7866fd8931
Fixes #35.
2208 lines
55 KiB
Go
2208 lines
55 KiB
Go
/*
|
|
* Copyright (c) 2013, 2014 Conformal Systems LLC <info@conformal.com>
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
package wallet
|
|
|
|
import (
|
|
"bytes"
|
|
"code.google.com/p/go.crypto/ripemd160"
|
|
"crypto/aes"
|
|
"crypto/cipher"
|
|
"crypto/ecdsa"
|
|
"crypto/rand"
|
|
"crypto/sha256"
|
|
"crypto/sha512"
|
|
"encoding/binary"
|
|
"encoding/hex"
|
|
"errors"
|
|
"fmt"
|
|
"github.com/conformal/btcec"
|
|
"github.com/conformal/btcutil"
|
|
"github.com/conformal/btcwire"
|
|
"github.com/davecgh/go-spew/spew"
|
|
"io"
|
|
"math/big"
|
|
"sync"
|
|
"time"
|
|
)
|
|
|
|
const (
|
|
// Length in bytes of KDF output.
|
|
kdfOutputBytes = 32
|
|
|
|
// Maximum length in bytes of a comment that can have a size represented
|
|
// as a uint16.
|
|
maxCommentLen = (1 << 16) - 1
|
|
|
|
// Number of addresses to extend keypool by.
|
|
nKeypoolIncrement = 100
|
|
)
|
|
|
|
const (
|
|
defaultKdfComputeTime = 0.25
|
|
defaultKdfMaxMem = 32 * 1024 * 1024
|
|
)
|
|
|
|
// Possible errors when dealing with wallets.
|
|
var (
|
|
ErrAddressNotFound = errors.New("address not found")
|
|
ErrChecksumMismatch = errors.New("checksum mismatch")
|
|
ErrDuplicate = errors.New("duplicate key or address")
|
|
ErrMalformedEntry = errors.New("malformed entry")
|
|
ErrNetworkMismatch = errors.New("network mismatch")
|
|
ErrWalletDoesNotExist = errors.New("non-existant wallet")
|
|
ErrWalletLocked = errors.New("wallet is locked")
|
|
)
|
|
|
|
var (
|
|
// '\xbaWALLET\x00'
|
|
fileID = [8]byte{0xba, 0x57, 0x41, 0x4c, 0x4c, 0x45, 0x54, 0x00}
|
|
|
|
mainnetMagicBytes = [4]byte{0xf9, 0xbe, 0xb4, 0xd9}
|
|
testnetMagicBytes = [4]byte{0x0b, 0x11, 0x09, 0x07}
|
|
)
|
|
|
|
type entryHeader byte
|
|
|
|
const (
|
|
addrCommentHeader entryHeader = 1 << iota
|
|
txCommentHeader
|
|
deletedHeader
|
|
addrHeader entryHeader = 0
|
|
)
|
|
|
|
// We want to use binaryRead and binaryWrite instead of binary.Read
|
|
// and binary.Write because those from the binary package do not return
|
|
// the number of bytes actually written or read. We need to return
|
|
// this value to correctly support the io.ReaderFrom and io.WriterTo
|
|
// interfaces.
|
|
func binaryRead(r io.Reader, order binary.ByteOrder, data interface{}) (n int64, err error) {
|
|
var read int
|
|
buf := make([]byte, binary.Size(data))
|
|
if read, err = r.Read(buf); err != nil {
|
|
return int64(read), err
|
|
}
|
|
if read < binary.Size(data) {
|
|
return int64(read), io.EOF
|
|
}
|
|
return int64(read), binary.Read(bytes.NewBuffer(buf), order, data)
|
|
}
|
|
|
|
// See comment for binaryRead().
|
|
func binaryWrite(w io.Writer, order binary.ByteOrder, data interface{}) (n int64, err error) {
|
|
var buf bytes.Buffer
|
|
if err = binary.Write(&buf, order, data); err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
written, err := w.Write(buf.Bytes())
|
|
return int64(written), err
|
|
}
|
|
|
|
// pubkeyFromPrivkey creates an encoded pubkey based on a
|
|
// 32-byte privkey. The returned pubkey is 33 bytes if compressed,
|
|
// or 65 bytes if uncompressed.
|
|
func pubkeyFromPrivkey(privkey []byte, compress bool) (pubkey []byte) {
|
|
x, y := btcec.S256().ScalarBaseMult(privkey)
|
|
pub := (*btcec.PublicKey)(&ecdsa.PublicKey{
|
|
Curve: btcec.S256(),
|
|
X: x,
|
|
Y: y,
|
|
})
|
|
|
|
if compress {
|
|
return pub.SerializeCompressed()
|
|
}
|
|
return pub.SerializeUncompressed()
|
|
}
|
|
|
|
func keyOneIter(passphrase, salt []byte, memReqts uint64) []byte {
|
|
saltedpass := append(passphrase, salt...)
|
|
lutbl := make([]byte, memReqts)
|
|
|
|
// Seed for lookup table
|
|
seed := sha512.Sum512(saltedpass)
|
|
copy(lutbl[:sha512.Size], seed[:])
|
|
|
|
for nByte := 0; nByte < (int(memReqts) - sha512.Size); nByte += sha512.Size {
|
|
hash := sha512.Sum512(lutbl[nByte : nByte+sha512.Size])
|
|
copy(lutbl[nByte+sha512.Size:nByte+2*sha512.Size], hash[:])
|
|
}
|
|
|
|
x := lutbl[cap(lutbl)-sha512.Size:]
|
|
|
|
seqCt := uint32(memReqts / sha512.Size)
|
|
nLookups := seqCt / 2
|
|
for i := uint32(0); i < nLookups; i++ {
|
|
// Armory ignores endianness here. We assume LE.
|
|
newIdx := binary.LittleEndian.Uint32(x[cap(x)-4:]) % seqCt
|
|
|
|
// Index of hash result at newIdx
|
|
vIdx := newIdx * sha512.Size
|
|
v := lutbl[vIdx : vIdx+sha512.Size]
|
|
|
|
// XOR hash x with hash v
|
|
for j := 0; j < sha512.Size; j++ {
|
|
x[j] ^= v[j]
|
|
}
|
|
|
|
// Save new hash to x
|
|
hash := sha512.Sum512(x)
|
|
copy(x, hash[:])
|
|
}
|
|
|
|
return x[:kdfOutputBytes]
|
|
}
|
|
|
|
// Key implements the key derivation function used by Armory
|
|
// based on the ROMix algorithm described in Colin Percival's paper
|
|
// "Stronger Key Derivation via Sequential Memory-Hard Functions"
|
|
// (http://www.tarsnap.com/scrypt/scrypt.pdf).
|
|
func Key(passphrase []byte, params *kdfParameters) []byte {
|
|
masterKey := passphrase
|
|
for i := uint32(0); i < params.nIter; i++ {
|
|
masterKey = keyOneIter(masterKey, params.salt[:], params.mem)
|
|
}
|
|
return masterKey
|
|
}
|
|
|
|
func pad(size int, b []byte) []byte {
|
|
// Prevent a possible panic if the input exceeds the expected size.
|
|
if len(b) > size {
|
|
size = len(b)
|
|
}
|
|
|
|
p := make([]byte, size)
|
|
copy(p[size-len(b):], b)
|
|
return p
|
|
}
|
|
|
|
// ChainedPrivKey deterministically generates a new private key using a
|
|
// previous address and chaincode. privkey and chaincode must be 32
|
|
// bytes long, and pubkey may either be 33 bytes, 65 bytes or nil (in
|
|
// which case it is generated by the privkey).
|
|
func ChainedPrivKey(privkey, pubkey, chaincode []byte) ([]byte, error) {
|
|
if len(privkey) != 32 {
|
|
return nil, fmt.Errorf("invalid privkey length %d (must be 32)",
|
|
len(privkey))
|
|
}
|
|
if len(chaincode) != 32 {
|
|
return nil, fmt.Errorf("invalid chaincode length %d (must be 32)",
|
|
len(chaincode))
|
|
}
|
|
if pubkey == nil {
|
|
pubkey = pubkeyFromPrivkey(privkey, true)
|
|
} else if !(len(pubkey) == 65 || len(pubkey) == 33) {
|
|
return nil, fmt.Errorf("invalid pubkey length %d", len(pubkey))
|
|
}
|
|
|
|
xorbytes := make([]byte, 32)
|
|
chainMod := sha256.Sum256(pubkey)
|
|
for i := range xorbytes {
|
|
xorbytes[i] = chainMod[i] ^ chaincode[i]
|
|
}
|
|
chainXor := new(big.Int).SetBytes(xorbytes)
|
|
privint := new(big.Int).SetBytes(privkey)
|
|
|
|
t := new(big.Int).Mul(chainXor, privint)
|
|
b := t.Mod(t, btcec.S256().N).Bytes()
|
|
return pad(32, b), nil
|
|
}
|
|
|
|
type version struct {
|
|
major byte
|
|
minor byte
|
|
bugfix byte
|
|
autoincrement byte
|
|
}
|
|
|
|
// Enforce that version satisifies the io.ReaderFrom and
|
|
// io.WriterTo interfaces.
|
|
var _ io.ReaderFrom = &version{}
|
|
var _ io.WriterTo = &version{}
|
|
|
|
// ReaderFromVersion is an io.ReaderFrom and io.WriterTo that
|
|
// can specify any particular wallet file format for reading
|
|
// depending on the wallet file version.
|
|
type ReaderFromVersion interface {
|
|
ReadFromVersion(version, io.Reader) (int64, error)
|
|
io.WriterTo
|
|
}
|
|
|
|
func (v version) String() string {
|
|
str := fmt.Sprintf("%d.%d", v.major, v.minor)
|
|
if v.bugfix != 0x00 || v.autoincrement != 0x00 {
|
|
str += fmt.Sprintf(".%d", v.bugfix)
|
|
}
|
|
if v.autoincrement != 0x00 {
|
|
str += fmt.Sprintf(".%d", v.autoincrement)
|
|
}
|
|
return str
|
|
}
|
|
|
|
func (v version) Uint32() uint32 {
|
|
return uint32(v.major)<<6 | uint32(v.minor)<<4 | uint32(v.bugfix)<<2 | uint32(v.autoincrement)
|
|
}
|
|
|
|
func (v *version) ReadFrom(r io.Reader) (int64, error) {
|
|
// Read 4 bytes for the version.
|
|
versBytes := make([]byte, 4)
|
|
n, err := r.Read(versBytes)
|
|
if err != nil {
|
|
return int64(n), err
|
|
}
|
|
v.major = versBytes[0]
|
|
v.minor = versBytes[1]
|
|
v.bugfix = versBytes[2]
|
|
v.autoincrement = versBytes[3]
|
|
return int64(n), nil
|
|
}
|
|
|
|
func (v *version) WriteTo(w io.Writer) (int64, error) {
|
|
// Write 4 bytes for the version.
|
|
versBytes := []byte{
|
|
v.major,
|
|
v.minor,
|
|
v.bugfix,
|
|
v.autoincrement,
|
|
}
|
|
n, err := w.Write(versBytes)
|
|
return int64(n), err
|
|
}
|
|
|
|
// LT returns whether v is an earlier version than v2.
|
|
func (v version) LT(v2 version) bool {
|
|
switch {
|
|
case v.major < v2.major:
|
|
return true
|
|
|
|
case v.minor < v2.minor:
|
|
return true
|
|
|
|
case v.bugfix < v2.bugfix:
|
|
return true
|
|
|
|
case v.autoincrement < v2.autoincrement:
|
|
return true
|
|
|
|
default:
|
|
return false
|
|
}
|
|
}
|
|
|
|
// EQ returns whether v2 is an equal version to v.
|
|
func (v version) EQ(v2 version) bool {
|
|
switch {
|
|
case v.major != v2.major:
|
|
return false
|
|
|
|
case v.minor != v2.minor:
|
|
return false
|
|
|
|
case v.bugfix != v2.bugfix:
|
|
return false
|
|
|
|
case v.autoincrement != v2.autoincrement:
|
|
return false
|
|
|
|
default:
|
|
return true
|
|
}
|
|
}
|
|
|
|
// GT returns whether v is a later version than v2.
|
|
func (v version) GT(v2 version) bool {
|
|
switch {
|
|
case v.major > v2.major:
|
|
return true
|
|
|
|
case v.minor > v2.minor:
|
|
return true
|
|
|
|
case v.bugfix > v2.bugfix:
|
|
return true
|
|
|
|
case v.autoincrement > v2.autoincrement:
|
|
return true
|
|
|
|
default:
|
|
return false
|
|
}
|
|
}
|
|
|
|
// Various versions.
|
|
var (
|
|
// VersArmory is the latest version used by Armory.
|
|
VersArmory = version{1, 35, 0, 0}
|
|
|
|
// Vers20LastBlocks is the version where wallet files now hold
|
|
// the 20 most recently seen block hashes.
|
|
Vers20LastBlocks = version{1, 36, 0, 0}
|
|
|
|
// VersCurrent is the current wallet file version.
|
|
VersCurrent = Vers20LastBlocks
|
|
)
|
|
|
|
type varEntries []io.WriterTo
|
|
|
|
func (v *varEntries) WriteTo(w io.Writer) (n int64, err error) {
|
|
ss := []io.WriterTo(*v)
|
|
|
|
var written int64
|
|
for _, s := range ss {
|
|
var err error
|
|
if written, err = s.WriteTo(w); err != nil {
|
|
return n + written, err
|
|
}
|
|
n += written
|
|
}
|
|
return n, nil
|
|
}
|
|
|
|
func (v *varEntries) ReadFrom(r io.Reader) (n int64, err error) {
|
|
var read int64
|
|
|
|
// Remove any previous entries.
|
|
*v = nil
|
|
wts := []io.WriterTo(*v)
|
|
|
|
// Keep reading entries until an EOF is reached.
|
|
for {
|
|
var header entryHeader
|
|
if read, err = binaryRead(r, binary.LittleEndian, &header); err != nil {
|
|
// EOF here is not an error.
|
|
if err == io.EOF {
|
|
return n + read, nil
|
|
}
|
|
return n + read, err
|
|
}
|
|
n += read
|
|
|
|
var wt io.WriterTo
|
|
switch header {
|
|
case addrHeader:
|
|
var entry addrEntry
|
|
if read, err = entry.ReadFrom(r); err != nil {
|
|
return n + read, err
|
|
}
|
|
n += read
|
|
wt = &entry
|
|
case addrCommentHeader:
|
|
var entry addrCommentEntry
|
|
if read, err = entry.ReadFrom(r); err != nil {
|
|
return n + read, err
|
|
}
|
|
n += read
|
|
wt = &entry
|
|
case txCommentHeader:
|
|
var entry txCommentEntry
|
|
if read, err = entry.ReadFrom(r); err != nil {
|
|
return n + read, err
|
|
}
|
|
n += read
|
|
wt = &entry
|
|
case deletedHeader:
|
|
var entry deletedEntry
|
|
if read, err = entry.ReadFrom(r); err != nil {
|
|
return n + read, err
|
|
}
|
|
n += read
|
|
default:
|
|
return n, fmt.Errorf("unknown entry header: %d", uint8(header))
|
|
}
|
|
if wt != nil {
|
|
wts = append(wts, wt)
|
|
*v = wts
|
|
}
|
|
}
|
|
}
|
|
|
|
type transactionHashKey string
|
|
type comment []byte
|
|
|
|
// Wallet represents an btcwallet wallet in memory. It implements
|
|
// the io.ReaderFrom and io.WriterTo interfaces to read from and
|
|
// write to any type of byte streams, including files.
|
|
type Wallet struct {
|
|
net btcwire.BitcoinNet
|
|
flags walletFlags
|
|
uniqID [6]byte
|
|
createDate int64
|
|
name [32]byte
|
|
desc [256]byte
|
|
highestUsed int64
|
|
kdfParams kdfParameters
|
|
keyGenerator btcAddress
|
|
|
|
// These are non-standard and fit in the extra 1024 bytes between the
|
|
// root address and the appended entries.
|
|
recent recentBlocks
|
|
|
|
addrMap map[btcutil.AddressPubKeyHash]*btcAddress
|
|
addrCommentMap map[btcutil.AddressPubKeyHash]comment
|
|
txCommentMap map[transactionHashKey]comment
|
|
|
|
// These are not serialized.
|
|
secret struct {
|
|
sync.Mutex
|
|
key []byte
|
|
}
|
|
chainIdxMap map[int64]*btcutil.AddressPubKeyHash
|
|
importedAddrs []*btcAddress
|
|
lastChainIdx int64
|
|
}
|
|
|
|
// NewWallet creates and initializes a new Wallet. name's and
|
|
// desc's binary representation must not exceed 32 and 256 bytes,
|
|
// respectively. All address private keys are encrypted with passphrase.
|
|
// The wallet is returned unlocked.
|
|
func NewWallet(name, desc string, passphrase []byte, net btcwire.BitcoinNet, createdAt *BlockStamp) (*Wallet, error) {
|
|
// Check sizes of inputs.
|
|
if len([]byte(name)) > 32 {
|
|
return nil, errors.New("name exceeds 32 byte maximum size")
|
|
}
|
|
if len([]byte(desc)) > 256 {
|
|
return nil, errors.New("desc exceeds 256 byte maximum size")
|
|
}
|
|
|
|
// Check for a valid network.
|
|
if !(net == btcwire.MainNet || net == btcwire.TestNet3) {
|
|
return nil, errors.New("wallets must use mainnet or testnet3")
|
|
}
|
|
|
|
// Randomly-generate rootkey and chaincode.
|
|
rootkey, chaincode := make([]byte, 32), make([]byte, 32)
|
|
if _, err := rand.Read(rootkey); err != nil {
|
|
return nil, err
|
|
}
|
|
if _, err := rand.Read(chaincode); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Create new root address from key and chaincode.
|
|
root, err := newRootBtcAddress(rootkey, nil, chaincode, createdAt)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Verify root address keypairs.
|
|
if err := root.verifyKeypairs(); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Compute AES key and encrypt root address.
|
|
kdfp, err := computeKdfParameters(defaultKdfComputeTime, defaultKdfMaxMem)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
aeskey := Key([]byte(passphrase), kdfp)
|
|
if err := root.encrypt(aeskey); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Create and fill wallet.
|
|
w := &Wallet{
|
|
// TODO(jrick): not sure we will need uniqID, but would be good for
|
|
// compat with armory.
|
|
net: net,
|
|
flags: walletFlags{
|
|
useEncryption: true,
|
|
watchingOnly: false,
|
|
},
|
|
createDate: time.Now().Unix(),
|
|
highestUsed: rootKeyChainIdx,
|
|
kdfParams: *kdfp,
|
|
keyGenerator: *root,
|
|
recent: recentBlocks{
|
|
lastHeight: createdAt.Height,
|
|
hashes: []*btcwire.ShaHash{
|
|
&createdAt.Hash,
|
|
},
|
|
},
|
|
addrMap: make(map[btcutil.AddressPubKeyHash]*btcAddress),
|
|
addrCommentMap: make(map[btcutil.AddressPubKeyHash]comment),
|
|
txCommentMap: make(map[transactionHashKey]comment),
|
|
chainIdxMap: make(map[int64]*btcutil.AddressPubKeyHash),
|
|
lastChainIdx: rootKeyChainIdx,
|
|
}
|
|
copy(w.name[:], []byte(name))
|
|
copy(w.desc[:], []byte(desc))
|
|
|
|
// Add root address to maps.
|
|
w.addrMap[*w.keyGenerator.address(net)] = &w.keyGenerator
|
|
w.chainIdxMap[rootKeyChainIdx] = w.keyGenerator.address(net)
|
|
|
|
// Fill keypool.
|
|
if err := w.extendKeypool(nKeypoolIncrement, aeskey, createdAt); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return w, nil
|
|
}
|
|
|
|
// Name returns the name of a wallet. This name is used as the
|
|
// account name for btcwallet JSON methods.
|
|
func (w *Wallet) Name() string {
|
|
last := len(w.name[:])
|
|
for i, b := range w.name[:] {
|
|
if b == 0x00 {
|
|
last = i
|
|
break
|
|
}
|
|
}
|
|
return string(w.name[:last])
|
|
}
|
|
|
|
// ReadFrom reads data from a io.Reader and saves it to a Wallet,
|
|
// returning the number of bytes read and any errors encountered.
|
|
func (w *Wallet) ReadFrom(r io.Reader) (n int64, err error) {
|
|
var read int64
|
|
|
|
w.addrMap = make(map[btcutil.AddressPubKeyHash]*btcAddress)
|
|
w.addrCommentMap = make(map[btcutil.AddressPubKeyHash]comment)
|
|
w.chainIdxMap = make(map[int64]*btcutil.AddressPubKeyHash)
|
|
w.txCommentMap = make(map[transactionHashKey]comment)
|
|
|
|
var id [8]byte
|
|
var vers version
|
|
var appendedEntries varEntries
|
|
|
|
// Iterate through each entry needing to be read. If data
|
|
// implements io.ReaderFrom, use its ReadFrom func. Otherwise,
|
|
// data is a pointer to a fixed sized value.
|
|
datas := []interface{}{
|
|
&id,
|
|
&vers,
|
|
&w.net,
|
|
&w.flags,
|
|
&w.uniqID,
|
|
&w.createDate,
|
|
&w.name,
|
|
&w.desc,
|
|
&w.highestUsed,
|
|
&w.kdfParams,
|
|
make([]byte, 256),
|
|
&w.keyGenerator,
|
|
newUnusedSpace(1024, &w.recent),
|
|
&appendedEntries,
|
|
}
|
|
for _, data := range datas {
|
|
var err error
|
|
switch d := data.(type) {
|
|
case ReaderFromVersion:
|
|
read, err = d.ReadFromVersion(vers, r)
|
|
|
|
case io.ReaderFrom:
|
|
read, err = d.ReadFrom(r)
|
|
|
|
default:
|
|
read, err = binaryRead(r, binary.LittleEndian, d)
|
|
}
|
|
n += read
|
|
if err != nil {
|
|
return n, err
|
|
}
|
|
}
|
|
|
|
if id != fileID {
|
|
return n, errors.New("unknown file ID")
|
|
}
|
|
|
|
// Add root address to address map.
|
|
rootAddr := w.keyGenerator.address(w.net)
|
|
w.addrMap[*rootAddr] = &w.keyGenerator
|
|
w.chainIdxMap[rootKeyChainIdx] = rootAddr
|
|
|
|
// Fill unserializied fields.
|
|
wts := ([]io.WriterTo)(appendedEntries)
|
|
for _, wt := range wts {
|
|
switch e := wt.(type) {
|
|
case *addrEntry:
|
|
addr := e.addr.address(w.net)
|
|
w.addrMap[*addr] = &e.addr
|
|
if e.addr.chainIndex == importedKeyChainIdx {
|
|
w.importedAddrs = append(w.importedAddrs, &e.addr)
|
|
} else {
|
|
w.chainIdxMap[e.addr.chainIndex] = addr
|
|
if w.lastChainIdx < e.addr.chainIndex {
|
|
w.lastChainIdx = e.addr.chainIndex
|
|
}
|
|
}
|
|
|
|
case *addrCommentEntry:
|
|
addr := e.address(w.net)
|
|
w.addrCommentMap[*addr] = comment(e.comment)
|
|
|
|
case *txCommentEntry:
|
|
txKey := transactionHashKey(e.txHash[:])
|
|
w.txCommentMap[txKey] = comment(e.comment)
|
|
|
|
default:
|
|
return n, errors.New("unknown appended entry")
|
|
}
|
|
}
|
|
|
|
return n, nil
|
|
}
|
|
|
|
// WriteTo serializes a Wallet and writes it to a io.Writer,
|
|
// returning the number of bytes written and any errors encountered.
|
|
func (w *Wallet) WriteTo(wtr io.Writer) (n int64, err error) {
|
|
var wts []io.WriterTo
|
|
var chainedAddrs = make([]io.WriterTo, len(w.chainIdxMap)-1)
|
|
var importedAddrs []io.WriterTo
|
|
for addr, btcAddr := range w.addrMap {
|
|
e := &addrEntry{
|
|
addr: *btcAddr,
|
|
}
|
|
copy(e.pubKeyHash160[:], addr.ScriptAddress())
|
|
if btcAddr.chainIndex >= 0 {
|
|
// Chained addresses are sorted. This is
|
|
// kind of nice but probably isn't necessary.
|
|
chainedAddrs[btcAddr.chainIndex] = e
|
|
} else if btcAddr.chainIndex == importedKeyChainIdx {
|
|
// No order for imported addresses.
|
|
importedAddrs = append(importedAddrs, e)
|
|
}
|
|
}
|
|
wts = append(chainedAddrs, importedAddrs...)
|
|
for addr, comment := range w.addrCommentMap {
|
|
e := &addrCommentEntry{
|
|
comment: []byte(comment),
|
|
}
|
|
copy(e.pubKeyHash160[:], addr.ScriptAddress())
|
|
wts = append(wts, e)
|
|
}
|
|
for hash, comment := range w.txCommentMap {
|
|
e := &txCommentEntry{
|
|
comment: []byte(comment),
|
|
}
|
|
copy(e.txHash[:], []byte(hash))
|
|
wts = append(wts, e)
|
|
}
|
|
appendedEntries := varEntries(wts)
|
|
|
|
// Iterate through each entry needing to be written. If data
|
|
// implements io.WriterTo, use its WriteTo func. Otherwise,
|
|
// data is a pointer to a fixed size value.
|
|
datas := []interface{}{
|
|
&fileID,
|
|
&VersCurrent,
|
|
&w.net,
|
|
&w.flags,
|
|
&w.uniqID,
|
|
&w.createDate,
|
|
&w.name,
|
|
&w.desc,
|
|
&w.highestUsed,
|
|
&w.kdfParams,
|
|
make([]byte, 256),
|
|
&w.keyGenerator,
|
|
newUnusedSpace(1024, &w.recent),
|
|
&appendedEntries,
|
|
}
|
|
var written int64
|
|
for _, data := range datas {
|
|
if s, ok := data.(io.WriterTo); ok {
|
|
written, err = s.WriteTo(wtr)
|
|
} else {
|
|
written, err = binaryWrite(wtr, binary.LittleEndian, data)
|
|
}
|
|
n += written
|
|
if err != nil {
|
|
return n, err
|
|
}
|
|
}
|
|
|
|
return n, nil
|
|
}
|
|
|
|
// Unlock derives an AES key from passphrase and wallet's KDF
|
|
// parameters and unlocks the root key of the wallet. If
|
|
// the unlock was successful, the wallet's secret key is saved,
|
|
// allowing the decryption of any encrypted private key.
|
|
func (w *Wallet) Unlock(passphrase []byte) error {
|
|
// Derive key from KDF parameters and passphrase.
|
|
key := Key(passphrase, &w.kdfParams)
|
|
|
|
// Unlock root address with derived key.
|
|
if _, err := w.keyGenerator.unlock(key); err != nil {
|
|
return err
|
|
}
|
|
|
|
// If unlock was successful, save the secret key.
|
|
w.secret.Lock()
|
|
w.secret.key = key
|
|
w.secret.Unlock()
|
|
return nil
|
|
}
|
|
|
|
// Lock performs a best try effort to remove and zero all secret keys
|
|
// associated with the wallet.
|
|
func (w *Wallet) Lock() (err error) {
|
|
// Remove clear text passphrase from wallet.
|
|
w.secret.Lock()
|
|
if w.secret.key == nil {
|
|
err = ErrWalletLocked
|
|
} else {
|
|
zero(w.secret.key)
|
|
w.secret.key = nil
|
|
}
|
|
w.secret.Unlock()
|
|
|
|
// Remove clear text private keys from all address entries.
|
|
for _, addr := range w.addrMap {
|
|
addr.privKeyCT.Lock()
|
|
zero(addr.privKeyCT.key)
|
|
addr.privKeyCT.key = nil
|
|
addr.privKeyCT.Unlock()
|
|
}
|
|
|
|
return err
|
|
}
|
|
|
|
func zero(b []byte) {
|
|
for i := range b {
|
|
b[i] = 0
|
|
}
|
|
}
|
|
|
|
// IsLocked returns whether a wallet is unlocked (in which case the
|
|
// key is saved in memory), or locked.
|
|
func (w *Wallet) IsLocked() (locked bool) {
|
|
w.secret.Lock()
|
|
locked = w.secret.key == nil
|
|
w.secret.Unlock()
|
|
return locked
|
|
}
|
|
|
|
// Version returns a wallet's version as a string and int.
|
|
func (w *Wallet) Version() (string, int) {
|
|
return "", 0
|
|
}
|
|
|
|
// NextChainedAddress attempts to get the next chained address,
|
|
// refilling the keypool if necessary.
|
|
func (w *Wallet) NextChainedAddress(bs *BlockStamp) (*btcutil.AddressPubKeyHash, error) {
|
|
// Attempt to get address hash of next chained address.
|
|
next160, ok := w.chainIdxMap[w.highestUsed+1]
|
|
if !ok {
|
|
// Extending the keypool requires an unlocked wallet.
|
|
aeskey := make([]byte, 32)
|
|
w.secret.Lock()
|
|
if len(w.secret.key) != 32 {
|
|
w.secret.Unlock()
|
|
return nil, ErrWalletLocked
|
|
}
|
|
copy(aeskey, w.secret.key)
|
|
w.secret.Unlock()
|
|
|
|
err := w.extendKeypool(nKeypoolIncrement, aeskey, bs)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
next160, ok = w.chainIdxMap[w.highestUsed+1]
|
|
if !ok {
|
|
return nil, errors.New("chain index map inproperly updated")
|
|
}
|
|
}
|
|
|
|
// Look up address.
|
|
addr, ok := w.addrMap[*next160]
|
|
if !ok {
|
|
return nil, errors.New("cannot find generated address")
|
|
}
|
|
|
|
w.highestUsed++
|
|
|
|
// Create and return payment address for address hash.
|
|
return addr.address(w.net), nil
|
|
}
|
|
|
|
// LastChainedAddress returns the most recently requested chained
|
|
// address from calling NextChainedAddress, or the root address if
|
|
// no chained addresses have been requested.
|
|
func (w *Wallet) LastChainedAddress() btcutil.Address {
|
|
return w.chainIdxMap[w.highestUsed]
|
|
}
|
|
|
|
// extendKeypool grows the keypool by n addresses.
|
|
func (w *Wallet) extendKeypool(n uint, aeskey []byte, bs *BlockStamp) error {
|
|
// Get last chained address. New chained addresses will be
|
|
// chained off of this address's chaincode and private key.
|
|
a := w.chainIdxMap[w.lastChainIdx]
|
|
addr, ok := w.addrMap[*a]
|
|
if !ok {
|
|
spew.Dump(a)
|
|
spew.Dump(w.addrMap)
|
|
return errors.New("expected last chained address not found")
|
|
}
|
|
privkey, err := addr.unlock(aeskey)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
cc := addr.chaincode[:]
|
|
|
|
// Create n encrypted addresses and add each to the wallet's
|
|
// bookkeeping maps.
|
|
for i := uint(0); i < n; i++ {
|
|
privkey, err = ChainedPrivKey(privkey, addr.pubKey, cc)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
newaddr, err := newBtcAddress(privkey, nil, bs, true)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if err := newaddr.verifyKeypairs(); err != nil {
|
|
return err
|
|
}
|
|
if err = newaddr.encrypt(aeskey); err != nil {
|
|
return err
|
|
}
|
|
a := newaddr.address(w.net)
|
|
w.addrMap[*a] = newaddr
|
|
newaddr.chainIndex = addr.chainIndex + 1
|
|
w.chainIdxMap[newaddr.chainIndex] = a
|
|
w.lastChainIdx++
|
|
// armory does this.. but all the chaincodes are equal so why
|
|
// not use the root's?
|
|
copy(newaddr.chaincode[:], cc)
|
|
addr = newaddr
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// AddressKey returns the private key for a payment address stored
|
|
// in a wallet. This can fail if the payment address is for a different
|
|
// Bitcoin network than what this wallet uses, the address is not
|
|
// contained in the wallet, the address does not include a public and
|
|
// private key, or if the wallet is locked.
|
|
func (w *Wallet) AddressKey(a btcutil.Address) (key *ecdsa.PrivateKey, err error) {
|
|
// Currently, only P2PKH addresses are supported. This should
|
|
// be extended to a switch-case statement when support for other
|
|
// addresses are added.
|
|
addr, ok := a.(*btcutil.AddressPubKeyHash)
|
|
if !ok {
|
|
return nil, errors.New("unsupported address")
|
|
}
|
|
|
|
// Lookup address from map.
|
|
btcaddr, ok := w.addrMap[*addr]
|
|
if !ok {
|
|
return nil, ErrAddressNotFound
|
|
}
|
|
|
|
// Both the pubkey and encrypted privkey must be recorded to return
|
|
// the private key. Error if neither are saved.
|
|
if !btcaddr.flags.hasPubKey {
|
|
return nil, errors.New("no public key for address")
|
|
}
|
|
if !btcaddr.flags.hasPrivKey {
|
|
return nil, errors.New("no private key for address")
|
|
}
|
|
|
|
// Parse public key.
|
|
pubkey, err := btcec.ParsePubKey(btcaddr.pubKey, btcec.S256())
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// The wallet's secret will be zeroed on lock, so make a local
|
|
// copy.
|
|
localSecret := make([]byte, 32)
|
|
w.secret.Lock()
|
|
if len(w.secret.key) != 32 {
|
|
w.secret.Unlock()
|
|
return nil, ErrWalletLocked
|
|
}
|
|
copy(localSecret, w.secret.key)
|
|
w.secret.Unlock()
|
|
|
|
// Unlock address with wallet secret. unlock returns a copy of the
|
|
// clear text private key, and may be used safely even during an address
|
|
// lock.
|
|
privKeyCT, err := btcaddr.unlock(localSecret)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return &ecdsa.PrivateKey{
|
|
PublicKey: *pubkey,
|
|
D: new(big.Int).SetBytes(privKeyCT),
|
|
}, nil
|
|
}
|
|
|
|
// AddressInfo returns an AddressInfo structure for an address in a wallet.
|
|
func (w *Wallet) AddressInfo(a btcutil.Address) (*AddressInfo, error) {
|
|
// Currently, only P2PKH addresses are supported. This should
|
|
// be extended to a switch-case statement when support for other
|
|
// addresses are added.
|
|
addr, ok := a.(*btcutil.AddressPubKeyHash)
|
|
if !ok {
|
|
return nil, errors.New("unsupported address")
|
|
}
|
|
|
|
// Look up address by address hash.
|
|
btcaddr, ok := w.addrMap[*addr]
|
|
if !ok {
|
|
return nil, ErrAddressNotFound
|
|
}
|
|
|
|
return btcaddr.info(w.net)
|
|
}
|
|
|
|
// Net returns the bitcoin network identifier for this wallet.
|
|
func (w *Wallet) Net() btcwire.BitcoinNet {
|
|
return w.net
|
|
}
|
|
|
|
// SetSyncedWith marks the wallet to be in sync with the block
|
|
// described by height and hash.
|
|
func (w *Wallet) SetSyncedWith(bs *BlockStamp) {
|
|
// Check if we're trying to rollback the last seen history.
|
|
// If so, and this bs is already saved, remove anything
|
|
// after and return. Otherwire, remove previous hashes.
|
|
if bs.Height < w.recent.lastHeight {
|
|
maybeIdx := len(w.recent.hashes) - 1 - int(w.recent.lastHeight-bs.Height)
|
|
if maybeIdx >= 0 && maybeIdx < len(w.recent.hashes) &&
|
|
*w.recent.hashes[maybeIdx] == bs.Hash {
|
|
|
|
w.recent.lastHeight = bs.Height
|
|
// subslice out the removed hashes.
|
|
w.recent.hashes = w.recent.hashes[:maybeIdx]
|
|
return
|
|
}
|
|
w.recent.hashes = nil
|
|
}
|
|
|
|
if bs.Height != w.recent.lastHeight+1 {
|
|
w.recent.hashes = nil
|
|
}
|
|
|
|
w.recent.lastHeight = bs.Height
|
|
blockSha := new(btcwire.ShaHash)
|
|
copy(blockSha[:], bs.Hash[:])
|
|
if len(w.recent.hashes) == 20 {
|
|
// Make room for the most recent hash.
|
|
copy(w.recent.hashes, w.recent.hashes[1:])
|
|
|
|
// Set new block in the last position.
|
|
w.recent.hashes[19] = blockSha
|
|
} else {
|
|
w.recent.hashes = append(w.recent.hashes, blockSha)
|
|
}
|
|
}
|
|
|
|
// SyncedWith returns the height and hash of the block the wallet is
|
|
// currently marked to be in sync with.
|
|
func (w *Wallet) SyncedWith() *BlockStamp {
|
|
nHashes := len(w.recent.hashes)
|
|
if nHashes == 0 || w.recent.lastHeight == -1 {
|
|
return &BlockStamp{
|
|
Height: -1,
|
|
}
|
|
}
|
|
|
|
lastSha := w.recent.hashes[nHashes-1]
|
|
return &BlockStamp{
|
|
Height: w.recent.lastHeight,
|
|
Hash: *lastSha,
|
|
}
|
|
}
|
|
|
|
// NewIterateRecentBlocks returns an iterator for recently-seen blocks.
|
|
// The iterator starts at the most recently-added block, and Prev should
|
|
// be used to access earlier blocks.
|
|
func (w *Wallet) NewIterateRecentBlocks() RecentBlockIterator {
|
|
return w.recent.NewIterator()
|
|
}
|
|
|
|
// EarliestBlockHeight returns the height of the blockchain for when any
|
|
// wallet address first appeared. This will usually be the block height
|
|
// at the time of wallet creation, unless a private key with an earlier
|
|
// block height was imported into the wallet. This is needed when
|
|
// performing a full rescan to prevent unnecessary rescanning before
|
|
// wallet addresses first appeared.
|
|
func (w *Wallet) EarliestBlockHeight() int32 {
|
|
height := w.keyGenerator.firstBlock
|
|
|
|
// Imported keys will be the only ones that may have an earlier
|
|
// blockchain height. Check each and set the returned height
|
|
for _, addr := range w.importedAddrs {
|
|
if addr.firstBlock < height {
|
|
height = addr.firstBlock
|
|
|
|
// Can't go any lower than 0.
|
|
if height == 0 {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
return height
|
|
}
|
|
|
|
// SetBetterEarliestBlockHeight sets a better earliest block height.
|
|
// At wallet creation time, a earliest block is guessed, but this
|
|
// could be incorrect if btcd is out of sync. This function can be
|
|
// used to correct a previous guess with a better value.
|
|
func (w *Wallet) SetBetterEarliestBlockHeight(height int32) {
|
|
if height > w.keyGenerator.firstBlock {
|
|
w.keyGenerator.firstBlock = height
|
|
}
|
|
}
|
|
|
|
// ImportPrivateKey creates a new encrypted btcAddress with a
|
|
// user-provided private key and adds it to the wallet. If the
|
|
// import is successful, the payment address string is returned.
|
|
func (w *Wallet) ImportPrivateKey(privkey []byte, compressed bool, bs *BlockStamp) (string, error) {
|
|
// First, must check that the key being imported will not result
|
|
// in a duplicate address.
|
|
pkh := btcutil.Hash160(pubkeyFromPrivkey(privkey, compressed))
|
|
// Will always be valid inputs so omit error check.
|
|
apkh, err := btcutil.NewAddressPubKeyHash(pkh, w.Net())
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
if _, ok := w.addrMap[*apkh]; ok {
|
|
return "", ErrDuplicate
|
|
}
|
|
|
|
// The wallet's secret will be zeroed on lock, so make a local copy.
|
|
w.secret.Lock()
|
|
if len(w.secret.key) != 32 {
|
|
w.secret.Unlock()
|
|
return "", ErrWalletLocked
|
|
}
|
|
localSecret := make([]byte, 32)
|
|
copy(localSecret, w.secret.key)
|
|
w.secret.Unlock()
|
|
|
|
// Create new address with this private key.
|
|
btcaddr, err := newBtcAddress(privkey, nil, bs, compressed)
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
btcaddr.chainIndex = importedKeyChainIdx
|
|
|
|
// Encrypt imported address with the derived AES key.
|
|
if err = btcaddr.encrypt(localSecret); err != nil {
|
|
return "", err
|
|
}
|
|
|
|
// Add address to wallet's bookkeeping structures. Adding to
|
|
// the map will result in the imported address being serialized
|
|
// on the next WriteTo call.
|
|
w.addrMap[*btcaddr.address(w.net)] = btcaddr
|
|
w.importedAddrs = append(w.importedAddrs, btcaddr)
|
|
|
|
// Create and return encoded payment address string. Error is
|
|
// ignored as the length of the pubkey hash and net will always
|
|
// be valid.
|
|
addr, _ := btcutil.NewAddressPubKeyHash(btcaddr.pubKeyHash[:], w.Net())
|
|
return addr.String(), nil
|
|
}
|
|
|
|
// CreateDate returns the Unix time of the wallet creation time. This
|
|
// is used to compare the wallet creation time against block headers and
|
|
// set a better minimum block height of where to being rescans.
|
|
func (w *Wallet) CreateDate() int64 {
|
|
return w.createDate
|
|
}
|
|
|
|
// AddressInfo holds information regarding an address needed to manage
|
|
// a complete wallet.
|
|
type AddressInfo struct {
|
|
btcutil.Address
|
|
AddrHash string
|
|
Compressed bool
|
|
FirstBlock int32
|
|
Imported bool
|
|
Pubkey string
|
|
}
|
|
|
|
// SortedActiveAddresses returns all wallet addresses that have been
|
|
// requested to be generated. These do not include unused addresses in
|
|
// the key pool. Use this when ordered addresses are needed. Otherwise,
|
|
// ActiveAddresses is preferred.
|
|
func (w *Wallet) SortedActiveAddresses() []*AddressInfo {
|
|
addrs := make([]*AddressInfo, 0,
|
|
w.highestUsed+int64(len(w.importedAddrs))+1)
|
|
for i := int64(rootKeyChainIdx); i <= w.highestUsed; i++ {
|
|
a := w.chainIdxMap[i]
|
|
info, err := w.addrMap[*a].info(w.Net())
|
|
if err == nil {
|
|
addrs = append(addrs, info)
|
|
}
|
|
}
|
|
for _, addr := range w.importedAddrs {
|
|
info, err := addr.info(w.Net())
|
|
if err == nil {
|
|
addrs = append(addrs, info)
|
|
}
|
|
}
|
|
return addrs
|
|
}
|
|
|
|
// ActiveAddresses returns a map between active payment addresses
|
|
// and their full info. These do not include unused addresses in the
|
|
// key pool. If addresses must be sorted, use SortedActiveAddresses.
|
|
func (w *Wallet) ActiveAddresses() map[btcutil.Address]*AddressInfo {
|
|
addrs := make(map[btcutil.Address]*AddressInfo)
|
|
for i := int64(rootKeyChainIdx); i <= w.highestUsed; i++ {
|
|
a := w.chainIdxMap[i]
|
|
info, err := w.addrMap[*a].info(w.Net())
|
|
if err == nil {
|
|
addrs[info.Address] = info
|
|
}
|
|
}
|
|
for _, addr := range w.importedAddrs {
|
|
info, err := addr.info(w.Net())
|
|
if err == nil {
|
|
addrs[info.Address] = info
|
|
}
|
|
}
|
|
return addrs
|
|
}
|
|
|
|
type walletFlags struct {
|
|
useEncryption bool
|
|
watchingOnly bool
|
|
}
|
|
|
|
func (wf *walletFlags) ReadFrom(r io.Reader) (n int64, err error) {
|
|
raw := make([]byte, 8)
|
|
n, err = binaryRead(r, binary.LittleEndian, raw)
|
|
wf.useEncryption = raw[0] != 0
|
|
wf.watchingOnly = raw[1] != 0
|
|
return n, err
|
|
}
|
|
|
|
func (wf *walletFlags) WriteTo(w io.Writer) (n int64, err error) {
|
|
raw := make([]byte, 8)
|
|
if wf.useEncryption {
|
|
raw[0] = 1
|
|
}
|
|
if wf.watchingOnly {
|
|
raw[1] = 1
|
|
}
|
|
return binaryWrite(w, binary.LittleEndian, raw)
|
|
}
|
|
|
|
type addrFlags struct {
|
|
hasPrivKey bool
|
|
hasPubKey bool
|
|
encrypted bool
|
|
createPrivKeyNextUnlock bool // unimplemented in btcwallet
|
|
compressed bool
|
|
}
|
|
|
|
func (af *addrFlags) ReadFrom(r io.Reader) (n int64, err error) {
|
|
var read int64
|
|
var b [8]byte
|
|
read, err = binaryRead(r, binary.LittleEndian, &b)
|
|
if err != nil {
|
|
return n + read, err
|
|
}
|
|
n += read
|
|
|
|
if b[0]&(1<<0) != 0 {
|
|
af.hasPrivKey = true
|
|
}
|
|
if b[0]&(1<<1) != 0 {
|
|
af.hasPubKey = true
|
|
}
|
|
if b[0]&(1<<2) == 0 {
|
|
return n, errors.New("address flag specifies unencrypted address")
|
|
}
|
|
af.encrypted = true
|
|
if b[0]&(1<<3) != 0 {
|
|
af.createPrivKeyNextUnlock = true
|
|
}
|
|
if b[0]&(1<<4) != 0 {
|
|
af.compressed = true
|
|
}
|
|
|
|
return n, nil
|
|
}
|
|
|
|
func (af *addrFlags) WriteTo(w io.Writer) (n int64, err error) {
|
|
var b [8]byte
|
|
if af.hasPrivKey {
|
|
b[0] |= 1 << 0
|
|
}
|
|
if af.hasPubKey {
|
|
b[0] |= 1 << 1
|
|
}
|
|
if !af.encrypted {
|
|
// We only support encrypted privkeys.
|
|
return n, errors.New("address must be encrypted")
|
|
}
|
|
b[0] |= 1 << 2
|
|
if af.createPrivKeyNextUnlock {
|
|
b[0] |= 1 << 3
|
|
}
|
|
if af.compressed {
|
|
b[0] |= 1 << 4
|
|
}
|
|
|
|
return binaryWrite(w, binary.LittleEndian, b)
|
|
}
|
|
|
|
// recentBlocks holds at most the last 20 seen block hashes as well as
|
|
// the block height of the most recently seen block.
|
|
type recentBlocks struct {
|
|
hashes []*btcwire.ShaHash
|
|
lastHeight int32
|
|
}
|
|
|
|
type blockIterator struct {
|
|
height int32
|
|
index int
|
|
rb *recentBlocks
|
|
}
|
|
|
|
func (rb *recentBlocks) ReadFromVersion(v version, r io.Reader) (int64, error) {
|
|
if !v.LT(Vers20LastBlocks) {
|
|
// Use current version.
|
|
return rb.ReadFrom(r)
|
|
}
|
|
|
|
// Old file versions only saved the most recently seen
|
|
// block height and hash, not the last 20.
|
|
|
|
var read int64
|
|
var syncedBlockHash btcwire.ShaHash
|
|
|
|
// Read height.
|
|
heightBytes := make([]byte, 4) // 4 bytes for a int32
|
|
n, err := r.Read(heightBytes)
|
|
if err != nil {
|
|
return read + int64(n), err
|
|
}
|
|
read += int64(n)
|
|
rb.lastHeight = int32(binary.LittleEndian.Uint32(heightBytes))
|
|
|
|
// If height is -1, the last synced block is unknown, so don't try
|
|
// to read a block hash.
|
|
if rb.lastHeight == -1 {
|
|
rb.hashes = nil
|
|
return read, nil
|
|
}
|
|
|
|
// Read block hash.
|
|
n, err = r.Read(syncedBlockHash[:])
|
|
if err != nil {
|
|
return read + int64(n), err
|
|
}
|
|
read += int64(n)
|
|
|
|
rb.hashes = []*btcwire.ShaHash{
|
|
&syncedBlockHash,
|
|
}
|
|
|
|
return read, nil
|
|
}
|
|
|
|
func (rb *recentBlocks) ReadFrom(r io.Reader) (int64, error) {
|
|
var read int64
|
|
|
|
// Read number of saved blocks. This should not exceed 20.
|
|
nBlockBytes := make([]byte, 4) // 4 bytes for a uint32
|
|
n, err := r.Read(nBlockBytes)
|
|
if err != nil {
|
|
return read + int64(n), err
|
|
}
|
|
read += int64(n)
|
|
nBlocks := binary.LittleEndian.Uint32(nBlockBytes)
|
|
if nBlocks > 20 {
|
|
return read, errors.New("number of last seen blocks exceeds maximum of 20")
|
|
}
|
|
|
|
// If number of blocks is 0, our work here is done.
|
|
if nBlocks == 0 {
|
|
rb.lastHeight = -1
|
|
rb.hashes = nil
|
|
return read, nil
|
|
}
|
|
|
|
// Read most recently seen block height.
|
|
heightBytes := make([]byte, 4) // 4 bytes for a int32
|
|
n, err = r.Read(heightBytes)
|
|
if err != nil {
|
|
return read + int64(n), err
|
|
}
|
|
read += int64(n)
|
|
height := int32(binary.LittleEndian.Uint32(heightBytes))
|
|
|
|
// height should not be -1 (or any other negative number)
|
|
// since at this point we should be reading in at least one
|
|
// known block.
|
|
if height < 0 {
|
|
return read, errors.New("expected a block but specified height is negative")
|
|
}
|
|
|
|
// Set last seen height.
|
|
rb.lastHeight = height
|
|
|
|
// Read nBlocks block hashes. Hashes are expected to be in
|
|
// order of oldest to newest, but there's no way to check
|
|
// that here.
|
|
rb.hashes = make([]*btcwire.ShaHash, 0, nBlocks)
|
|
for i := uint32(0); i < nBlocks; i++ {
|
|
blockSha := new(btcwire.ShaHash)
|
|
n, err := r.Read(blockSha[:])
|
|
if err != nil {
|
|
return read + int64(n), err
|
|
}
|
|
read += int64(n)
|
|
rb.hashes = append(rb.hashes, blockSha)
|
|
}
|
|
|
|
return read, nil
|
|
}
|
|
|
|
func (rb *recentBlocks) WriteTo(w io.Writer) (int64, error) {
|
|
var written int64
|
|
|
|
// Write number of saved blocks. This should not exceed 20.
|
|
nBlocks := uint32(len(rb.hashes))
|
|
if nBlocks > 20 {
|
|
return written, errors.New("number of last seen blocks exceeds maximum of 20")
|
|
}
|
|
if nBlocks != 0 && rb.lastHeight < 0 {
|
|
return written, errors.New("number of block hashes is positive, but height is negative")
|
|
}
|
|
if nBlocks == 0 && rb.lastHeight != -1 {
|
|
return written, errors.New("no block hashes available, but height is not -1")
|
|
}
|
|
nBlockBytes := make([]byte, 4) // 4 bytes for a uint32
|
|
binary.LittleEndian.PutUint32(nBlockBytes, nBlocks)
|
|
n, err := w.Write(nBlockBytes)
|
|
if err != nil {
|
|
return written + int64(n), err
|
|
}
|
|
written += int64(n)
|
|
|
|
// If number of blocks is 0, our work here is done.
|
|
if nBlocks == 0 {
|
|
return written, nil
|
|
}
|
|
|
|
// Write most recently seen block height.
|
|
heightBytes := make([]byte, 4) // 4 bytes for a int32
|
|
binary.LittleEndian.PutUint32(heightBytes, uint32(rb.lastHeight))
|
|
n, err = w.Write(heightBytes)
|
|
if err != nil {
|
|
return written + int64(n), err
|
|
}
|
|
written += int64(n)
|
|
|
|
// Write block hashes.
|
|
for _, hash := range rb.hashes {
|
|
n, err := w.Write(hash[:])
|
|
if err != nil {
|
|
return written + int64(n), err
|
|
}
|
|
written += int64(n)
|
|
}
|
|
|
|
return written, nil
|
|
}
|
|
|
|
// RecentBlockIterator is a type to iterate through recent-seen
|
|
// blocks.
|
|
type RecentBlockIterator interface {
|
|
Next() bool
|
|
Prev() bool
|
|
BlockStamp() *BlockStamp
|
|
}
|
|
|
|
func (rb *recentBlocks) NewIterator() RecentBlockIterator {
|
|
if rb.lastHeight == -1 {
|
|
return nil
|
|
}
|
|
return &blockIterator{
|
|
height: rb.lastHeight,
|
|
index: len(rb.hashes) - 1,
|
|
rb: rb,
|
|
}
|
|
}
|
|
|
|
func (it *blockIterator) Next() bool {
|
|
if it.index+1 >= len(it.rb.hashes) {
|
|
return false
|
|
}
|
|
it.index += 1
|
|
return true
|
|
}
|
|
|
|
func (it *blockIterator) Prev() bool {
|
|
if it.index-1 < 0 {
|
|
return false
|
|
}
|
|
it.index -= 1
|
|
return true
|
|
}
|
|
|
|
func (it *blockIterator) BlockStamp() *BlockStamp {
|
|
return &BlockStamp{
|
|
Height: it.rb.lastHeight - int32(len(it.rb.hashes)-1-it.index),
|
|
Hash: *it.rb.hashes[it.index],
|
|
}
|
|
}
|
|
|
|
// unusedSpace is a wrapper type to read or write one or more types
|
|
// that btcwallet fits into an unused space left by Armory's wallet file
|
|
// format.
|
|
type unusedSpace struct {
|
|
nBytes int // number of unused bytes that armory left.
|
|
rfvs []ReaderFromVersion
|
|
}
|
|
|
|
func newUnusedSpace(nBytes int, rfvs ...ReaderFromVersion) *unusedSpace {
|
|
return &unusedSpace{
|
|
nBytes: nBytes,
|
|
rfvs: rfvs,
|
|
}
|
|
}
|
|
|
|
func (u *unusedSpace) ReadFromVersion(v version, r io.Reader) (int64, error) {
|
|
var read int64
|
|
|
|
for _, rfv := range u.rfvs {
|
|
n, err := rfv.ReadFromVersion(v, r)
|
|
if err != nil {
|
|
return read + n, err
|
|
}
|
|
read += n
|
|
if read > int64(u.nBytes) {
|
|
return read, errors.New("read too much from armory's unused space")
|
|
}
|
|
}
|
|
|
|
// Read rest of actually unused bytes.
|
|
unused := make([]byte, u.nBytes-int(read))
|
|
n, err := r.Read(unused)
|
|
return read + int64(n), err
|
|
}
|
|
|
|
func (u *unusedSpace) WriteTo(w io.Writer) (int64, error) {
|
|
var written int64
|
|
|
|
for _, wt := range u.rfvs {
|
|
n, err := wt.WriteTo(w)
|
|
if err != nil {
|
|
return written + n, err
|
|
}
|
|
written += n
|
|
if written > int64(u.nBytes) {
|
|
return written, errors.New("wrote too much to armory's unused space")
|
|
}
|
|
}
|
|
|
|
// Write rest of actually unused bytes.
|
|
unused := make([]byte, u.nBytes-int(written))
|
|
n, err := w.Write(unused)
|
|
return written + int64(n), err
|
|
}
|
|
|
|
type btcAddress struct {
|
|
pubKeyHash [ripemd160.Size]byte
|
|
flags addrFlags
|
|
chaincode [32]byte
|
|
chainIndex int64
|
|
chainDepth int64 // currently unused (will use when extending a locked wallet)
|
|
initVector [16]byte
|
|
privKey [32]byte
|
|
pubKey publicKey
|
|
firstSeen int64
|
|
lastSeen int64
|
|
firstBlock int32
|
|
lastBlock int32
|
|
privKeyCT struct {
|
|
sync.Mutex
|
|
key []byte // non-nil if unlocked.
|
|
}
|
|
}
|
|
|
|
const (
|
|
// Root address has a chain index of -1. Each subsequent
|
|
// chained address increments the index.
|
|
rootKeyChainIdx = -1
|
|
|
|
// Imported private keys are not part of the chain, and have a
|
|
// special index of -2.
|
|
importedKeyChainIdx = -2
|
|
)
|
|
|
|
const (
|
|
pubkeyCompressed byte = 0x2
|
|
pubkeyUncompressed byte = 0x4
|
|
)
|
|
|
|
type publicKey []byte
|
|
|
|
func (k *publicKey) ReadFrom(r io.Reader) (n int64, err error) {
|
|
var read int64
|
|
var format byte
|
|
read, err = binaryRead(r, binary.LittleEndian, &format)
|
|
if err != nil {
|
|
return n + read, err
|
|
}
|
|
n += read
|
|
|
|
// Remove the oddness from the format
|
|
noodd := format
|
|
noodd &= ^byte(0x1)
|
|
|
|
var s []byte
|
|
switch noodd {
|
|
case pubkeyUncompressed:
|
|
// Read the remaining 64 bytes.
|
|
s = make([]byte, 64)
|
|
|
|
case pubkeyCompressed:
|
|
// Read the remaining 32 bytes.
|
|
s = make([]byte, 32)
|
|
|
|
default:
|
|
return n, errors.New("unrecognized pubkey format")
|
|
}
|
|
|
|
read, err = binaryRead(r, binary.LittleEndian, &s)
|
|
if err != nil {
|
|
return n + read, err
|
|
}
|
|
n += read
|
|
|
|
*k = append([]byte{format}, s...)
|
|
return
|
|
}
|
|
|
|
func (k *publicKey) WriteTo(w io.Writer) (n int64, err error) {
|
|
return binaryWrite(w, binary.LittleEndian, []byte(*k))
|
|
}
|
|
|
|
// newBtcAddress initializes and returns a new address. privkey must
|
|
// be 32 bytes. iv must be 16 bytes, or nil (in which case it is
|
|
// randomly generated).
|
|
func newBtcAddress(privkey, iv []byte, bs *BlockStamp, compressed bool) (addr *btcAddress, err error) {
|
|
if len(privkey) != 32 {
|
|
return nil, errors.New("private key is not 32 bytes")
|
|
}
|
|
if iv == nil {
|
|
iv = make([]byte, 16)
|
|
if _, err := rand.Read(iv); err != nil {
|
|
return nil, err
|
|
}
|
|
} else if len(iv) != 16 {
|
|
return nil, errors.New("init vector must be nil or 16 bytes large")
|
|
}
|
|
|
|
addr = &btcAddress{
|
|
flags: addrFlags{
|
|
hasPrivKey: true,
|
|
hasPubKey: true,
|
|
compressed: compressed,
|
|
},
|
|
firstSeen: time.Now().Unix(),
|
|
firstBlock: bs.Height,
|
|
}
|
|
addr.privKeyCT.key = privkey
|
|
copy(addr.initVector[:], iv)
|
|
addr.pubKey = pubkeyFromPrivkey(privkey, compressed)
|
|
copy(addr.pubKeyHash[:], btcutil.Hash160(addr.pubKey))
|
|
|
|
return addr, nil
|
|
}
|
|
|
|
// newRootBtcAddress generates a new address, also setting the
|
|
// chaincode and chain index to represent this address as a root
|
|
// address.
|
|
func newRootBtcAddress(privKey, iv, chaincode []byte,
|
|
bs *BlockStamp) (addr *btcAddress, err error) {
|
|
|
|
if len(chaincode) != 32 {
|
|
return nil, errors.New("chaincode is not 32 bytes")
|
|
}
|
|
|
|
// Create new btcAddress with provided inputs. This will
|
|
// always use a compressed pubkey.
|
|
addr, err = newBtcAddress(privKey, iv, bs, true)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
copy(addr.chaincode[:], chaincode)
|
|
addr.chainIndex = rootKeyChainIdx
|
|
|
|
return addr, err
|
|
}
|
|
|
|
// verifyKeypairs creates a signature using the parsed private key and
|
|
// verifies the signature with the parsed public key. If either of these
|
|
// steps fail, the keypair generation failed and any funds sent to this
|
|
// address will be unspendable. This step requires an unencrypted or
|
|
// unlocked btcAddress.
|
|
func (a *btcAddress) verifyKeypairs() error {
|
|
// Parse public key.
|
|
pubkey, err := btcec.ParsePubKey(a.pubKey, btcec.S256())
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
if len(a.privKeyCT.key) != 32 {
|
|
return errors.New("private key unavailable")
|
|
}
|
|
|
|
privkey := &ecdsa.PrivateKey{
|
|
PublicKey: *pubkey,
|
|
D: new(big.Int).SetBytes(a.privKeyCT.key),
|
|
}
|
|
|
|
data := "String to sign."
|
|
r, s, err := ecdsa.Sign(rand.Reader, privkey, []byte(data))
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
ok := ecdsa.Verify(&privkey.PublicKey, []byte(data), r, s)
|
|
if !ok {
|
|
return errors.New("ecdsa verification failed")
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// ReadFrom reads an encrypted address from an io.Reader.
|
|
func (a *btcAddress) ReadFrom(r io.Reader) (n int64, err error) {
|
|
var read int64
|
|
|
|
// Checksums
|
|
var chkPubKeyHash uint32
|
|
var chkChaincode uint32
|
|
var chkInitVector uint32
|
|
var chkPrivKey uint32
|
|
var chkPubKey uint32
|
|
|
|
// Read serialized wallet into addr fields and checksums.
|
|
datas := []interface{}{
|
|
&a.pubKeyHash,
|
|
&chkPubKeyHash,
|
|
make([]byte, 4), // version
|
|
&a.flags,
|
|
&a.chaincode,
|
|
&chkChaincode,
|
|
&a.chainIndex,
|
|
&a.chainDepth,
|
|
&a.initVector,
|
|
&chkInitVector,
|
|
&a.privKey,
|
|
&chkPrivKey,
|
|
&a.pubKey,
|
|
&chkPubKey,
|
|
&a.firstSeen,
|
|
&a.lastSeen,
|
|
&a.firstBlock,
|
|
&a.lastBlock,
|
|
}
|
|
for _, data := range datas {
|
|
if rf, ok := data.(io.ReaderFrom); ok {
|
|
read, err = rf.ReadFrom(r)
|
|
} else {
|
|
read, err = binaryRead(r, binary.LittleEndian, data)
|
|
}
|
|
if err != nil {
|
|
return n + read, err
|
|
}
|
|
n += read
|
|
}
|
|
|
|
// Verify checksums, correct errors where possible.
|
|
checks := []struct {
|
|
data []byte
|
|
chk uint32
|
|
}{
|
|
{a.pubKeyHash[:], chkPubKeyHash},
|
|
{a.chaincode[:], chkChaincode},
|
|
{a.initVector[:], chkInitVector},
|
|
{a.privKey[:], chkPrivKey},
|
|
{a.pubKey, chkPubKey},
|
|
}
|
|
for i := range checks {
|
|
if err = verifyAndFix(checks[i].data, checks[i].chk); err != nil {
|
|
return n, err
|
|
}
|
|
}
|
|
|
|
return n, nil
|
|
}
|
|
|
|
func (a *btcAddress) WriteTo(w io.Writer) (n int64, err error) {
|
|
var written int64
|
|
|
|
datas := []interface{}{
|
|
&a.pubKeyHash,
|
|
walletHash(a.pubKeyHash[:]),
|
|
make([]byte, 4), //version
|
|
&a.flags,
|
|
&a.chaincode,
|
|
walletHash(a.chaincode[:]),
|
|
&a.chainIndex,
|
|
&a.chainDepth,
|
|
&a.initVector,
|
|
walletHash(a.initVector[:]),
|
|
&a.privKey,
|
|
walletHash(a.privKey[:]),
|
|
&a.pubKey,
|
|
walletHash(a.pubKey),
|
|
&a.firstSeen,
|
|
&a.lastSeen,
|
|
&a.firstBlock,
|
|
&a.lastBlock,
|
|
}
|
|
for _, data := range datas {
|
|
if wt, ok := data.(io.WriterTo); ok {
|
|
written, err = wt.WriteTo(w)
|
|
} else {
|
|
written, err = binaryWrite(w, binary.LittleEndian, data)
|
|
}
|
|
if err != nil {
|
|
return n + written, err
|
|
}
|
|
n += written
|
|
}
|
|
return n, nil
|
|
}
|
|
|
|
// encrypt attempts to encrypt an address's clear text private key,
|
|
// failing if the address is already encrypted or if the private key is
|
|
// not 32 bytes. If successful, the encryption flag is set.
|
|
func (a *btcAddress) encrypt(key []byte) error {
|
|
if a.flags.encrypted {
|
|
return errors.New("address already encrypted")
|
|
}
|
|
a.privKeyCT.Lock()
|
|
defer a.privKeyCT.Unlock()
|
|
if len(a.privKeyCT.key) != 32 {
|
|
return errors.New("invalid clear text private key")
|
|
}
|
|
|
|
aesBlockEncrypter, err := aes.NewCipher(key)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
aesEncrypter := cipher.NewCFBEncrypter(aesBlockEncrypter, a.initVector[:])
|
|
|
|
aesEncrypter.XORKeyStream(a.privKey[:], a.privKeyCT.key)
|
|
|
|
a.flags.encrypted = true
|
|
return nil
|
|
}
|
|
|
|
// lock removes the reference this address holds to its clear text
|
|
// private key. This function fails if the address is not encrypted.
|
|
func (a *btcAddress) lock() error {
|
|
if !a.flags.encrypted {
|
|
return errors.New("unable to lock unencrypted address")
|
|
}
|
|
|
|
a.privKeyCT.Lock()
|
|
zero(a.privKeyCT.key)
|
|
a.privKeyCT.key = nil
|
|
a.privKeyCT.Unlock()
|
|
return nil
|
|
}
|
|
|
|
// unlock decrypts and stores a pointer to this address's private key,
|
|
// failing if the address is not encrypted, or the provided key is
|
|
// incorrect. The returned clear text private key will always be a copy
|
|
// that may be safely used by the caller without worrying about it being
|
|
// zeroed during an address lock.
|
|
func (a *btcAddress) unlock(key []byte) (privKeyCT []byte, err error) {
|
|
if !a.flags.encrypted {
|
|
return nil, errors.New("unable to unlock unencrypted address")
|
|
}
|
|
|
|
// If secret is already saved, return a copy without performing a full
|
|
// unlock.
|
|
a.privKeyCT.Lock()
|
|
if len(a.privKeyCT.key) == 32 {
|
|
privKeyCT := make([]byte, 32)
|
|
copy(privKeyCT, a.privKeyCT.key)
|
|
a.privKeyCT.Unlock()
|
|
return privKeyCT, nil
|
|
}
|
|
a.privKeyCT.Unlock()
|
|
|
|
// Decrypt private key with AES key.
|
|
aesBlockDecrypter, err := aes.NewCipher(key)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
aesDecrypter := cipher.NewCFBDecrypter(aesBlockDecrypter, a.initVector[:])
|
|
privkey := make([]byte, 32)
|
|
aesDecrypter.XORKeyStream(privkey, a.privKey[:])
|
|
|
|
// Generate new x, y from clear text private key and check that they
|
|
// match the recorded pubkey.
|
|
pubKey, err := btcec.ParsePubKey(a.pubKey, btcec.S256())
|
|
if err != nil {
|
|
return nil, fmt.Errorf("cannot parse pubkey: %s", err)
|
|
}
|
|
x, y := btcec.S256().ScalarBaseMult(privkey)
|
|
if x.Cmp(pubKey.X) != 0 || y.Cmp(pubKey.Y) != 0 {
|
|
return nil, errors.New("decryption failed")
|
|
}
|
|
|
|
privkeyCopy := make([]byte, 32)
|
|
copy(privkeyCopy, privkey)
|
|
a.privKeyCT.Lock()
|
|
a.privKeyCT.key = privkey
|
|
a.privKeyCT.Unlock()
|
|
return privkeyCopy, nil
|
|
}
|
|
|
|
// TODO(jrick)
|
|
func (a *btcAddress) changeEncryptionKey(oldkey, newkey []byte) error {
|
|
return errors.New("unimplemented")
|
|
}
|
|
|
|
// address returns a btcutil.AddressPubKeyHash for a btcAddress.
|
|
func (a *btcAddress) address(net btcwire.BitcoinNet) *btcutil.AddressPubKeyHash {
|
|
// error is not returned because the hash will always be 20
|
|
// bytes, and net is assumed to be valid.
|
|
addr, _ := btcutil.NewAddressPubKeyHash(a.pubKeyHash[:], net)
|
|
return addr
|
|
}
|
|
|
|
// info returns information about a btcAddress stored in a AddressInfo
|
|
// struct.
|
|
func (a *btcAddress) info(net btcwire.BitcoinNet) (*AddressInfo, error) {
|
|
address := a.address(net)
|
|
|
|
return &AddressInfo{
|
|
Address: address,
|
|
AddrHash: string(a.pubKeyHash[:]),
|
|
Compressed: a.flags.compressed,
|
|
FirstBlock: a.firstBlock,
|
|
Imported: a.chainIndex == importedKeyChainIdx,
|
|
Pubkey: hex.EncodeToString(a.pubKey),
|
|
}, nil
|
|
}
|
|
|
|
func walletHash(b []byte) uint32 {
|
|
sum := btcwire.DoubleSha256(b)
|
|
return binary.LittleEndian.Uint32(sum)
|
|
}
|
|
|
|
// TODO(jrick) add error correction.
|
|
func verifyAndFix(b []byte, chk uint32) error {
|
|
if walletHash(b) != chk {
|
|
return ErrChecksumMismatch
|
|
}
|
|
return nil
|
|
}
|
|
|
|
type kdfParameters struct {
|
|
mem uint64
|
|
nIter uint32
|
|
salt [32]byte
|
|
}
|
|
|
|
// computeKdfParameters returns best guess parameters to the
|
|
// memory-hard key derivation function to make the computation last
|
|
// targetSec seconds, while using no more than maxMem bytes of memory.
|
|
func computeKdfParameters(targetSec float64, maxMem uint64) (*kdfParameters, error) {
|
|
params := &kdfParameters{}
|
|
if _, err := rand.Read(params.salt[:]); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
testKey := []byte("This is an example key to test KDF iteration speed")
|
|
|
|
memoryReqtBytes := uint64(1024)
|
|
approxSec := float64(0)
|
|
|
|
for approxSec <= targetSec/4 && memoryReqtBytes < maxMem {
|
|
memoryReqtBytes *= 2
|
|
before := time.Now()
|
|
_ = keyOneIter(testKey, params.salt[:], memoryReqtBytes)
|
|
approxSec = time.Since(before).Seconds()
|
|
}
|
|
|
|
allItersSec := float64(0)
|
|
nIter := uint32(1)
|
|
for allItersSec < 0.02 { // This is a magic number straight from armory's source.
|
|
nIter *= 2
|
|
before := time.Now()
|
|
for i := uint32(0); i < nIter; i++ {
|
|
_ = keyOneIter(testKey, params.salt[:], memoryReqtBytes)
|
|
}
|
|
allItersSec = time.Since(before).Seconds()
|
|
}
|
|
|
|
params.mem = memoryReqtBytes
|
|
params.nIter = nIter
|
|
|
|
return params, nil
|
|
}
|
|
|
|
func (params *kdfParameters) WriteTo(w io.Writer) (n int64, err error) {
|
|
var written int64
|
|
|
|
memBytes := make([]byte, 8)
|
|
nIterBytes := make([]byte, 4)
|
|
binary.LittleEndian.PutUint64(memBytes, params.mem)
|
|
binary.LittleEndian.PutUint32(nIterBytes, params.nIter)
|
|
chkedBytes := append(memBytes, nIterBytes...)
|
|
chkedBytes = append(chkedBytes, params.salt[:]...)
|
|
|
|
datas := []interface{}{
|
|
¶ms.mem,
|
|
¶ms.nIter,
|
|
¶ms.salt,
|
|
walletHash(chkedBytes),
|
|
make([]byte, 256-(binary.Size(params)+4)), // padding
|
|
}
|
|
for _, data := range datas {
|
|
if written, err = binaryWrite(w, binary.LittleEndian, data); err != nil {
|
|
return n + written, err
|
|
}
|
|
n += written
|
|
}
|
|
|
|
return n, nil
|
|
}
|
|
|
|
func (params *kdfParameters) ReadFrom(r io.Reader) (n int64, err error) {
|
|
var read int64
|
|
|
|
// These must be read in but are not saved directly to params.
|
|
chkedBytes := make([]byte, 44)
|
|
var chk uint32
|
|
padding := make([]byte, 256-(binary.Size(params)+4))
|
|
|
|
datas := []interface{}{
|
|
chkedBytes,
|
|
&chk,
|
|
padding,
|
|
}
|
|
for _, data := range datas {
|
|
if read, err = binaryRead(r, binary.LittleEndian, data); err != nil {
|
|
return n + read, err
|
|
}
|
|
n += read
|
|
}
|
|
|
|
// Verify checksum
|
|
if err = verifyAndFix(chkedBytes, chk); err != nil {
|
|
return n, err
|
|
}
|
|
|
|
// Read params
|
|
buf := bytes.NewBuffer(chkedBytes)
|
|
datas = []interface{}{
|
|
¶ms.mem,
|
|
¶ms.nIter,
|
|
¶ms.salt,
|
|
}
|
|
for _, data := range datas {
|
|
if err = binary.Read(buf, binary.LittleEndian, data); err != nil {
|
|
return n, err
|
|
}
|
|
}
|
|
|
|
return n, nil
|
|
}
|
|
|
|
type addrEntry struct {
|
|
pubKeyHash160 [ripemd160.Size]byte
|
|
addr btcAddress
|
|
}
|
|
|
|
func (e *addrEntry) WriteTo(w io.Writer) (n int64, err error) {
|
|
var written int64
|
|
|
|
// Write header
|
|
if written, err = binaryWrite(w, binary.LittleEndian, addrHeader); err != nil {
|
|
return n + written, err
|
|
}
|
|
n += written
|
|
|
|
// Write hash
|
|
if written, err = binaryWrite(w, binary.LittleEndian, &e.pubKeyHash160); err != nil {
|
|
return n + written, err
|
|
}
|
|
n += written
|
|
|
|
// Write btcAddress
|
|
written, err = e.addr.WriteTo(w)
|
|
n += written
|
|
return n, err
|
|
}
|
|
|
|
func (e *addrEntry) ReadFrom(r io.Reader) (n int64, err error) {
|
|
var read int64
|
|
|
|
if read, err = binaryRead(r, binary.LittleEndian, &e.pubKeyHash160); err != nil {
|
|
return n + read, err
|
|
}
|
|
n += read
|
|
|
|
read, err = e.addr.ReadFrom(r)
|
|
return n + read, err
|
|
}
|
|
|
|
type addrCommentEntry struct {
|
|
pubKeyHash160 [ripemd160.Size]byte
|
|
comment []byte
|
|
}
|
|
|
|
func (e *addrCommentEntry) address(net btcwire.BitcoinNet) *btcutil.AddressPubKeyHash {
|
|
// error is not returned because the hash will always be 20
|
|
// bytes, and net is assumed to be valid.
|
|
addr, _ := btcutil.NewAddressPubKeyHash(e.pubKeyHash160[:], net)
|
|
return addr
|
|
}
|
|
|
|
func (e *addrCommentEntry) WriteTo(w io.Writer) (n int64, err error) {
|
|
var written int64
|
|
|
|
// Comments shall not overflow their entry.
|
|
if len(e.comment) > maxCommentLen {
|
|
return n, ErrMalformedEntry
|
|
}
|
|
|
|
// Write header
|
|
if written, err = binaryWrite(w, binary.LittleEndian, addrCommentHeader); err != nil {
|
|
return n + written, err
|
|
}
|
|
n += written
|
|
|
|
// Write hash
|
|
if written, err = binaryWrite(w, binary.LittleEndian, &e.pubKeyHash160); err != nil {
|
|
return n + written, err
|
|
}
|
|
n += written
|
|
|
|
// Write length
|
|
if written, err = binaryWrite(w, binary.LittleEndian, uint16(len(e.comment))); err != nil {
|
|
return n + written, err
|
|
}
|
|
n += written
|
|
|
|
// Write comment
|
|
written, err = binaryWrite(w, binary.LittleEndian, e.comment)
|
|
return n + written, err
|
|
}
|
|
|
|
func (e *addrCommentEntry) ReadFrom(r io.Reader) (n int64, err error) {
|
|
var read int64
|
|
|
|
if read, err = binaryRead(r, binary.LittleEndian, &e.pubKeyHash160); err != nil {
|
|
return n + read, err
|
|
}
|
|
n += read
|
|
|
|
var clen uint16
|
|
if read, err = binaryRead(r, binary.LittleEndian, &clen); err != nil {
|
|
return n + read, err
|
|
}
|
|
n += read
|
|
|
|
e.comment = make([]byte, clen)
|
|
read, err = binaryRead(r, binary.LittleEndian, e.comment)
|
|
return n + read, err
|
|
}
|
|
|
|
type txCommentEntry struct {
|
|
txHash [sha256.Size]byte
|
|
comment []byte
|
|
}
|
|
|
|
func (e *txCommentEntry) WriteTo(w io.Writer) (n int64, err error) {
|
|
var written int64
|
|
|
|
// Comments shall not overflow their entry.
|
|
if len(e.comment) > maxCommentLen {
|
|
return n, ErrMalformedEntry
|
|
}
|
|
|
|
// Write header
|
|
if written, err = binaryWrite(w, binary.LittleEndian, txCommentHeader); err != nil {
|
|
return n + written, err
|
|
}
|
|
n += written
|
|
|
|
// Write length
|
|
if written, err = binaryWrite(w, binary.LittleEndian, uint16(len(e.comment))); err != nil {
|
|
return n + written, err
|
|
}
|
|
|
|
// Write comment
|
|
written, err = binaryWrite(w, binary.LittleEndian, e.comment)
|
|
return n + written, err
|
|
}
|
|
|
|
func (e *txCommentEntry) ReadFrom(r io.Reader) (n int64, err error) {
|
|
var read int64
|
|
|
|
if read, err = binaryRead(r, binary.LittleEndian, &e.txHash); err != nil {
|
|
return n + read, err
|
|
}
|
|
n += read
|
|
|
|
var clen uint16
|
|
if read, err = binaryRead(r, binary.LittleEndian, &clen); err != nil {
|
|
return n + read, err
|
|
}
|
|
n += read
|
|
|
|
e.comment = make([]byte, clen)
|
|
read, err = binaryRead(r, binary.LittleEndian, e.comment)
|
|
return n + read, err
|
|
}
|
|
|
|
type deletedEntry struct{}
|
|
|
|
func (e *deletedEntry) ReadFrom(r io.Reader) (n int64, err error) {
|
|
var read int64
|
|
|
|
var ulen uint16
|
|
if read, err = binaryRead(r, binary.LittleEndian, &ulen); err != nil {
|
|
return n + read, err
|
|
}
|
|
n += read
|
|
|
|
unused := make([]byte, ulen)
|
|
nRead, err := r.Read(unused)
|
|
if err == io.EOF {
|
|
return n + int64(nRead), nil
|
|
}
|
|
return n + int64(nRead), err
|
|
}
|
|
|
|
// BlockStamp defines a block (by height and a unique hash) and is
|
|
// used to mark a point in the blockchain that a wallet element is
|
|
// synced to.
|
|
type BlockStamp struct {
|
|
Height int32
|
|
Hash btcwire.ShaHash
|
|
}
|