33d053c6a7
This change introduces additional network activity with the btcd process to ensure that the network connection is not silently dropped. Previously, if the connection was lost (e.g. wallet runs on a laptop and connects to remote btcd, and the laptop is suspended/resumed) the lost connection would not be detectable since all normal RPC activity (excluding requests from btcwallet to btcd made by the user) is in the direction of btcd to wallet in the form of websocket notifications.
287 lines
8 KiB
Go
287 lines
8 KiB
Go
/*
|
|
* Copyright (c) 2013, 2014 The btcsuite developers
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
package wallet
|
|
|
|
import (
|
|
"github.com/btcsuite/btcd/wire"
|
|
"github.com/btcsuite/btcutil"
|
|
"github.com/btcsuite/btcwallet/chain"
|
|
"github.com/btcsuite/btcwallet/waddrmgr"
|
|
"github.com/btcsuite/btcwallet/wtxmgr"
|
|
)
|
|
|
|
// RescanProgressMsg reports the current progress made by a rescan for a
|
|
// set of wallet addresses.
|
|
type RescanProgressMsg struct {
|
|
Addresses []btcutil.Address
|
|
Notification *chain.RescanProgress
|
|
}
|
|
|
|
// RescanFinishedMsg reports the addresses that were rescanned when a
|
|
// rescanfinished message was received rescanning a batch of addresses.
|
|
type RescanFinishedMsg struct {
|
|
Addresses []btcutil.Address
|
|
Notification *chain.RescanFinished
|
|
}
|
|
|
|
// RescanJob is a job to be processed by the RescanManager. The job includes
|
|
// a set of wallet addresses, a starting height to begin the rescan, and
|
|
// outpoints spendable by the addresses thought to be unspent. After the
|
|
// rescan completes, the error result of the rescan RPC is sent on the Err
|
|
// channel.
|
|
type RescanJob struct {
|
|
InitialSync bool
|
|
Addrs []btcutil.Address
|
|
OutPoints []*wire.OutPoint
|
|
BlockStamp waddrmgr.BlockStamp
|
|
err chan error
|
|
}
|
|
|
|
// rescanBatch is a collection of one or more RescanJobs that were merged
|
|
// together before a rescan is performed.
|
|
type rescanBatch struct {
|
|
initialSync bool
|
|
addrs []btcutil.Address
|
|
outpoints []*wire.OutPoint
|
|
bs waddrmgr.BlockStamp
|
|
errChans []chan error
|
|
}
|
|
|
|
// SubmitRescan submits a RescanJob to the RescanManager. A channel is
|
|
// returned with the final error of the rescan. The channel is buffered
|
|
// and does not need to be read to prevent a deadlock.
|
|
func (w *Wallet) SubmitRescan(job *RescanJob) <-chan error {
|
|
errChan := make(chan error, 1)
|
|
job.err = errChan
|
|
w.rescanAddJob <- job
|
|
return errChan
|
|
}
|
|
|
|
// batch creates the rescanBatch for a single rescan job.
|
|
func (job *RescanJob) batch() *rescanBatch {
|
|
return &rescanBatch{
|
|
initialSync: job.InitialSync,
|
|
addrs: job.Addrs,
|
|
outpoints: job.OutPoints,
|
|
bs: job.BlockStamp,
|
|
errChans: []chan error{job.err},
|
|
}
|
|
}
|
|
|
|
// merge merges the work from k into j, setting the starting height to
|
|
// the minimum of the two jobs. This method does not check for
|
|
// duplicate addresses or outpoints.
|
|
func (b *rescanBatch) merge(job *RescanJob) {
|
|
if job.InitialSync {
|
|
b.initialSync = true
|
|
}
|
|
b.addrs = append(b.addrs, job.Addrs...)
|
|
b.outpoints = append(b.outpoints, job.OutPoints...)
|
|
if job.BlockStamp.Height < b.bs.Height {
|
|
b.bs = job.BlockStamp
|
|
}
|
|
b.errChans = append(b.errChans, job.err)
|
|
}
|
|
|
|
// done iterates through all error channels, duplicating sending the error
|
|
// to inform callers that the rescan finished (or could not complete due
|
|
// to an error).
|
|
func (b *rescanBatch) done(err error) {
|
|
for _, c := range b.errChans {
|
|
c <- err
|
|
}
|
|
}
|
|
|
|
// rescanBatchHandler handles incoming rescan request, serializing rescan
|
|
// submissions, and possibly batching many waiting requests together so they
|
|
// can be handled by a single rescan after the current one completes.
|
|
func (w *Wallet) rescanBatchHandler() {
|
|
var curBatch, nextBatch *rescanBatch
|
|
quit := w.quitChan()
|
|
|
|
out:
|
|
for {
|
|
select {
|
|
case job := <-w.rescanAddJob:
|
|
if curBatch == nil {
|
|
// Set current batch as this job and send
|
|
// request.
|
|
curBatch = job.batch()
|
|
w.rescanBatch <- curBatch
|
|
} else {
|
|
// Create next batch if it doesn't exist, or
|
|
// merge the job.
|
|
if nextBatch == nil {
|
|
nextBatch = job.batch()
|
|
} else {
|
|
nextBatch.merge(job)
|
|
}
|
|
}
|
|
|
|
case n := <-w.rescanNotifications:
|
|
switch n := n.(type) {
|
|
case *chain.RescanProgress:
|
|
w.rescanProgress <- &RescanProgressMsg{
|
|
Addresses: curBatch.addrs,
|
|
Notification: n,
|
|
}
|
|
|
|
case *chain.RescanFinished:
|
|
if curBatch == nil {
|
|
log.Warnf("Received rescan finished " +
|
|
"notification but no rescan " +
|
|
"currently running")
|
|
continue
|
|
}
|
|
w.rescanFinished <- &RescanFinishedMsg{
|
|
Addresses: curBatch.addrs,
|
|
Notification: n,
|
|
}
|
|
|
|
curBatch, nextBatch = nextBatch, nil
|
|
|
|
if curBatch != nil {
|
|
w.rescanBatch <- curBatch
|
|
}
|
|
|
|
default:
|
|
// Unexpected message
|
|
panic(n)
|
|
}
|
|
|
|
case <-quit:
|
|
break out
|
|
}
|
|
}
|
|
|
|
w.wg.Done()
|
|
}
|
|
|
|
// rescanProgressHandler handles notifications for partially and fully completed
|
|
// rescans by marking each rescanned address as partially or fully synced.
|
|
func (w *Wallet) rescanProgressHandler() {
|
|
quit := w.quitChan()
|
|
out:
|
|
for {
|
|
// These can't be processed out of order since both chans are
|
|
// unbuffured and are sent from same context (the batch
|
|
// handler).
|
|
select {
|
|
case msg := <-w.rescanProgress:
|
|
n := msg.Notification
|
|
log.Infof("Rescanned through block %v (height %d)",
|
|
n.Hash, n.Height)
|
|
|
|
bs := waddrmgr.BlockStamp{
|
|
Hash: *n.Hash,
|
|
Height: n.Height,
|
|
}
|
|
if err := w.Manager.SetSyncedTo(&bs); err != nil {
|
|
log.Errorf("Failed to update address manager "+
|
|
"sync state for hash %v (height %d): %v",
|
|
n.Hash, n.Height, err)
|
|
}
|
|
|
|
case msg := <-w.rescanFinished:
|
|
n := msg.Notification
|
|
addrs := msg.Addresses
|
|
noun := pickNoun(len(addrs), "address", "addresses")
|
|
log.Infof("Finished rescan for %d %s (synced to block "+
|
|
"%s, height %d)", len(addrs), noun, n.Hash,
|
|
n.Height)
|
|
bs := waddrmgr.BlockStamp{n.Height, *n.Hash}
|
|
if err := w.Manager.SetSyncedTo(&bs); err != nil {
|
|
log.Errorf("Failed to update address manager "+
|
|
"sync state for hash %v (height %d): %v",
|
|
n.Hash, n.Height, err)
|
|
}
|
|
w.SetChainSynced(true)
|
|
|
|
go w.ResendUnminedTxs()
|
|
|
|
// TODO(jrick): The current websocket API requires
|
|
// notifying the block the rescan synced through to
|
|
// every connected client. This is code smell and
|
|
// should be removed or replaced with a more
|
|
// appropiate notification when the API is redone.
|
|
b := wtxmgr.BlockMeta{
|
|
Block: wtxmgr.Block{
|
|
*n.Hash,
|
|
n.Height,
|
|
},
|
|
Time: n.Time,
|
|
}
|
|
w.notifyConnectedBlock(b)
|
|
|
|
case <-quit:
|
|
break out
|
|
}
|
|
}
|
|
w.wg.Done()
|
|
}
|
|
|
|
// rescanRPCHandler reads batch jobs sent by rescanBatchHandler and sends the
|
|
// RPC requests to perform a rescan. New jobs are not read until a rescan
|
|
// finishes.
|
|
func (w *Wallet) rescanRPCHandler() {
|
|
quit := w.quitChan()
|
|
|
|
out:
|
|
for {
|
|
select {
|
|
case batch := <-w.rescanBatch:
|
|
// Log the newly-started rescan.
|
|
numAddrs := len(batch.addrs)
|
|
noun := pickNoun(numAddrs, "address", "addresses")
|
|
log.Infof("Started rescan from block %v (height %d) for %d %s",
|
|
batch.bs.Hash, batch.bs.Height, numAddrs, noun)
|
|
|
|
err := w.chainSvr.Rescan(&batch.bs.Hash, batch.addrs,
|
|
batch.outpoints)
|
|
if err != nil {
|
|
log.Errorf("Rescan for %d %s failed: %v", numAddrs,
|
|
noun, err)
|
|
}
|
|
batch.done(err)
|
|
case <-quit:
|
|
break out
|
|
}
|
|
}
|
|
|
|
w.wg.Done()
|
|
}
|
|
|
|
// Rescan begins a rescan for all active addresses and unspent outputs of
|
|
// a wallet. This is intended to be used to sync a wallet back up to the
|
|
// current best block in the main chain, and is considered an initial sync
|
|
// rescan.
|
|
func (w *Wallet) Rescan(addrs []btcutil.Address, unspent []wtxmgr.Credit) error {
|
|
outpoints := make([]*wire.OutPoint, len(unspent))
|
|
for i, output := range unspent {
|
|
outpoints[i] = &output.OutPoint
|
|
}
|
|
|
|
job := &RescanJob{
|
|
InitialSync: true,
|
|
Addrs: addrs,
|
|
OutPoints: outpoints,
|
|
BlockStamp: w.Manager.SyncedTo(),
|
|
}
|
|
|
|
// Submit merged job and block until rescan completes.
|
|
return <-w.SubmitRescan(job)
|
|
}
|