTypeTooHigh, errCoinTypeTooHigh, nil)
return nil, err
}
// The hierarchy described by BIP0043 is:
// m/<purpose>'/*
//
// This is further extended by BIP0044 to:
// m/44'/<coin type>'/<account>'/<branch>/<address index>
//
// However, as this is a generic key store for any family for BIP0044
// standards, we'll use the custom scope to govern our key derivation.
//
// The branch is 0 for external addresses and 1 for internal addresses.
// Derive the purpose key as a child of the master node.
purpose, err := masterNode.Child(scope.Purpose + hdkeychain.HardenedKeyStart)
if err != nil {
return nil, err
}
// Derive the coin type key as a child of the purpose key.
coinTypeKey, err := purpose.Child(scope.Coin + hdkeychain.HardenedKeyStart)
if err != nil {
return nil, err
}
return coinTypeKey, nil
}
// deriveAccountKey derives the extended key for an account according to the
// hierarchy described by BIP0044 given the master node.
//
// In particular this is the hierarchical deterministic extended key path:
// m/purpose'/<coin type>'/<account>'
func deriveAccountKey(coinTypeKey *hdkeychain.ExtendedKey,
account uint32) (*hdkeychain.ExtendedKey, error) {
// Enforce maximum account number.
if account > MaxAccountNum {
err := managerError(ErrAccountNumTooHigh, errAcctTooHigh, nil)
return nil, err
}
// Derive the account key as a child of the coin type key.
return coinTypeKey.Child(account + hdkeychain.HardenedKeyStart)
}
// checkBranchKeys ensures deriving the extended keys for the internal and
// external branches given an account key does not result in an invalid child
// error which means the chosen seed is not usable. This conforms to the
// hierarchy described by the BIP0044 family so long as the account key is
// already derived accordingly.
//
// In particular this is the hierarchical deterministic extended key path:
// m/purpose'/<coin type>'/<account>'/<branch>
//
// The branch is 0 for external addresses and 1 for internal addresses.
func checkBranchKeys(acctKey *hdkeychain.ExtendedKey) error {
// Derive the external branch as the first child of the account key.
if _, err := acctKey.Child(ExternalBranch); err != nil {
return err
}
// Derive the external branch as the second child of the account key.
_, err := acctKey.Child(InternalBranch)
return err
}
// loadManager returns a new address manager that results from loading it from
// the passed opened database. The public passphrase is required to decrypt
// the public keys.
func loadManager(ns walletdb.ReadBucket, pubPassphrase []byte,
chainParams *chaincfg.Params) (*Manager, error) {
// Verify the version is neither too old or too new.
version, err := fetchManagerVersion(ns)
if err != nil {
str := "failed to fetch version for update"
return nil, managerError(ErrDatabase, str, err)
}
if version < latestMgrVersion {
str := "database upgrade required"
return nil, managerError(ErrUpgrade, str, nil)
} else if version > latestMgrVersion {
str := "database version is greater than latest understood version"
return nil, managerError(ErrUpgrade, str, nil)
}
// Load whether or not the manager is watching-only from the db.
watchingOnly, err := fetchWatchingOnly(ns)
if err != nil {
return nil, maybeConvertDbError(err)
}
// Load the master key params from the db.
masterKeyPubParams, masterKeyPrivParams, err := fetchMasterKeyParams(ns)
if err != nil {
return nil, maybeConvertDbError(err)
}
// Load the crypto keys from the db.
cryptoKeyPubEnc, cryptoKeyPrivEnc, cryptoKeyScriptEnc, err :=
fetchCryptoKeys(ns)
if err != nil {
return nil, maybeConvertDbError(err)
}
// Load the sync state from the db.
syncedTo, err := fetchSyncedTo(ns)
if err != nil {
return nil, maybeConvertDbError(err)
}
startBlock, err := fetchStartBlock(ns)
if err != nil {
return nil, maybeConvertDbError(err)
}
birthday, err := fetchBirthday(ns)
if err != nil {
return nil, maybeConvertDbError(err)
}
// When not a watching-only manager, set the master private key params,
// but don't derive it now since the manager starts off locked.
var masterKeyPriv snacl.SecretKey
if !watchingOnly {
err := masterKeyPriv.Unmarshal(masterKeyPrivParams)
if err != nil {
str := "failed to unmarshal master private key"
return nil, managerError(ErrCrypto, str, err)
}
}
// Derive the master public key using the serialized params and provided
// passphrase.
var masterKeyPub snacl.SecretKey
if err := masterKeyPub.Unmarshal(masterKeyPubParams); err != nil {
str := "failed to unmarshal master public key"
return nil, managerError(ErrCrypto, str, err)
}
if err := masterKeyPub.DeriveKey(&pubPassphrase); err != nil {
str := "invalid passphrase for master public key"
return nil, managerError(ErrWrongPassphrase, str, nil)
}
// Use the master public key to decrypt the crypto public key.
cryptoKeyPub := &cryptoKey{snacl.CryptoKey{}}
cryptoKeyPubCT, err := masterKeyPub.Decrypt(cryptoKeyPubEnc)
if err != nil {
str := "failed to decrypt crypto public key"
return nil, managerError(ErrCrypto, str, err)
}
cryptoKeyPub.CopyBytes(cryptoKeyPubCT)
zero.Bytes(cryptoKeyPubCT)
// Create the sync state struct.
syncInfo := newSyncState(startBlock, syncedTo)
// Generate private passphrase salt.
var privPassphraseSalt [saltSize]byte
_, err = rand.Read(privPassphraseSalt[:])
if err != nil {
str := "failed to read random source for passphrase salt"
return nil, managerError(ErrCrypto, str, err)
}
// Next, we'll need to load all known manager scopes from disk. Each
// scope is on a distinct top-level path within our HD key chain.
scopedManagers := make(map[KeyScope]*ScopedKeyManager)
err = forEachKeyScope(ns, func(scope KeyScope) error {
scopeSchema, err := fetchScopeAddrSchema(ns, &scope)
if err != nil {
return err
}
scopedManagers[scope] = &ScopedKeyManager{
scope: scope,
addrSchema: *scopeSchema,
addrs: make(map[addrKey]ManagedAddress),
acctInfo: make(map[uint32]*accountInfo),
}
return nil
})
if err != nil {
return nil, err
}
// Create new address manager with the given parameters. Also,
// override the defaults for the additional fields which are not
// specified in the call to new with the values loaded from the
// database.
mgr := newManager(
chainParams, &masterKeyPub, &masterKeyPriv,
cryptoKeyPub, cryptoKeyPrivEnc, cryptoKeyScriptEnc, syncInfo,
birthday, privPassphraseSalt, scopedManagers,
)
mgr.watchingOnly = watchingOnly
for _, scopedManager := range scopedManagers {
scopedManager.rootManager = mgr
}
return mgr, nil
}
// Open loads an existing address manager from the given namespace. The public
// passphrase is required to decrypt the public keys used to protect the public
// information such as addresses. This is important since access to BIP0032
// extended keys means it is possible to generate all future addresses.
//
// If a config structure is passed to the function, that configuration will
// override the defaults.
//
// A ManagerError with an error code of ErrNoExist will be returned if the
// passed manager does not exist in the specified namespace.
func Open(ns walletdb.ReadBucket, pubPassphrase []byte,
chainParams *chaincfg.Params) (*Manager, error) {
// Return an error if the manager has NOT already been created in the
// given database namespace.
exists := managerExists(ns)
if !exists {
str := "the specified address manager does not exist"
return nil, managerError(ErrNoExist, str, nil)
}
return loadManager(ns, pubPassphrase, chainParams)
}
// DoUpgrades performs any necessary upgrades to the address manager contained
// in the wallet database, namespaced by the top level bucket key namespaceKey.
func DoUpgrades(db walletdb.DB, namespaceKey []byte, pubPassphrase []byte,
chainParams *chaincfg.Params, cbs *OpenCallbacks) error {
return upgradeManager(db, namespaceKey, pubPassphrase, chainParams, cbs)
}
// createManagerKeyScope creates a new key scoped for a target manager's scope.
// This partitions key derivation for a particular purpose+coin tuple, allowing
// multiple address derivation schems to be maintained concurrently.
func createManagerKeyScope(ns walletdb.ReadWriteBucket,
scope KeyScope, root *hdkeychain.ExtendedKey,
cryptoKeyPub, cryptoKeyPriv EncryptorDecryptor) error {
// Derive the cointype key according to the passed scope.
coinTypeKeyPriv, err := deriveCoinTypeKey(root, scope)
if err != nil {
str := "failed to derive cointype extended key"
return managerError(ErrKeyChain, str, err)
}
defer coinTypeKeyPriv.Zero()
// Derive the account key for the first account according our
// BIP0044-like derivation.
acctKeyPriv, err := deriveAccountKey(coinTypeKeyPriv, 0)
if err != nil {
// The seed is unusable if the any of the children in the
// required hierarchy can't be derived due to invalid child.
if err == hdkeychain.ErrInvalidChild {
str := "the provided seed is unusable"
return managerError(ErrKeyChain, str,
hdkeychain.ErrUnusableSeed)
}
return err
}
// Ensure the branch keys can be derived for the provided seed according
// to our BIP0044-like derivation.
if err := checkBranchKeys(acctKeyPriv); err != nil {
// The seed is unusable if the any of the children in the
// required hierarchy can't be derived due to invalid child.
if err == hdkeychain.ErrInvalidChild {
str := "the provided seed is unusable"
return managerError(ErrKeyChain, str,
hdkeychain.ErrUnusableSeed)
}
return err
}
// The address manager needs the public extended key for the account.
acctKeyPub, err := acctKeyPriv.Neuter()
if err != nil {
str := "failed to convert private key for account 0"
return managerError(ErrKeyChain, str, err)
}
// Encrypt the cointype keys with the associated crypto keys.
coinTypeKeyPub, err := coinTypeKeyPriv.Neuter()
if err != nil {
str := "failed to convert cointype private key"
return managerError(ErrKeyChain, str, err)
}
coinTypePubEnc, err := cryptoKeyPub.Encrypt([]byte(coinTypeKeyPub.String()))
if err != nil {
str := "failed to encrypt cointype public key"
return managerError(ErrCrypto, str, err)
}
coinTypePrivEnc, err := cryptoKeyPriv.Encrypt([]byte(coinTypeKeyPriv.String()))
if err != nil {
str := "failed to encrypt cointype private key"
return managerError(ErrCrypto, str, err)
}
// Encrypt the default account keys with the associated crypto keys.
acctPubEnc, err := cryptoKeyPub.Encrypt([]byte(acctKeyPub.String()))
if err != nil {
str := "failed to encrypt public key for account 0"
return managerError(ErrCrypto, str, err)
}
acctPrivEnc, err := cryptoKeyPriv.Encrypt([]byte(acctKeyPriv.String()))
if err != nil {
str := "failed to encrypt private key for account 0"
return managerError(ErrCrypto, str, err)
}
// Save the encrypted cointype keys to the database.
err = putCoinTypeKeys(ns, &scope, coinTypePubEnc, coinTypePrivEnc)
if err != nil {
return err
}
// Save the information for the default account to the database.
err = putAccountInfo(
ns, &scope, DefaultAccountNum, acctPubEnc, acctPrivEnc, 0, 0,
defaultAccountName,
)
if err != nil {
return err
}
return putAccountInfo(
ns, &scope, ImportedAddrAccount, nil, nil, 0, 0,
ImportedAddrAccountName,
)
}
// Create creates a new address manager in the given namespace. The seed must
// conform to the standards described in hdkeychain.NewMaster and will be used
// to create the master root node from which all hierarchical deterministic
// addresses are derived. This allows all chained addresses in the address
// manager to be recovered by using the same seed.
//
// All private and public keys and information are protected by secret keys
// derived from the provided private and public passphrases. The public
// passphrase is required on subsequent opens of the address manager, and the
// private passphrase is required to unlock the address manager in order to
// gain access to any private keys and information.
//
// If a config structure is passed to the function, that configuration will
// override the defaults.
//
// A ManagerError with an error code of ErrAlreadyExists will be returned the
// address manager already exists in the specified namespace.
func Create(ns walletdb.ReadWriteBucket, seed, pubPassphrase, privPassphrase []byte,
chainParams *chaincfg.Params, config *ScryptOptions,
birthday time.Time) error {
// Return an error if the manager has already been created in
// the given database namespace.
exists := managerExists(ns)
if exists {
return managerError(ErrAlreadyExists, errAlreadyExists, nil)
}
// Ensure the private passphrase is not empty.
if len(privPassphrase) == 0 {
str := "private passphrase may not be empty"
return managerError(ErrEmptyPassphrase, str, nil)
}
// Perform the initial bucket creation and database namespace setup.
if err := createManagerNS(ns, ScopeAddrMap); err != nil {
return maybeConvertDbError(err)
}
if config == nil {
config = &DefaultScryptOptions
}
// Generate new master keys. These master keys are used to protect the
// crypto keys that will be generated next.
masterKeyPub, err := newSecretKey(&pubPassphrase, config)
if err != nil {
str := "failed to master public key"
return managerError(ErrCrypto, str, err)
}
masterKeyPriv, err := newSecretKey(&privPassphrase, config)
if err != nil {
str := "failed to master private key"
return managerError(ErrCrypto, str, err)
}
defer masterKeyPriv.Zero()
// Generate the private passphrase salt. This is used when hashing
// passwords to detect whether an unlock can be avoided when the manager
// is already unlocked.
var privPassphraseSalt [saltSize]byte
_, err = rand.Read(privPassphraseSalt[:])
if err != nil {
str := "failed to read random source for passphrase salt"
return managerError(ErrCrypto, str, err)
}
// Generate new crypto public, private, and script keys. These keys are
// used to protect the actual public and private data such as addresses,
// extended keys, and scripts.
cryptoKeyPub, err := newCryptoKey()
if err != nil {
str := "failed to generate crypto public key"
return managerError(ErrCrypto, str, err)
}
cryptoKeyPriv, err := newCryptoKey()
if err != nil {
str := "failed to generate crypto private key"
return managerError(ErrCrypto, str, err)
}
defer cryptoKeyPriv.Zero()
cryptoKeyScript, err := newCryptoKey()
if err != nil {
str := "failed to generate crypto script key"
return managerError(ErrCrypto, str, err)
}
defer cryptoKeyScript.Zero()
// Encrypt the crypto keys with the associated master keys.
cryptoKeyPubEnc, err := masterKeyPub.Encrypt(cryptoKeyPub.Bytes())
if err != nil {
str := "failed to encrypt crypto public key"
return managerError(ErrCrypto, str, err)
}
cryptoKeyPrivEnc, err := masterKeyPriv.Encrypt(cryptoKeyPriv.Bytes())
if err != nil {
str := "failed to encrypt crypto private key"
return managerError(ErrCrypto, str, err)
}
cryptoKeyScriptEnc, err := masterKeyPriv.Encrypt(cryptoKeyScript.Bytes())
if err != nil {
str := "failed to encrypt crypto script key"
return managerError(ErrCrypto, str, err)
}
// Use the genesis block for the passed chain as the created at block
// for the default.
createdAt := &BlockStamp{Hash: *chainParams.GenesisHash, Height: 0}
// Create the initial sync state.
syncInfo := newSyncState(createdAt, createdAt)
// Save the master key params to the database.
pubParams := masterKeyPub.Marshal()
privParams := masterKeyPriv.Marshal()
err = putMasterKeyParams(ns, pubParams, privParams)
if err != nil {
return maybeConvertDbError(err)
}
// Generate the BIP0044 HD key structure to ensure the provided seed
// can generate the required structure with no issues.
// Derive the master extended key from the seed.
rootKey, err := hdkeychain.NewMaster(seed, chainParams)
if err != nil {
str := "failed to derive master extended key"
return managerError(ErrKeyChain, str, err)
}
rootPubKey, err := rootKey.Neuter()
if err != nil {
str := "failed to neuter master extended key"
return managerError(ErrKeyChain, str, err)
}
// Next, for each registers default manager scope, we'll create the
// hardened cointype key for it, as well as the first default account.
for _, defaultScope := range DefaultKeyScopes {
err := createManagerKeyScope(
ns, defaultScope, rootKey, cryptoKeyPub, cryptoKeyPriv,
)
if err != nil {
return maybeConvertDbError(err)
}
}
// Before we proceed, we'll also store the root master private key
// within the database in an encrypted format. This is required as in
// the future, we may need to create additional scoped key managers.
masterHDPrivKeyEnc, err := cryptoKeyPriv.Encrypt([]byte(rootKey.String()))
if err != nil {
return maybeConvertDbError(err)
}
masterHDPubKeyEnc, err := cryptoKeyPub.Encrypt([]byte(rootPubKey.String()))
if err != nil {
return maybeConvertDbError(err)
}
err = putMasterHDKeys(ns, masterHDPrivKeyEnc, masterHDPubKeyEnc)
if err != nil {
return maybeConvertDbError(err)
}
// Save the encrypted crypto keys to the database.
err = putCryptoKeys(ns, cryptoKeyPubEnc, cryptoKeyPrivEnc,
cryptoKeyScriptEnc)
if err != nil {
return maybeConvertDbError(err)
}
// Save the fact this is not a watching-only address manager to the
// database.
err = putWatchingOnly(ns, false)
if err != nil {
return maybeConvertDbError(err)
}
// Save the initial synced to state.
err = putSyncedTo(ns, &syncInfo.syncedTo)
if err != nil {
return maybeConvertDbError(err)
}
err = putStartBlock(ns, &syncInfo.startBlock)
if err != nil {
return maybeConvertDbError(err)
}
// Use 48 hours as margin of safety for wallet birthday.
return putBirthday(ns, birthday.Add(-48*time.Hour))
}