1527 lines
50 KiB
Go
1527 lines
50 KiB
Go
package spvchain
|
|
|
|
import (
|
|
"container/list"
|
|
"math/big"
|
|
"sync"
|
|
"sync/atomic"
|
|
"time"
|
|
|
|
"github.com/btcsuite/btcd/blockchain"
|
|
"github.com/btcsuite/btcd/chaincfg"
|
|
"github.com/btcsuite/btcd/chaincfg/chainhash"
|
|
"github.com/btcsuite/btcd/wire"
|
|
"github.com/btcsuite/btcutil"
|
|
)
|
|
|
|
const (
|
|
// minInFlightBlocks is the minimum number of blocks that should be
|
|
// in the request queue for headers-first mode before requesting
|
|
// more.
|
|
minInFlightBlocks = 10
|
|
|
|
// blockDbNamePrefix is the prefix for the block database name. The
|
|
// database type is appended to this value to form the full block
|
|
// database name.
|
|
blockDbNamePrefix = "blocks"
|
|
|
|
// maxRequestedBlocks is the maximum number of requested block
|
|
// hashes to store in memory.
|
|
maxRequestedBlocks = wire.MaxInvPerMsg
|
|
|
|
// maxTimeOffset is the maximum duration a block time is allowed to be
|
|
// ahead of the curent time. This is currently 2 hours.
|
|
maxTimeOffset = 2 * time.Hour
|
|
)
|
|
|
|
// zeroHash is the zero value hash (all zeros). It is defined as a convenience.
|
|
var zeroHash chainhash.Hash
|
|
|
|
// newPeerMsg signifies a newly connected peer to the block handler.
|
|
type newPeerMsg struct {
|
|
peer *serverPeer
|
|
}
|
|
|
|
// blockMsg packages a bitcoin block message and the peer it came from together
|
|
// so the block handler has access to that information.
|
|
type blockMsg struct {
|
|
block *btcutil.Block
|
|
peer *serverPeer
|
|
}
|
|
|
|
// invMsg packages a bitcoin inv message and the peer it came from together
|
|
// so the block handler has access to that information.
|
|
type invMsg struct {
|
|
inv *wire.MsgInv
|
|
peer *serverPeer
|
|
}
|
|
|
|
// headersMsg packages a bitcoin headers message and the peer it came from
|
|
// together so the block handler has access to that information.
|
|
type headersMsg struct {
|
|
headers *wire.MsgHeaders
|
|
peer *serverPeer
|
|
}
|
|
|
|
// donePeerMsg signifies a newly disconnected peer to the block handler.
|
|
type donePeerMsg struct {
|
|
peer *serverPeer
|
|
}
|
|
|
|
// txMsg packages a bitcoin tx message and the peer it came from together
|
|
// so the block handler has access to that information.
|
|
type txMsg struct {
|
|
tx *btcutil.Tx
|
|
peer *serverPeer
|
|
}
|
|
|
|
// getSyncPeerMsg is a message type to be sent across the message channel for
|
|
// retrieving the current sync peer.
|
|
type getSyncPeerMsg struct {
|
|
reply chan *serverPeer
|
|
}
|
|
|
|
// processBlockResponse is a response sent to the reply channel of a
|
|
// processBlockMsg.
|
|
type processBlockResponse struct {
|
|
isOrphan bool
|
|
err error
|
|
}
|
|
|
|
// processBlockMsg is a message type to be sent across the message channel
|
|
// for requested a block is processed. Note this call differs from blockMsg
|
|
// above in that blockMsg is intended for blocks that came from peers and have
|
|
// extra handling whereas this message essentially is just a concurrent safe
|
|
// way to call ProcessBlock on the internal block chain instance.
|
|
type processBlockMsg struct {
|
|
block *btcutil.Block
|
|
flags blockchain.BehaviorFlags
|
|
reply chan processBlockResponse
|
|
}
|
|
|
|
// isCurrentMsg is a message type to be sent across the message channel for
|
|
// requesting whether or not the block manager believes it is synced with
|
|
// the currently connected peers.
|
|
type isCurrentMsg struct {
|
|
reply chan bool
|
|
}
|
|
|
|
// headerNode is used as a node in a list of headers that are linked together
|
|
// between checkpoints.
|
|
type headerNode struct {
|
|
height int32
|
|
header *wire.BlockHeader
|
|
}
|
|
|
|
// blockManager provides a concurrency safe block manager for handling all
|
|
// incoming blocks.
|
|
type blockManager struct {
|
|
server *ChainService
|
|
started int32
|
|
shutdown int32
|
|
requestedBlocks map[chainhash.Hash]struct{}
|
|
progressLogger *blockProgressLogger
|
|
syncPeer *serverPeer
|
|
msgChan chan interface{}
|
|
wg sync.WaitGroup
|
|
quit chan struct{}
|
|
|
|
headerList *list.List
|
|
startHeader *list.Element
|
|
nextCheckpoint *chaincfg.Checkpoint
|
|
|
|
minRetargetTimespan int64 // target timespan / adjustment factor
|
|
maxRetargetTimespan int64 // target timespan * adjustment factor
|
|
blocksPerRetarget int32 // target timespan / target time per block
|
|
}
|
|
|
|
// newBlockManager returns a new bitcoin block manager.
|
|
// Use Start to begin processing asynchronous block and inv updates.
|
|
func newBlockManager(s *ChainService) (*blockManager, error) {
|
|
targetTimespan := int64(s.chainParams.TargetTimespan / time.Second)
|
|
targetTimePerBlock := int64(s.chainParams.TargetTimePerBlock / time.Second)
|
|
adjustmentFactor := s.chainParams.RetargetAdjustmentFactor
|
|
|
|
bm := blockManager{
|
|
server: s,
|
|
requestedBlocks: make(map[chainhash.Hash]struct{}),
|
|
progressLogger: newBlockProgressLogger("Processed", log),
|
|
msgChan: make(chan interface{}, MaxPeers*3),
|
|
headerList: list.New(),
|
|
quit: make(chan struct{}),
|
|
blocksPerRetarget: int32(targetTimespan / targetTimePerBlock),
|
|
minRetargetTimespan: targetTimespan / adjustmentFactor,
|
|
maxRetargetTimespan: targetTimespan * adjustmentFactor,
|
|
}
|
|
|
|
// Initialize the next checkpoint based on the current height.
|
|
header, height, err := s.LatestBlock()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
bm.nextCheckpoint = bm.findNextHeaderCheckpoint(int32(height))
|
|
bm.resetHeaderState(&header, int32(height))
|
|
|
|
return &bm, nil
|
|
}
|
|
|
|
// Start begins the core block handler which processes block and inv messages.
|
|
func (b *blockManager) Start() {
|
|
// Already started?
|
|
if atomic.AddInt32(&b.started, 1) != 1 {
|
|
return
|
|
}
|
|
|
|
log.Trace("Starting block manager")
|
|
b.wg.Add(1)
|
|
go b.blockHandler()
|
|
}
|
|
|
|
// Stop gracefully shuts down the block manager by stopping all asynchronous
|
|
// handlers and waiting for them to finish.
|
|
func (b *blockManager) Stop() error {
|
|
if atomic.AddInt32(&b.shutdown, 1) != 1 {
|
|
log.Warnf("Block manager is already in the process of " +
|
|
"shutting down")
|
|
return nil
|
|
}
|
|
|
|
log.Infof("Block manager shutting down")
|
|
close(b.quit)
|
|
b.wg.Wait()
|
|
return nil
|
|
}
|
|
|
|
// NewPeer informs the block manager of a newly active peer.
|
|
func (b *blockManager) NewPeer(sp *serverPeer) {
|
|
// Ignore if we are shutting down.
|
|
if atomic.LoadInt32(&b.shutdown) != 0 {
|
|
return
|
|
}
|
|
b.msgChan <- &newPeerMsg{peer: sp}
|
|
}
|
|
|
|
// handleNewPeerMsg deals with new peers that have signalled they may
|
|
// be considered as a sync peer (they have already successfully negotiated). It
|
|
// also starts syncing if needed. It is invoked from the syncHandler goroutine.
|
|
func (b *blockManager) handleNewPeerMsg(peers *list.List, sp *serverPeer) {
|
|
// Ignore if in the process of shutting down.
|
|
if atomic.LoadInt32(&b.shutdown) != 0 {
|
|
return
|
|
}
|
|
|
|
log.Infof("New valid peer %s (%s)", sp, sp.UserAgent())
|
|
|
|
// Ignore the peer if it's not a sync candidate.
|
|
if !b.isSyncCandidate(sp) {
|
|
return
|
|
}
|
|
|
|
// Add the peer as a candidate to sync from.
|
|
peers.PushBack(sp)
|
|
|
|
// Start syncing by choosing the best candidate if needed.
|
|
b.startSync(peers)
|
|
}
|
|
|
|
// DonePeer informs the blockmanager that a peer has disconnected.
|
|
func (b *blockManager) DonePeer(sp *serverPeer) {
|
|
// Ignore if we are shutting down.
|
|
if atomic.LoadInt32(&b.shutdown) != 0 {
|
|
return
|
|
}
|
|
|
|
b.msgChan <- &donePeerMsg{peer: sp}
|
|
}
|
|
|
|
// handleDonePeerMsg deals with peers that have signalled they are done. It
|
|
// removes the peer as a candidate for syncing and in the case where it was
|
|
// the current sync peer, attempts to select a new best peer to sync from. It
|
|
// is invoked from the syncHandler goroutine.
|
|
func (b *blockManager) handleDonePeerMsg(peers *list.List, sp *serverPeer) {
|
|
// Remove the peer from the list of candidate peers.
|
|
for e := peers.Front(); e != nil; e = e.Next() {
|
|
if e.Value == sp {
|
|
peers.Remove(e)
|
|
break
|
|
}
|
|
}
|
|
|
|
log.Infof("Lost peer %s", sp)
|
|
|
|
// Remove requested blocks from the global map so that they will be
|
|
// fetched from elsewhere next time we get an inv.
|
|
// TODO: we could possibly here check which peers have these blocks
|
|
// and request them now to speed things up a little.
|
|
for k := range sp.requestedBlocks {
|
|
delete(b.requestedBlocks, k)
|
|
}
|
|
|
|
// Attempt to find a new peer to sync from if the quitting peer is the
|
|
// sync peer. Also, reset the headers-first state if in headers-first
|
|
// mode so
|
|
if b.syncPeer != nil && b.syncPeer == sp {
|
|
b.syncPeer = nil
|
|
header, height, err := b.server.LatestBlock()
|
|
if err != nil {
|
|
return
|
|
}
|
|
b.resetHeaderState(&header, int32(height))
|
|
b.startSync(peers)
|
|
}
|
|
}
|
|
|
|
// blockHandler is the main handler for the block manager. It must be run
|
|
// as a goroutine. It processes block and inv messages in a separate goroutine
|
|
// from the peer handlers so the block (MsgBlock) messages are handled by a
|
|
// single thread without needing to lock memory data structures. This is
|
|
// important because the block manager controls which blocks are needed and how
|
|
// the fetching should proceed.
|
|
func (b *blockManager) blockHandler() {
|
|
candidatePeers := list.New()
|
|
out:
|
|
for {
|
|
select {
|
|
case m := <-b.msgChan:
|
|
switch msg := m.(type) {
|
|
case *newPeerMsg:
|
|
b.handleNewPeerMsg(candidatePeers, msg.peer)
|
|
|
|
/*case *blockMsg:
|
|
b.handleBlockMsg(msg)
|
|
msg.peer.blockProcessed <- struct{}{}*/
|
|
|
|
case *invMsg:
|
|
b.handleInvMsg(msg)
|
|
|
|
case *headersMsg:
|
|
b.handleHeadersMsg(msg)
|
|
|
|
case *donePeerMsg:
|
|
b.handleDonePeerMsg(candidatePeers, msg.peer)
|
|
|
|
case getSyncPeerMsg:
|
|
msg.reply <- b.syncPeer
|
|
|
|
/*case processBlockMsg:
|
|
_, isOrphan, err := b.chain.ProcessBlock(
|
|
msg.block, msg.flags)
|
|
if err != nil {
|
|
msg.reply <- processBlockResponse{
|
|
isOrphan: false,
|
|
err: err,
|
|
}
|
|
}
|
|
|
|
msg.reply <- processBlockResponse{
|
|
isOrphan: isOrphan,
|
|
err: nil,
|
|
}*/
|
|
|
|
case isCurrentMsg:
|
|
msg.reply <- b.current()
|
|
|
|
default:
|
|
log.Warnf("Invalid message type in block "+
|
|
"handler: %T", msg)
|
|
}
|
|
|
|
case <-b.quit:
|
|
break out
|
|
}
|
|
}
|
|
|
|
b.wg.Done()
|
|
log.Trace("Block handler done")
|
|
}
|
|
|
|
// isSyncCandidate returns whether or not the peer is a candidate to consider
|
|
// syncing from.
|
|
func (b *blockManager) isSyncCandidate(sp *serverPeer) bool {
|
|
// The peer is not a candidate for sync if it's not a full node.
|
|
return sp.Services()&wire.SFNodeNetwork == wire.SFNodeNetwork
|
|
}
|
|
|
|
// findNextHeaderCheckpoint returns the next checkpoint after the passed height.
|
|
// It returns nil when there is not one either because the height is already
|
|
// later than the final checkpoint or there are none for the current network.
|
|
func (b *blockManager) findNextHeaderCheckpoint(height int32) *chaincfg.Checkpoint {
|
|
// There is no next checkpoint if there are none for this current
|
|
// network.
|
|
checkpoints := b.server.chainParams.Checkpoints
|
|
if len(checkpoints) == 0 {
|
|
return nil
|
|
}
|
|
|
|
// There is no next checkpoint if the height is already after the final
|
|
// checkpoint.
|
|
finalCheckpoint := &checkpoints[len(checkpoints)-1]
|
|
if height >= finalCheckpoint.Height {
|
|
return nil
|
|
}
|
|
|
|
// Find the next checkpoint.
|
|
nextCheckpoint := finalCheckpoint
|
|
for i := len(checkpoints) - 2; i >= 0; i-- {
|
|
if height >= checkpoints[i].Height {
|
|
break
|
|
}
|
|
nextCheckpoint = &checkpoints[i]
|
|
}
|
|
return nextCheckpoint
|
|
}
|
|
|
|
// findPreviousHeaderCheckpoint returns the last checkpoint before the passed
|
|
// height. It returns a checkpoint matching the genesis block when the height
|
|
// is earlier than the first checkpoint or there are no checkpoints for the
|
|
// current network. This is used for resettng state when a malicious peer sends
|
|
// us headers that don't lead up to a known checkpoint.
|
|
func (b *blockManager) findPreviousHeaderCheckpoint(height int32) *chaincfg.Checkpoint {
|
|
// Start with the genesis block - earliest checkpoint to which our
|
|
// code will want to reset
|
|
prevCheckpoint := &chaincfg.Checkpoint{
|
|
Height: 0,
|
|
Hash: b.server.chainParams.GenesisHash,
|
|
}
|
|
|
|
// Find the latest checkpoint lower than height or return genesis block
|
|
// if there are none.
|
|
checkpoints := b.server.chainParams.Checkpoints
|
|
for _, ckpt := range checkpoints {
|
|
if height <= ckpt.Height {
|
|
break
|
|
}
|
|
prevCheckpoint = &ckpt
|
|
}
|
|
return prevCheckpoint
|
|
}
|
|
|
|
// resetHeaderState sets the headers-first mode state to values appropriate for
|
|
// syncing from a new peer.
|
|
func (b *blockManager) resetHeaderState(newestHeader *wire.BlockHeader,
|
|
newestHeight int32) {
|
|
b.headerList.Init()
|
|
b.startHeader = nil
|
|
|
|
// Add an entry for the latest known block into the header pool.
|
|
// This allows the next downloaded header to prove it links to the chain
|
|
// properly.
|
|
node := headerNode{header: newestHeader, height: newestHeight}
|
|
b.headerList.PushBack(&node)
|
|
}
|
|
|
|
// startSync will choose the best peer among the available candidate peers to
|
|
// download/sync the blockchain from. When syncing is already running, it
|
|
// simply returns. It also examines the candidates for any which are no longer
|
|
// candidates and removes them as needed.
|
|
func (b *blockManager) startSync(peers *list.List) {
|
|
// Return now if we're already syncing.
|
|
if b.syncPeer != nil {
|
|
return
|
|
}
|
|
|
|
best, err := b.server.BestSnapshot()
|
|
if err != nil {
|
|
log.Errorf("Failed to get hash and height for the "+
|
|
"latest block: %v", err)
|
|
return
|
|
}
|
|
var bestPeer *serverPeer
|
|
var enext *list.Element
|
|
for e := peers.Front(); e != nil; e = enext {
|
|
enext = e.Next()
|
|
sp := e.Value.(*serverPeer)
|
|
|
|
// Remove sync candidate peers that are no longer candidates due
|
|
// to passing their latest known block. NOTE: The < is
|
|
// intentional as opposed to <=. While techcnically the peer
|
|
// doesn't have a later block when it's equal, it will likely
|
|
// have one soon so it is a reasonable choice. It also allows
|
|
// the case where both are at 0 such as during regression test.
|
|
if sp.LastBlock() < best.Height {
|
|
peers.Remove(e)
|
|
continue
|
|
}
|
|
|
|
// TODO: Use a better algorithm to choose the best peer.
|
|
// For now, just pick the candidate with the highest last block.
|
|
if bestPeer == nil || sp.LastBlock() > bestPeer.LastBlock() {
|
|
bestPeer = sp
|
|
}
|
|
}
|
|
|
|
// Start syncing from the best peer if one was selected.
|
|
if bestPeer != nil {
|
|
// Clear the requestedBlocks if the sync peer changes, otherwise
|
|
// we may ignore blocks we need that the last sync peer failed
|
|
// to send.
|
|
b.requestedBlocks = make(map[chainhash.Hash]struct{})
|
|
|
|
locator, err := b.server.LatestBlockLocator()
|
|
if err != nil {
|
|
log.Errorf("Failed to get block locator for the "+
|
|
"latest block: %v", err)
|
|
return
|
|
}
|
|
|
|
log.Infof("Syncing to block height %d from peer %v",
|
|
bestPeer.LastBlock(), bestPeer.Addr())
|
|
|
|
// When the current height is less than a known checkpoint we
|
|
// can use block headers to learn about which blocks comprise
|
|
// the chain up to the checkpoint and perform less validation
|
|
// for them. This is possible since each header contains the
|
|
// hash of the previous header and a merkle root. Therefore if
|
|
// we validate all of the received headers link together
|
|
// properly and the checkpoint hashes match, we can be sure the
|
|
// hashes for the blocks in between are accurate. Further, once
|
|
// the full blocks are downloaded, the merkle root is computed
|
|
// and compared against the value in the header which proves the
|
|
// full block hasn't been tampered with.
|
|
//
|
|
// Once we have passed the final checkpoint, or checkpoints are
|
|
// disabled, use standard inv messages learn about the blocks
|
|
// and fully validate them. Finally, regression test mode does
|
|
// not support the headers-first approach so do normal block
|
|
// downloads when in regression test mode.
|
|
b.syncPeer = bestPeer
|
|
if b.nextCheckpoint != nil &&
|
|
best.Height < b.nextCheckpoint.Height {
|
|
|
|
b.syncPeer.PushGetHeadersMsg(locator, b.nextCheckpoint.Hash)
|
|
log.Infof("Downloading headers for blocks %d to "+
|
|
"%d from peer %s", best.Height+1,
|
|
b.nextCheckpoint.Height, bestPeer.Addr())
|
|
// This will get adjusted when we process headers if
|
|
// we request more headers than the peer is willing to
|
|
// give us in one message.
|
|
} else {
|
|
b.syncPeer.PushGetBlocksMsg(locator, &zeroHash)
|
|
}
|
|
} else {
|
|
log.Warnf("No sync peer candidates available")
|
|
}
|
|
}
|
|
|
|
// current returns true if we believe we are synced with our peers, false if we
|
|
// still have blocks to check
|
|
func (b *blockManager) current() bool {
|
|
// Figure out the latest block we know.
|
|
header, height, err := b.server.LatestBlock()
|
|
if err != nil {
|
|
return false
|
|
}
|
|
|
|
// There is no last checkpoint if checkpoints are disabled or there are
|
|
// none for this current network.
|
|
checkpoints := b.server.chainParams.Checkpoints
|
|
if len(checkpoints) != 0 {
|
|
// We aren't current if the newest block we know of isn't ahead
|
|
// of all checkpoints.
|
|
if checkpoints[len(checkpoints)-1].Height >= int32(height) {
|
|
return false
|
|
}
|
|
}
|
|
|
|
// If we have a syncPeer and are below the block we are syncing to, we
|
|
// are not current.
|
|
if b.syncPeer != nil && int32(height) < b.syncPeer.LastBlock() {
|
|
return false
|
|
}
|
|
|
|
// If our time source (median times of all the connected peers) is at
|
|
// least 24 hours ahead of our best known block, we aren't current.
|
|
minus24Hours := b.server.timeSource.AdjustedTime().Add(-24 * time.Hour)
|
|
return !header.Timestamp.Before(minus24Hours)
|
|
}
|
|
|
|
// IsCurrent returns whether or not the block manager believes it is synced with
|
|
// the connected peers.
|
|
func (b *blockManager) IsCurrent() bool {
|
|
reply := make(chan bool)
|
|
b.msgChan <- isCurrentMsg{reply: reply}
|
|
return <-reply
|
|
}
|
|
|
|
// QueueInv adds the passed inv message and peer to the block handling queue.
|
|
func (b *blockManager) QueueInv(inv *wire.MsgInv, sp *serverPeer) {
|
|
// No channel handling here because peers do not need to block on inv
|
|
// messages.
|
|
if atomic.LoadInt32(&b.shutdown) != 0 {
|
|
return
|
|
}
|
|
|
|
b.msgChan <- &invMsg{inv: inv, peer: sp}
|
|
}
|
|
|
|
// handleInvMsg handles inv messages from all peers.
|
|
// We examine the inventory advertised by the remote peer and act accordingly.
|
|
func (b *blockManager) handleInvMsg(imsg *invMsg) {
|
|
// Attempt to find the final block in the inventory list. There may
|
|
// not be one.
|
|
lastBlock := -1
|
|
invVects := imsg.inv.InvList
|
|
for i := len(invVects) - 1; i >= 0; i-- {
|
|
if invVects[i].Type == wire.InvTypeBlock {
|
|
lastBlock = i
|
|
break
|
|
}
|
|
}
|
|
|
|
// If this inv contains a block announcement, and this isn't coming from
|
|
// our current sync peer or we're current, then update the last
|
|
// announced block for this peer. We'll use this information later to
|
|
// update the heights of peers based on blocks we've accepted that they
|
|
// previously announced.
|
|
if lastBlock != -1 && (imsg.peer != b.syncPeer || b.current()) {
|
|
imsg.peer.UpdateLastAnnouncedBlock(&invVects[lastBlock].Hash)
|
|
}
|
|
|
|
// Ignore invs from peers that aren't the sync if we are not current.
|
|
// Helps prevent dealing with orphans.
|
|
if imsg.peer != b.syncPeer && !b.current() {
|
|
return
|
|
}
|
|
|
|
// If our chain is current and a peer announces a block we already
|
|
// know of, then update their current block height.
|
|
if lastBlock != -1 && b.current() {
|
|
_, blkHeight, err := b.server.GetBlockByHash(invVects[lastBlock].Hash)
|
|
if err == nil {
|
|
imsg.peer.UpdateLastBlockHeight(int32(blkHeight))
|
|
}
|
|
}
|
|
|
|
// Add blocks to the cache of known inventory for the peer.
|
|
for _, iv := range invVects {
|
|
if iv.Type == wire.InvTypeBlock {
|
|
imsg.peer.AddKnownInventory(iv)
|
|
}
|
|
}
|
|
|
|
// If this is the sync peer and we're not current, get the headers
|
|
// for the announced blocks and update the last announced block.
|
|
if lastBlock != -1 && imsg.peer == b.syncPeer && !b.current() {
|
|
// Make a locator starting from the latest known header we've
|
|
// processed.
|
|
locator := make(blockchain.BlockLocator, 0,
|
|
wire.MaxBlockLocatorsPerMsg)
|
|
lastHash := b.headerList.Back().Value.(*headerNode).header.BlockHash()
|
|
locator = append(locator, &lastHash)
|
|
// Add locator from the database as backup.
|
|
knownLocator, err := b.server.LatestBlockLocator()
|
|
if err == nil {
|
|
locator = append(locator, knownLocator...)
|
|
}
|
|
// Get headers based on locator.
|
|
b.syncPeer.PushGetHeadersMsg(locator, &invVects[lastBlock].Hash)
|
|
}
|
|
}
|
|
|
|
// QueueHeaders adds the passed headers message and peer to the block handling
|
|
// queue.
|
|
func (b *blockManager) QueueHeaders(headers *wire.MsgHeaders, sp *serverPeer) {
|
|
// No channel handling here because peers do not need to block on
|
|
// headers messages.
|
|
if atomic.LoadInt32(&b.shutdown) != 0 {
|
|
return
|
|
}
|
|
|
|
b.msgChan <- &headersMsg{headers: headers, peer: sp}
|
|
}
|
|
|
|
// handleHeadersMsg handles headers messages from all peers.
|
|
func (b *blockManager) handleHeadersMsg(hmsg *headersMsg) {
|
|
msg := hmsg.headers
|
|
numHeaders := len(msg.Headers)
|
|
|
|
// Nothing to do for an empty headers message.
|
|
if numHeaders == 0 {
|
|
return
|
|
}
|
|
|
|
// For checking to make sure blocks aren't too far in the
|
|
// future as of the time we receive the headers message.
|
|
maxTimestamp := b.server.timeSource.AdjustedTime().
|
|
Add(maxTimeOffset)
|
|
|
|
// Process all of the received headers ensuring each one connects to the
|
|
// previous and that checkpoints match.
|
|
receivedCheckpoint := false
|
|
var finalHash *chainhash.Hash
|
|
var finalHeight int32
|
|
for _, blockHeader := range msg.Headers {
|
|
blockHash := blockHeader.BlockHash()
|
|
finalHash = &blockHash
|
|
|
|
// Ensure there is a previous header to compare against.
|
|
prevNodeEl := b.headerList.Back()
|
|
if prevNodeEl == nil {
|
|
log.Warnf("Header list does not contain a previous" +
|
|
"element as expected -- disconnecting peer")
|
|
hmsg.peer.Disconnect()
|
|
return
|
|
}
|
|
|
|
// Ensure the header properly connects to the previous one,
|
|
// that the proof of work is good, and that the header's
|
|
// timestamp isn't too far in the future, and add it to the
|
|
// list of headers.
|
|
node := headerNode{header: blockHeader}
|
|
prevNode := prevNodeEl.Value.(*headerNode)
|
|
prevHash := prevNode.header.BlockHash()
|
|
if prevHash.IsEqual(&blockHeader.PrevBlock) {
|
|
diff, err := b.calcNextRequiredDifficulty(
|
|
blockHeader.Timestamp)
|
|
if err != nil {
|
|
log.Warnf("Unable to calculate next difficulty"+
|
|
": %v -- disconnecting peer", err)
|
|
hmsg.peer.Disconnect()
|
|
return
|
|
}
|
|
stubBlock := btcutil.NewBlock(&wire.MsgBlock{
|
|
Header: *blockHeader,
|
|
})
|
|
err = blockchain.CheckProofOfWork(stubBlock,
|
|
blockchain.CompactToBig(diff))
|
|
if err != nil {
|
|
log.Warnf("Received header doesn't match "+
|
|
"required difficulty: %v -- "+
|
|
"disconnecting peer", err)
|
|
hmsg.peer.Disconnect()
|
|
return
|
|
}
|
|
// Ensure the block time is not too far in the future.
|
|
if blockHeader.Timestamp.After(maxTimestamp) {
|
|
log.Warnf("block timestamp of %v is too far in"+
|
|
" the future", blockHeader.Timestamp)
|
|
hmsg.peer.Disconnect()
|
|
return
|
|
}
|
|
node.height = prevNode.height + 1
|
|
finalHeight = node.height
|
|
err = b.server.putBlock(*blockHeader,
|
|
uint32(node.height))
|
|
if err != nil {
|
|
log.Criticalf("Couldn't write block to "+
|
|
"database: %v", err)
|
|
}
|
|
err = b.server.putMaxBlockHeight(uint32(node.height))
|
|
if err != nil {
|
|
log.Criticalf("Couldn't write max block height"+
|
|
" to database: %v", err)
|
|
}
|
|
e := b.headerList.PushBack(&node)
|
|
if b.startHeader == nil {
|
|
b.startHeader = e
|
|
}
|
|
} else {
|
|
log.Warnf("Received block header that does not "+
|
|
"properly connect to the chain from peer %s "+
|
|
"-- disconnecting", hmsg.peer.Addr())
|
|
hmsg.peer.Disconnect()
|
|
return
|
|
}
|
|
|
|
// Verify the header at the next checkpoint height matches.
|
|
if b.nextCheckpoint != nil && node.height == b.nextCheckpoint.Height {
|
|
nodeHash := node.header.BlockHash()
|
|
if nodeHash.IsEqual(b.nextCheckpoint.Hash) {
|
|
receivedCheckpoint = true
|
|
log.Infof("Verified downloaded block "+
|
|
"header against checkpoint at height "+
|
|
"%d/hash %s", node.height, nodeHash)
|
|
} else {
|
|
log.Warnf("Block header at height %d/hash "+
|
|
"%s from peer %s does NOT match "+
|
|
"expected checkpoint hash of %s -- "+
|
|
"disconnecting", node.height,
|
|
nodeHash, hmsg.peer.Addr(),
|
|
b.nextCheckpoint.Hash)
|
|
prevCheckpoint := b.findPreviousHeaderCheckpoint(node.height)
|
|
log.Infof("Rolling back to previous validated "+
|
|
"checkpoint at height %d/hash %s",
|
|
prevCheckpoint.Height,
|
|
prevCheckpoint.Hash)
|
|
b.server.putMaxBlockHeight(uint32(
|
|
prevCheckpoint.Height))
|
|
hmsg.peer.Disconnect()
|
|
return
|
|
}
|
|
break
|
|
}
|
|
}
|
|
|
|
// When this header is a checkpoint, switch to fetching the blocks for
|
|
// all of the headers since the last checkpoint.
|
|
if receivedCheckpoint {
|
|
// TODO - aakselrod - fix this completely and start getting
|
|
// committed filter headers for the known block headers
|
|
// Since the first entry of the list is always the final block
|
|
// that is already in the database and is only used to ensure
|
|
// the next header links properly, it must be removed before
|
|
// fetching the blocks.
|
|
b.headerList.Remove(b.headerList.Front())
|
|
log.Infof("Received %v block headers: Fetching blocks",
|
|
b.headerList.Len())
|
|
b.progressLogger.SetLastLogTime(time.Now())
|
|
b.nextCheckpoint = b.findNextHeaderCheckpoint(finalHeight)
|
|
//b.fetchHeaderBlocks()
|
|
//return
|
|
}
|
|
|
|
// Request the next batch of headers starting from the latest known
|
|
// header and ending with the next checkpoint.
|
|
locator := blockchain.BlockLocator([]*chainhash.Hash{finalHash})
|
|
nextHash := zeroHash
|
|
if b.nextCheckpoint != nil {
|
|
nextHash = *b.nextCheckpoint.Hash
|
|
}
|
|
err := hmsg.peer.PushGetHeadersMsg(locator, &nextHash)
|
|
if err != nil {
|
|
log.Warnf("Failed to send getheaders message to "+
|
|
"peer %s: %v", hmsg.peer.Addr(), err)
|
|
return
|
|
}
|
|
}
|
|
|
|
// calcNextRequiredDifficulty calculates the required difficulty for the block
|
|
// after the passed previous block node based on the difficulty retarget rules.
|
|
func (b *blockManager) calcNextRequiredDifficulty(newBlockTime time.Time) (uint32, error) {
|
|
|
|
lastNodeEl := b.headerList.Back()
|
|
|
|
// Genesis block.
|
|
if lastNodeEl == nil {
|
|
return b.server.chainParams.PowLimitBits, nil
|
|
}
|
|
|
|
lastNode := lastNodeEl.Value.(*headerNode)
|
|
|
|
// Return the previous block's difficulty requirements if this block
|
|
// is not at a difficulty retarget interval.
|
|
if (lastNode.height+1)%b.blocksPerRetarget != 0 {
|
|
// For networks that support it, allow special reduction of the
|
|
// required difficulty once too much time has elapsed without
|
|
// mining a block.
|
|
if b.server.chainParams.ReduceMinDifficulty {
|
|
// Return minimum difficulty when more than the desired
|
|
// amount of time has elapsed without mining a block.
|
|
reductionTime := int64(
|
|
b.server.chainParams.MinDiffReductionTime /
|
|
time.Second)
|
|
allowMinTime := lastNode.header.Timestamp.Unix() +
|
|
reductionTime
|
|
if newBlockTime.Unix() > allowMinTime {
|
|
return b.server.chainParams.PowLimitBits, nil
|
|
}
|
|
|
|
// The block was mined within the desired timeframe, so
|
|
// return the difficulty for the last block which did
|
|
// not have the special minimum difficulty rule applied.
|
|
prevBits, err := b.findPrevTestNetDifficulty()
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
return prevBits, nil
|
|
}
|
|
|
|
// For the main network (or any unrecognized networks), simply
|
|
// return the previous block's difficulty requirements.
|
|
return lastNode.header.Bits, nil
|
|
}
|
|
|
|
// Get the block node at the previous retarget (targetTimespan days
|
|
// worth of blocks).
|
|
firstNode, _, err := b.server.GetBlockByHeight(
|
|
uint32(lastNode.height + 1 - b.blocksPerRetarget))
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
// Limit the amount of adjustment that can occur to the previous
|
|
// difficulty.
|
|
actualTimespan := lastNode.header.Timestamp.Unix() -
|
|
firstNode.Timestamp.Unix()
|
|
adjustedTimespan := actualTimespan
|
|
if actualTimespan < b.minRetargetTimespan {
|
|
adjustedTimespan = b.minRetargetTimespan
|
|
} else if actualTimespan > b.maxRetargetTimespan {
|
|
adjustedTimespan = b.maxRetargetTimespan
|
|
}
|
|
|
|
// Calculate new target difficulty as:
|
|
// currentDifficulty * (adjustedTimespan / targetTimespan)
|
|
// The result uses integer division which means it will be slightly
|
|
// rounded down. Bitcoind also uses integer division to calculate this
|
|
// result.
|
|
oldTarget := blockchain.CompactToBig(lastNode.header.Bits)
|
|
newTarget := new(big.Int).Mul(oldTarget, big.NewInt(adjustedTimespan))
|
|
targetTimeSpan := int64(b.server.chainParams.TargetTimespan /
|
|
time.Second)
|
|
newTarget.Div(newTarget, big.NewInt(targetTimeSpan))
|
|
|
|
// Limit new value to the proof of work limit.
|
|
if newTarget.Cmp(b.server.chainParams.PowLimit) > 0 {
|
|
newTarget.Set(b.server.chainParams.PowLimit)
|
|
}
|
|
|
|
// Log new target difficulty and return it. The new target logging is
|
|
// intentionally converting the bits back to a number instead of using
|
|
// newTarget since conversion to the compact representation loses
|
|
// precision.
|
|
newTargetBits := blockchain.BigToCompact(newTarget)
|
|
log.Debugf("Difficulty retarget at block height %d", lastNode.height+1)
|
|
log.Debugf("Old target %08x (%064x)", lastNode.header.Bits, oldTarget)
|
|
log.Debugf("New target %08x (%064x)", newTargetBits,
|
|
blockchain.CompactToBig(newTargetBits))
|
|
log.Debugf("Actual timespan %v, adjusted timespan %v, target timespan %v",
|
|
time.Duration(actualTimespan)*time.Second,
|
|
time.Duration(adjustedTimespan)*time.Second,
|
|
b.server.chainParams.TargetTimespan)
|
|
|
|
return newTargetBits, nil
|
|
}
|
|
|
|
// findPrevTestNetDifficulty returns the difficulty of the previous block which
|
|
// did not have the special testnet minimum difficulty rule applied.
|
|
func (b *blockManager) findPrevTestNetDifficulty() (uint32, error) {
|
|
startNodeEl := b.headerList.Back()
|
|
|
|
// Genesis block.
|
|
if startNodeEl == nil {
|
|
return b.server.chainParams.PowLimitBits, nil
|
|
}
|
|
|
|
startNode := startNodeEl.Value.(*headerNode)
|
|
|
|
// Search backwards through the chain for the last block without
|
|
// the special rule applied.
|
|
iterEl := startNodeEl
|
|
iterNode := startNode.header
|
|
iterHeight := startNode.height
|
|
for iterNode != nil && iterHeight%b.blocksPerRetarget != 0 &&
|
|
iterNode.Bits == b.server.chainParams.PowLimitBits {
|
|
|
|
// Get the previous block node. This function is used over
|
|
// simply accessing iterNode.parent directly as it will
|
|
// dynamically create previous block nodes as needed. This
|
|
// helps allow only the pieces of the chain that are needed
|
|
// to remain in memory.
|
|
iterHeight--
|
|
el := iterEl.Prev()
|
|
if el != nil {
|
|
iterNode = el.Value.(*headerNode).header
|
|
} else {
|
|
node, _, err := b.server.GetBlockByHeight(uint32(iterHeight))
|
|
if err != nil {
|
|
log.Errorf("GetBlockByHeight: %v", err)
|
|
return 0, err
|
|
}
|
|
iterNode = &node
|
|
}
|
|
}
|
|
|
|
// Return the found difficulty or the minimum difficulty if no
|
|
// appropriate block was found.
|
|
lastBits := b.server.chainParams.PowLimitBits
|
|
if iterNode != nil {
|
|
lastBits = iterNode.Bits
|
|
}
|
|
return lastBits, nil
|
|
}
|
|
|
|
/*
|
|
import (
|
|
"os"
|
|
"path/filepath"
|
|
"sort"
|
|
|
|
"github.com/btcsuite/btcd/database"
|
|
)
|
|
|
|
// handleBlockMsg handles block messages from all peers.
|
|
func (b *blockManager) handleBlockMsg(bmsg *blockMsg) {
|
|
// If we didn't ask for this block then the peer is misbehaving.
|
|
blockHash := bmsg.block.Hash()
|
|
if _, exists := bmsg.peer.requestedBlocks[*blockHash]; !exists {
|
|
log.Warnf("Got unrequested block %v from %s -- "+
|
|
"disconnecting", blockHash, bmsg.peer.Addr())
|
|
bmsg.peer.Disconnect()
|
|
return
|
|
}
|
|
|
|
// When in headers-first mode, if the block matches the hash of the
|
|
// first header in the list of headers that are being fetched, it's
|
|
// eligible for less validation since the headers have already been
|
|
// verified to link together and are valid up to the next checkpoint.
|
|
// Also, remove the list entry for all blocks except the checkpoint
|
|
// since it is needed to verify the next round of headers links
|
|
// properly.
|
|
isCheckpointBlock := false
|
|
behaviorFlags := blockchain.BFNone
|
|
firstNodeEl := b.headerList.Front()
|
|
if firstNodeEl != nil {
|
|
firstNode := firstNodeEl.Value.(*headerNode)
|
|
if blockHash.IsEqual(firstNode.hash) {
|
|
behaviorFlags |= blockchain.BFFastAdd
|
|
if firstNode.hash.IsEqual(b.nextCheckpoint.Hash) {
|
|
isCheckpointBlock = true
|
|
} else {
|
|
b.headerList.Remove(firstNodeEl)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Remove block from request maps. Either chain will know about it and
|
|
// so we shouldn't have any more instances of trying to fetch it, or we
|
|
// will fail the insert and thus we'll retry next time we get an inv.
|
|
delete(bmsg.peer.requestedBlocks, *blockHash)
|
|
delete(b.requestedBlocks, *blockHash)
|
|
|
|
// Process the block to include validation, best chain selection, orphan
|
|
// handling, etc.
|
|
|
|
_, isOrphan, err := b.chain.ProcessBlock(bmsg.block, behaviorFlags)
|
|
if err != nil {
|
|
// When the error is a rule error, it means the block was simply
|
|
// rejected as opposed to something actually going wrong, so log
|
|
// it as such. Otherwise, something really did go wrong, so log
|
|
// it as an actual error.
|
|
if _, ok := err.(blockchain.RuleError); ok {
|
|
log.Infof("Rejected block %v from %s: %v", blockHash,
|
|
bmsg.peer, err)
|
|
} else {
|
|
log.Errorf("Failed to process block %v: %v",
|
|
blockHash, err)
|
|
}
|
|
if dbErr, ok := err.(database.Error); ok && dbErr.ErrorCode ==
|
|
database.ErrCorruption {
|
|
panic(dbErr)
|
|
}
|
|
|
|
// Convert the error into an appropriate reject message and
|
|
// send it.
|
|
code, reason := mempool.ErrToRejectErr(err)
|
|
bmsg.peer.PushRejectMsg(wire.CmdBlock, code, reason,
|
|
blockHash, false)
|
|
return
|
|
}
|
|
|
|
// Meta-data about the new block this peer is reporting. We use this
|
|
// below to update this peer's lastest block height and the heights of
|
|
// other peers based on their last announced block hash. This allows us
|
|
// to dynamically update the block heights of peers, avoiding stale
|
|
// heights when looking for a new sync peer. Upon acceptance of a block
|
|
// or recognition of an orphan, we also use this information to update
|
|
// the block heights over other peers who's invs may have been ignored
|
|
// if we are actively syncing while the chain is not yet current or
|
|
// who may have lost the lock announcment race.
|
|
var heightUpdate int32
|
|
var blkHashUpdate *chainhash.Hash
|
|
|
|
// Request the parents for the orphan block from the peer that sent it.
|
|
if isOrphan {
|
|
// We've just received an orphan block from a peer. In order
|
|
// to update the height of the peer, we try to extract the
|
|
// block height from the scriptSig of the coinbase transaction.
|
|
// Extraction is only attempted if the block's version is
|
|
// high enough (ver 2+).
|
|
header := &bmsg.block.MsgBlock().Header
|
|
if blockchain.ShouldHaveSerializedBlockHeight(header) {
|
|
coinbaseTx := bmsg.block.Transactions()[0]
|
|
cbHeight, err := blockchain.ExtractCoinbaseHeight(coinbaseTx)
|
|
if err != nil {
|
|
log.Warnf("Unable to extract height from "+
|
|
"coinbase tx: %v", err)
|
|
} else {
|
|
log.Debugf("Extracted height of %v from "+
|
|
"orphan block", cbHeight)
|
|
heightUpdate = cbHeight
|
|
blkHashUpdate = blockHash
|
|
}
|
|
}
|
|
|
|
orphanRoot := b.chain.GetOrphanRoot(blockHash)
|
|
locator, err := b.chain.LatestBlockLocator()
|
|
if err != nil {
|
|
log.Warnf("Failed to get block locator for the "+
|
|
"latest block: %v", err)
|
|
} else {
|
|
bmsg.peer.PushGetBlocksMsg(locator, orphanRoot)
|
|
}
|
|
} else {
|
|
// When the block is not an orphan, log information about it and
|
|
// update the chain state.
|
|
b.progressLogger.LogBlockHeight(bmsg.block)
|
|
|
|
// Update this peer's latest block height, for future
|
|
// potential sync node candidacy.
|
|
best := b.chain.BestSnapshot()
|
|
heightUpdate = best.Height
|
|
blkHashUpdate = &best.Hash
|
|
|
|
// Clear the rejected transactions.
|
|
b.rejectedTxns = make(map[chainhash.Hash]struct{})
|
|
|
|
// Allow any clients performing long polling via the
|
|
// getblocktemplate RPC to be notified when the new block causes
|
|
// their old block template to become stale.
|
|
rpcServer := b.server.rpcServer
|
|
if rpcServer != nil {
|
|
rpcServer.gbtWorkState.NotifyBlockConnected(blockHash)
|
|
}
|
|
}
|
|
|
|
// Update the block height for this peer. But only send a message to
|
|
// the server for updating peer heights if this is an orphan or our
|
|
// chain is "current". This avoids sending a spammy amount of messages
|
|
// if we're syncing the chain from scratch.
|
|
if blkHashUpdate != nil && heightUpdate != 0 {
|
|
bmsg.peer.UpdateLastBlockHeight(heightUpdate)
|
|
if isOrphan || b.current() {
|
|
go b.server.UpdatePeerHeights(blkHashUpdate, heightUpdate, bmsg.peer)
|
|
}
|
|
}
|
|
|
|
// Nothing more to do if we aren't in headers-first mode.
|
|
if !b.headersFirstMode {
|
|
return
|
|
}
|
|
|
|
// This is headers-first mode, so if the block is not a checkpoint
|
|
// request more blocks using the header list when the request queue is
|
|
// getting short.
|
|
if !isCheckpointBlock {
|
|
if b.startHeader != nil &&
|
|
len(bmsg.peer.requestedBlocks) < minInFlightBlocks {
|
|
b.fetchHeaderBlocks()
|
|
}
|
|
return
|
|
}
|
|
|
|
// This is headers-first mode and the block is a checkpoint. When
|
|
// there is a next checkpoint, get the next round of headers by asking
|
|
// for headers starting from the block after this one up to the next
|
|
// checkpoint.
|
|
prevHeight := b.nextCheckpoint.Height
|
|
prevHash := b.nextCheckpoint.Hash
|
|
b.nextCheckpoint = b.findNextHeaderCheckpoint(prevHeight)
|
|
if b.nextCheckpoint != nil {
|
|
locator := blockchain.BlockLocator([]*chainhash.Hash{prevHash})
|
|
err := bmsg.peer.PushGetHeadersMsg(locator, b.nextCheckpoint.Hash)
|
|
if err != nil {
|
|
log.Warnf("Failed to send getheaders message to "+
|
|
"peer %s: %v", bmsg.peer.Addr(), err)
|
|
return
|
|
}
|
|
log.Infof("Downloading headers for blocks %d to %d from "+
|
|
"peer %s", prevHeight+1, b.nextCheckpoint.Height,
|
|
b.syncPeer.Addr())
|
|
return
|
|
}
|
|
|
|
// This is headers-first mode, the block is a checkpoint, and there are
|
|
// no more checkpoints, so switch to normal mode by requesting blocks
|
|
// from the block after this one up to the end of the chain (zero hash).
|
|
b.headersFirstMode = false
|
|
b.headerList.Init()
|
|
log.Infof("Reached the final checkpoint -- switching to normal mode")
|
|
locator := blockchain.BlockLocator([]*chainhash.Hash{blockHash})
|
|
err = bmsg.peer.PushGetBlocksMsg(locator, &zeroHash)
|
|
if err != nil {
|
|
log.Warnf("Failed to send getblocks message to peer %s: %v",
|
|
bmsg.peer.Addr(), err)
|
|
return
|
|
}
|
|
}
|
|
|
|
// fetchHeaderBlocks creates and sends a request to the syncPeer for the next
|
|
// list of blocks to be downloaded based on the current list of headers.
|
|
func (b *blockManager) fetchHeaderBlocks() {
|
|
// Nothing to do if there is no start header.
|
|
if b.startHeader == nil {
|
|
log.Warnf("fetchHeaderBlocks called with no start header")
|
|
return
|
|
}
|
|
|
|
// Build up a getdata request for the list of blocks the headers
|
|
// describe. The size hint will be limited to wire.MaxInvPerMsg by
|
|
// the function, so no need to double check it here.
|
|
gdmsg := wire.NewMsgGetDataSizeHint(uint(b.headerList.Len()))
|
|
numRequested := 0
|
|
for e := b.startHeader; e != nil; e = e.Next() {
|
|
node, ok := e.Value.(*headerNode)
|
|
if !ok {
|
|
log.Warn("Header list node type is not a headerNode")
|
|
continue
|
|
}
|
|
|
|
iv := wire.NewInvVect(wire.InvTypeBlock, node.hash)
|
|
haveInv, err := b.haveInventory(iv)
|
|
if err != nil {
|
|
log.Warnf("Unexpected failure when checking for "+
|
|
"existing inventory during header block "+
|
|
"fetch: %v", err)
|
|
}
|
|
if !haveInv {
|
|
b.requestedBlocks[*node.hash] = struct{}{}
|
|
b.syncPeer.requestedBlocks[*node.hash] = struct{}{}
|
|
gdmsg.AddInvVect(iv)
|
|
numRequested++
|
|
}
|
|
b.startHeader = e.Next()
|
|
if numRequested >= wire.MaxInvPerMsg {
|
|
break
|
|
}
|
|
}
|
|
if len(gdmsg.InvList) > 0 {
|
|
b.syncPeer.QueueMessage(gdmsg, nil)
|
|
}
|
|
}
|
|
|
|
// haveInventory returns whether or not the inventory represented by the passed
|
|
// inventory vector is known. This includes checking all of the various places
|
|
// inventory can be when it is in different states such as blocks that are part
|
|
// of the main chain, on a side chain, in the orphan pool, and transactions that
|
|
// are in the memory pool (either the main pool or orphan pool).
|
|
func (b *blockManager) haveInventory(invVect *wire.InvVect) (bool, error) {
|
|
switch invVect.Type {
|
|
case wire.InvTypeBlock:
|
|
// Ask chain if the block is known to it in any form (main
|
|
// chain, side chain, or orphan).
|
|
return b.chain.HaveBlock(&invVect.Hash)
|
|
|
|
case wire.InvTypeTx:
|
|
// Ask the transaction memory pool if the transaction is known
|
|
// to it in any form (main pool or orphan).
|
|
if b.server.txMemPool.HaveTransaction(&invVect.Hash) {
|
|
return true, nil
|
|
}
|
|
|
|
// Check if the transaction exists from the point of view of the
|
|
// end of the main chain.
|
|
entry, err := b.chain.FetchUtxoEntry(&invVect.Hash)
|
|
if err != nil {
|
|
return false, err
|
|
}
|
|
return entry != nil && !entry.IsFullySpent(), nil
|
|
}
|
|
|
|
// The requested inventory is is an unsupported type, so just claim
|
|
// it is known to avoid requesting it.
|
|
return true, nil
|
|
}
|
|
|
|
// limitMap is a helper function for maps that require a maximum limit by
|
|
// evicting a random transaction if adding a new value would cause it to
|
|
// overflow the maximum allowed.
|
|
func (b *blockManager) limitMap(m map[chainhash.Hash]struct{}, limit int) {
|
|
if len(m)+1 > limit {
|
|
// Remove a random entry from the map. For most compilers, Go's
|
|
// range statement iterates starting at a random item although
|
|
// that is not 100% guaranteed by the spec. The iteration order
|
|
// is not important here because an adversary would have to be
|
|
// able to pull off preimage attacks on the hashing function in
|
|
// order to target eviction of specific entries anyways.
|
|
for txHash := range m {
|
|
delete(m, txHash)
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
// handleNotifyMsg handles notifications from blockchain. It does things such
|
|
// as request orphan block parents and relay accepted blocks to connected peers.
|
|
func (b *blockManager) handleNotifyMsg(notification *blockchain.Notification) {
|
|
switch notification.Type {
|
|
// A block has been accepted into the block chain. Relay it to other
|
|
// peers.
|
|
case blockchain.NTBlockAccepted:
|
|
// Don't relay if we are not current. Other peers that are
|
|
// current should already know about it.
|
|
if !b.current() {
|
|
return
|
|
}
|
|
|
|
block, ok := notification.Data.(*btcutil.Block)
|
|
if !ok {
|
|
log.Warnf("Chain accepted notification is not a block.")
|
|
break
|
|
}
|
|
|
|
// Generate the inventory vector and relay it.
|
|
//iv := wire.NewInvVect(wire.InvTypeBlock, block.Hash())
|
|
//b.server.RelayInventory(iv, block.MsgBlock().Header)
|
|
|
|
// A block has been connected to the main block chain.
|
|
case blockchain.NTBlockConnected:
|
|
block, ok := notification.Data.(*btcutil.Block)
|
|
if !ok {
|
|
log.Warnf("Chain connected notification is not a block.")
|
|
break
|
|
}
|
|
|
|
// Remove all of the transactions (except the coinbase) in the
|
|
// connected block from the transaction pool. Secondly, remove any
|
|
// transactions which are now double spends as a result of these
|
|
// new transactions. Finally, remove any transaction that is
|
|
// no longer an orphan. Transactions which depend on a confirmed
|
|
// transaction are NOT removed recursively because they are still
|
|
// valid.
|
|
for _, tx := range block.Transactions()[1:] {
|
|
b.server.txMemPool.RemoveTransaction(tx, false)
|
|
b.server.txMemPool.RemoveDoubleSpends(tx)
|
|
b.server.txMemPool.RemoveOrphan(tx)
|
|
acceptedTxs := b.server.txMemPool.ProcessOrphans(tx)
|
|
b.server.AnnounceNewTransactions(acceptedTxs)
|
|
}
|
|
|
|
if r := b.server.rpcServer; r != nil {
|
|
// Now that this block is in the blockchain we can mark
|
|
// all the transactions (except the coinbase) as no
|
|
// longer needing rebroadcasting.
|
|
for _, tx := range block.Transactions()[1:] {
|
|
iv := wire.NewInvVect(wire.InvTypeTx, tx.Hash())
|
|
b.server.RemoveRebroadcastInventory(iv)
|
|
}
|
|
|
|
// Notify registered websocket clients of incoming block.
|
|
r.ntfnMgr.NotifyBlockConnected(block)
|
|
}
|
|
|
|
// A block has been disconnected from the main block chain.
|
|
case blockchain.NTBlockDisconnected:
|
|
block, ok := notification.Data.(*btcutil.Block)
|
|
if !ok {
|
|
log.Warnf("Chain disconnected notification is not a block.")
|
|
break
|
|
}
|
|
|
|
// Reinsert all of the transactions (except the coinbase) into
|
|
// the transaction pool.
|
|
for _, tx := range block.Transactions()[1:] {
|
|
_, _, err := b.server.txMemPool.MaybeAcceptTransaction(tx,
|
|
false, false)
|
|
if err != nil {
|
|
// Remove the transaction and all transactions
|
|
// that depend on it if it wasn't accepted into
|
|
// the transaction pool.
|
|
b.server.txMemPool.RemoveTransaction(tx, true)
|
|
}
|
|
}
|
|
|
|
// Notify registered websocket clients.
|
|
if r := b.server.rpcServer; r != nil {
|
|
r.ntfnMgr.NotifyBlockDisconnected(block)
|
|
}
|
|
}
|
|
}
|
|
|
|
// QueueBlock adds the passed block message and peer to the block handling queue.
|
|
func (b *blockManager) QueueBlock(block *btcutil.Block, sp *serverPeer) {
|
|
// Don't accept more blocks if we're shutting down.
|
|
if atomic.LoadInt32(&b.shutdown) != 0 {
|
|
sp.blockProcessed <- struct{}{}
|
|
return
|
|
}
|
|
|
|
b.msgChan <- &blockMsg{block: block, peer: sp}
|
|
}
|
|
|
|
// SyncPeer returns the current sync peer.
|
|
func (b *blockManager) SyncPeer() *serverPeer {
|
|
reply := make(chan *serverPeer)
|
|
b.msgChan <- getSyncPeerMsg{reply: reply}
|
|
return <-reply
|
|
}
|
|
|
|
// ProcessBlock makes use of ProcessBlock on an internal instance of a block
|
|
// chain. It is funneled through the block manager since btcchain is not safe
|
|
// for concurrent access.
|
|
func (b *blockManager) ProcessBlock(block *btcutil.Block, flags blockchain.BehaviorFlags) (bool, error) {
|
|
reply := make(chan processBlockResponse, 1)
|
|
b.msgChan <- processBlockMsg{block: block, flags: flags, reply: reply}
|
|
response := <-reply
|
|
return response.isOrphan, response.err
|
|
}
|
|
|
|
|
|
// checkpointSorter implements sort.Interface to allow a slice of checkpoints to
|
|
// be sorted.
|
|
type checkpointSorter []chaincfg.Checkpoint
|
|
|
|
// Len returns the number of checkpoints in the slice. It is part of the
|
|
// sort.Interface implementation.
|
|
func (s checkpointSorter) Len() int {
|
|
return len(s)
|
|
}
|
|
|
|
// Swap swaps the checkpoints at the passed indices. It is part of the
|
|
// sort.Interface implementation.
|
|
func (s checkpointSorter) Swap(i, j int) {
|
|
s[i], s[j] = s[j], s[i]
|
|
}
|
|
|
|
// Less returns whether the checkpoint with index i should sort before the
|
|
// checkpoint with index j. It is part of the sort.Interface implementation.
|
|
func (s checkpointSorter) Less(i, j int) bool {
|
|
return s[i].Height < s[j].Height
|
|
}
|
|
|
|
// mergeCheckpoints returns two slices of checkpoints merged into one slice
|
|
// such that the checkpoints are sorted by height. In the case the additional
|
|
// checkpoints contain a checkpoint with the same height as a checkpoint in the
|
|
// default checkpoints, the additional checkpoint will take precedence and
|
|
// overwrite the default one.
|
|
func mergeCheckpoints(defaultCheckpoints, additional []chaincfg.Checkpoint) []chaincfg.Checkpoint {
|
|
// Create a map of the additional checkpoints to remove duplicates while
|
|
// leaving the most recently-specified checkpoint.
|
|
extra := make(map[int32]chaincfg.Checkpoint)
|
|
for _, checkpoint := range additional {
|
|
extra[checkpoint.Height] = checkpoint
|
|
}
|
|
|
|
// Add all default checkpoints that do not have an override in the
|
|
// additional checkpoints.
|
|
numDefault := len(defaultCheckpoints)
|
|
checkpoints := make([]chaincfg.Checkpoint, 0, numDefault+len(extra))
|
|
for _, checkpoint := range defaultCheckpoints {
|
|
if _, exists := extra[checkpoint.Height]; !exists {
|
|
checkpoints = append(checkpoints, checkpoint)
|
|
}
|
|
}
|
|
|
|
// Append the additional checkpoints and return the sorted results.
|
|
for _, checkpoint := range extra {
|
|
checkpoints = append(checkpoints, checkpoint)
|
|
}
|
|
sort.Sort(checkpointSorter(checkpoints))
|
|
return checkpoints
|
|
}
|
|
|
|
// removeRegressionDB removes the existing regression test database if running
|
|
// in regression test mode and it already exists.
|
|
func removeRegressionDB(dbPath string) error {
|
|
// Don't do anything if not in regression test mode.
|
|
if !cfg.RegressionTest {
|
|
return nil
|
|
}
|
|
|
|
// Remove the old regression test database if it already exists.
|
|
fi, err := os.Stat(dbPath)
|
|
if err == nil {
|
|
btcdLog.Infof("Removing regression test database from '%s'", dbPath)
|
|
if fi.IsDir() {
|
|
err := os.RemoveAll(dbPath)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
} else {
|
|
err := os.Remove(dbPath)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// dbPath returns the path to the block database given a database type.
|
|
func blockDbPath(dbType string) string {
|
|
// The database name is based on the database type.
|
|
dbName := blockDbNamePrefix + "_" + dbType
|
|
if dbType == "sqlite" {
|
|
dbName = dbName + ".db"
|
|
}
|
|
dbPath := filepath.Join(cfg.DataDir, dbName)
|
|
return dbPath
|
|
}
|
|
|
|
// warnMultipeDBs shows a warning if multiple block database types are detected.
|
|
// This is not a situation most users want. It is handy for development however
|
|
// to support multiple side-by-side databases.
|
|
func warnMultipeDBs() {
|
|
// This is intentionally not using the known db types which depend
|
|
// on the database types compiled into the binary since we want to
|
|
// detect legacy db types as well.
|
|
dbTypes := []string{"ffldb", "leveldb", "sqlite"}
|
|
duplicateDbPaths := make([]string, 0, len(dbTypes)-1)
|
|
for _, dbType := range dbTypes {
|
|
if dbType == cfg.DbType {
|
|
continue
|
|
}
|
|
|
|
// Store db path as a duplicate db if it exists.
|
|
dbPath := blockDbPath(dbType)
|
|
if fileExists(dbPath) {
|
|
duplicateDbPaths = append(duplicateDbPaths, dbPath)
|
|
}
|
|
}
|
|
|
|
// Warn if there are extra databases.
|
|
if len(duplicateDbPaths) > 0 {
|
|
selectedDbPath := blockDbPath(cfg.DbType)
|
|
btcdLog.Warnf("WARNING: There are multiple block chain databases "+
|
|
"using different database types.\nYou probably don't "+
|
|
"want to waste disk space by having more than one.\n"+
|
|
"Your current database is located at [%v].\nThe "+
|
|
"additional database is located at %v", selectedDbPath,
|
|
duplicateDbPaths)
|
|
}
|
|
}
|
|
|
|
// loadBlockDB loads (or creates when needed) the block database taking into
|
|
// account the selected database backend and returns a handle to it. It also
|
|
// contains additional logic such warning the user if there are multiple
|
|
// databases which consume space on the file system and ensuring the regression
|
|
// test database is clean when in regression test mode.
|
|
func loadBlockDB() (database.DB, error) {
|
|
// The memdb backend does not have a file path associated with it, so
|
|
// handle it uniquely. We also don't want to worry about the multiple
|
|
// database type warnings when running with the memory database.
|
|
if cfg.DbType == "memdb" {
|
|
btcdLog.Infof("Creating block database in memory.")
|
|
db, err := database.Create(cfg.DbType)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return db, nil
|
|
}
|
|
|
|
warnMultipeDBs()
|
|
|
|
// The database name is based on the database type.
|
|
dbPath := blockDbPath(cfg.DbType)
|
|
|
|
// The regression test is special in that it needs a clean database for
|
|
// each run, so remove it now if it already exists.
|
|
removeRegressionDB(dbPath)
|
|
|
|
btcdLog.Infof("Loading block database from '%s'", dbPath)
|
|
db, err := database.Open(cfg.DbType, dbPath, activeNetParams.Net)
|
|
if err != nil {
|
|
// Return the error if it's not because the database doesn't
|
|
// exist.
|
|
if dbErr, ok := err.(database.Error); !ok || dbErr.ErrorCode !=
|
|
database.ErrDbDoesNotExist {
|
|
|
|
return nil, err
|
|
}
|
|
|
|
// Create the db if it does not exist.
|
|
err = os.MkdirAll(cfg.DataDir, 0700)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
db, err = database.Create(cfg.DbType, dbPath, activeNetParams.Net)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
btcdLog.Info("Block database loaded")
|
|
return db, nil
|
|
}
|
|
*/
|