lbcwallet/wallet/wallet.go
2013-11-22 11:34:40 -05:00

1743 lines
44 KiB
Go

/*
* Copyright (c) 2013 Conformal Systems LLC <info@conformal.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package wallet
import (
"bytes"
"code.google.com/p/go.crypto/ripemd160"
"crypto/aes"
"crypto/cipher"
"crypto/ecdsa"
"crypto/rand"
"crypto/sha256"
"crypto/sha512"
"encoding/binary"
"encoding/hex"
"errors"
"fmt"
"github.com/conformal/btcec"
"github.com/conformal/btcutil"
"github.com/conformal/btcwire"
"hash"
"io"
"math/big"
"sync"
"time"
)
const (
// Length in bytes of KDF output.
kdfOutputBytes = 32
// Maximum length in bytes of a comment that can have a size represented
// as a uint16.
maxCommentLen = (1 << 16) - 1
// Number of addresses to extend keypool by.
nKeypoolIncrement = 100
)
const (
defaultKdfComputeTime = 0.25
defaultKdfMaxMem = 32 * 1024 * 1024
)
// Possible errors when dealing with wallets.
var (
ErrAddressNotFound = errors.New("address not found")
ErrChecksumMismatch = errors.New("checksum mismatch")
ErrMalformedEntry = errors.New("malformed entry")
ErrNetworkMismatch = errors.New("network mismatch")
ErrWalletDoesNotExist = errors.New("non-existant wallet")
ErrWalletLocked = errors.New("wallet is locked")
)
var (
// '\xbaWALLET\x00'
fileID = [8]byte{0xba, 0x57, 0x41, 0x4c, 0x4c, 0x45, 0x54, 0x00}
mainnetMagicBytes = [4]byte{0xf9, 0xbe, 0xb4, 0xd9}
testnetMagicBytes = [4]byte{0x0b, 0x11, 0x09, 0x07}
)
type entryHeader byte
const (
addrCommentHeader entryHeader = 1 << iota
txCommentHeader
deletedHeader
addrHeader entryHeader = 0
)
// We want to use binaryRead and binaryWrite instead of binary.Read
// and binary.Write because those from the binary package do not return
// the number of bytes actually written or read. We need to return
// this value to correctly support the io.ReaderFrom and io.WriterTo
// interfaces.
func binaryRead(r io.Reader, order binary.ByteOrder, data interface{}) (n int64, err error) {
var read int
buf := make([]byte, binary.Size(data))
if read, err = r.Read(buf); err != nil {
return int64(read), err
}
if read < binary.Size(data) {
return int64(read), io.EOF
}
return int64(read), binary.Read(bytes.NewBuffer(buf), order, data)
}
// See comment for binaryRead().
func binaryWrite(w io.Writer, order binary.ByteOrder, data interface{}) (n int64, err error) {
var buf bytes.Buffer
if err = binary.Write(&buf, order, data); err != nil {
return 0, err
}
written, err := w.Write(buf.Bytes())
return int64(written), err
}
// Calculate the hash of hasher over buf.
func calcHash(buf []byte, hasher hash.Hash) []byte {
hasher.Write(buf)
return hasher.Sum(nil)
}
// calculate hash160 which is ripemd160(sha256(data))
func calcHash160(buf []byte) []byte {
return calcHash(calcHash(buf, sha256.New()), ripemd160.New())
}
// calculate hash256 which is sha256(sha256(data))
func calcHash256(buf []byte) []byte {
return calcHash(calcHash(buf, sha256.New()), sha256.New())
}
// calculate sha512(data)
func calcSha512(buf []byte) []byte {
return calcHash(buf, sha512.New())
}
// pubkeyFromPrivkey creates an encoded pubkey based on a
// 32-byte privkey. The returned pubkey is 33 bytes if compressed,
// or 65 bytes if uncompressed.
func pubkeyFromPrivkey(privkey []byte, compress bool) (pubkey []byte) {
x, y := btcec.S256().ScalarBaseMult(privkey)
pub := (*btcec.PublicKey)(&ecdsa.PublicKey{
Curve: btcec.S256(),
X: x,
Y: y,
})
if compress {
return pub.SerializeCompressed()
}
return pub.SerializeUncompressed()
}
func keyOneIter(passphrase, salt []byte, memReqts uint64) []byte {
saltedpass := append(passphrase, salt...)
lutbl := make([]byte, memReqts)
// Seed for lookup table
seed := calcSha512(saltedpass)
copy(lutbl[:sha512.Size], seed)
for nByte := 0; nByte < (int(memReqts) - sha512.Size); nByte += sha512.Size {
hash := calcSha512(lutbl[nByte : nByte+sha512.Size])
copy(lutbl[nByte+sha512.Size:nByte+2*sha512.Size], hash[:])
}
x := lutbl[cap(lutbl)-sha512.Size:]
seqCt := uint32(memReqts / sha512.Size)
nLookups := seqCt / 2
for i := uint32(0); i < nLookups; i++ {
// Armory ignores endianness here. We assume LE.
newIdx := binary.LittleEndian.Uint32(x[cap(x)-4:]) % seqCt
// Index of hash result at newIdx
vIdx := newIdx * sha512.Size
v := lutbl[vIdx : vIdx+sha512.Size]
// XOR hash x with hash v
for j := 0; j < sha512.Size; j++ {
x[j] ^= v[j]
}
// Save new hash to x
hash := calcSha512(x)
copy(x, hash[:])
}
return x[:kdfOutputBytes]
}
// Key implements the key derivation function used by Armory
// based on the ROMix algorithm described in Colin Percival's paper
// "Stronger Key Derivation via Sequential Memory-Hard Functions"
// (http://www.tarsnap.com/scrypt/scrypt.pdf).
func Key(passphrase []byte, params *kdfParameters) []byte {
masterKey := passphrase
for i := uint32(0); i < params.nIter; i++ {
masterKey = keyOneIter(masterKey, params.salt[:], params.mem)
}
return masterKey
}
func pad(size int, b []byte) []byte {
// Prevent a possible panic if the input exceeds the expected size.
if len(b) > size {
size = len(b)
}
p := make([]byte, size)
copy(p[size-len(b):], b)
return p
}
// ChainedPrivKey deterministically generates a new private key using a
// previous address and chaincode. privkey and chaincode must be 32
// bytes long, and pubkey may either be 33 bytes, 65 bytes or nil (in
// which case it is generated by the privkey).
func ChainedPrivKey(privkey, pubkey, chaincode []byte) ([]byte, error) {
if len(privkey) != 32 {
return nil, fmt.Errorf("invalid privkey length %d (must be 32)",
len(privkey))
}
if len(chaincode) != 32 {
return nil, fmt.Errorf("invalid chaincode length %d (must be 32)",
len(chaincode))
}
if pubkey == nil {
pubkey = pubkeyFromPrivkey(privkey, true)
} else if !(len(pubkey) == 65 || len(pubkey) == 33) {
return nil, fmt.Errorf("invalid pubkey length %d", len(pubkey))
}
// This is a perfect example of YOLO crypto. Armory claims this XORing
// with the SHA256 hash of the pubkey is done to add extra entropy (why
// you'd want to add entropy to a deterministic function, I don't know),
// even though the pubkey is generated directly from the privkey. In
// terms of security or privacy, this is a complete waste of CPU cycles,
// but we do the same because we want to keep compatibility with
// Armory's chained address generation.
xorbytes := make([]byte, 32)
chainMod := calcHash256(pubkey)
for i := range xorbytes {
xorbytes[i] = chainMod[i] ^ chaincode[i]
}
chainXor := new(big.Int).SetBytes(xorbytes)
privint := new(big.Int).SetBytes(privkey)
t := new(big.Int).Mul(chainXor, privint)
b := t.Mod(t, btcec.S256().N).Bytes()
return pad(32, b), nil
}
type varEntries []io.WriterTo
func (v *varEntries) WriteTo(w io.Writer) (n int64, err error) {
ss := []io.WriterTo(*v)
var written int64
for _, s := range ss {
var err error
if written, err = s.WriteTo(w); err != nil {
return n + written, err
}
n += written
}
return n, nil
}
func (v *varEntries) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
// Remove any previous entries.
*v = nil
wts := []io.WriterTo(*v)
// Keep reading entries until an EOF is reached.
for {
var header entryHeader
if read, err = binaryRead(r, binary.LittleEndian, &header); err != nil {
// EOF here is not an error.
if err == io.EOF {
return n + read, nil
}
return n + read, err
}
n += read
var wt io.WriterTo
switch header {
case addrHeader:
var entry addrEntry
if read, err = entry.ReadFrom(r); err != nil {
return n + read, err
}
n += read
wt = &entry
case addrCommentHeader:
var entry addrCommentEntry
if read, err = entry.ReadFrom(r); err != nil {
return n + read, err
}
n += read
wt = &entry
case txCommentHeader:
var entry txCommentEntry
if read, err = entry.ReadFrom(r); err != nil {
return n + read, err
}
n += read
wt = &entry
case deletedHeader:
var entry deletedEntry
if read, err = entry.ReadFrom(r); err != nil {
return n + read, err
}
n += read
default:
return n, fmt.Errorf("unknown entry header: %d", uint8(header))
}
if wt != nil {
wts = append(wts, wt)
*v = wts
}
}
}
type addressHashKey string
type transactionHashKey string
type comment []byte
// Wallet represents an btcd/Armory wallet in memory. It
// implements the io.ReaderFrom and io.WriterTo interfaces to read
// from and write to any type of byte streams, including files.
type Wallet struct {
version uint32
net btcwire.BitcoinNet
flags walletFlags
uniqID [6]byte
createDate int64
name [32]byte
desc [256]byte
highestUsed int64
kdfParams kdfParameters
keyGenerator btcAddress
// These are non-standard and fit in the extra 1024 bytes between the
// root address and the appended entries.
syncedBlockHeight int32
syncedBlockHash btcwire.ShaHash
addrMap map[addressHashKey]*btcAddress
addrCommentMap map[addressHashKey]comment
txCommentMap map[transactionHashKey]comment
// These are not serialized.
secret struct {
sync.Mutex
key []byte
}
chainIdxMap map[int64]addressHashKey
importedAddrs []*btcAddress
lastChainIdx int64
}
// UnusedWalletBytes specifies the number of actually unused bytes
// between the root address and the appended entries in a serialized
// wallet. Armory's wallet file format provides 1024 unused bytes
// in this space. btcwallet requires saving a few additional details
// with the wallet file, so the binary sizes of those are subtracted
// from 1024. Currently, these are:
//
// - last synced block height (int32, 4 bytes)
// - last synced block hash (btcwire.ShaHash, btcwire.HashSize bytes)
const UnusedWalletBytes = 1024 - 4 - btcwire.HashSize
// NewWallet creates and initializes a new Wallet. name's and
// desc's binary representation must not exceed 32 and 256 bytes,
// respectively. All address private keys are encrypted with passphrase.
// The wallet is returned unlocked.
func NewWallet(name, desc string, passphrase []byte, net btcwire.BitcoinNet,
createdAt *BlockStamp) (*Wallet, error) {
// Check sizes of inputs.
if len([]byte(name)) > 32 {
return nil, errors.New("name exceeds 32 byte maximum size")
}
if len([]byte(desc)) > 256 {
return nil, errors.New("desc exceeds 256 byte maximum size")
}
// Randomly-generate rootkey and chaincode.
rootkey, chaincode := make([]byte, 32), make([]byte, 32)
if _, err := rand.Read(rootkey); err != nil {
return nil, err
}
if _, err := rand.Read(chaincode); err != nil {
return nil, err
}
// Create new root address from key and chaincode.
root, err := newRootBtcAddress(rootkey, nil, chaincode, createdAt)
if err != nil {
return nil, err
}
// Compute AES key and encrypt root address.
kdfp, err := computeKdfParameters(defaultKdfComputeTime, defaultKdfMaxMem)
if err != nil {
return nil, err
}
aeskey := Key([]byte(passphrase), kdfp)
if err := root.encrypt(aeskey); err != nil {
return nil, err
}
// Create and fill wallet.
w := &Wallet{
version: 0, // TODO(jrick): implement versioning
// TODO(jrick): not sure we will need uniqID, but would be good for
// compat with armory.
net: net,
flags: walletFlags{
useEncryption: true,
watchingOnly: false,
},
createDate: time.Now().Unix(),
highestUsed: rootKeyChainIdx,
kdfParams: *kdfp,
keyGenerator: *root,
syncedBlockHeight: createdAt.Height,
syncedBlockHash: createdAt.Hash,
addrMap: make(map[addressHashKey]*btcAddress),
addrCommentMap: make(map[addressHashKey]comment),
txCommentMap: make(map[transactionHashKey]comment),
chainIdxMap: make(map[int64]addressHashKey),
lastChainIdx: rootKeyChainIdx,
}
copy(w.name[:], []byte(name))
copy(w.desc[:], []byte(desc))
// Add root address to maps.
w.addrMap[addressHashKey(w.keyGenerator.pubKeyHash[:])] = &w.keyGenerator
w.chainIdxMap[rootKeyChainIdx] = addressHashKey(w.keyGenerator.pubKeyHash[:])
// Fill keypool.
if err := w.extendKeypool(nKeypoolIncrement, aeskey, createdAt); err != nil {
return nil, err
}
return w, nil
}
// Name returns the name of a wallet. This name is used as the
// account name for btcwallet JSON methods.
func (w *Wallet) Name() string {
return string(w.name[:])
}
// ReadFrom reads data from a io.Reader and saves it to a Wallet,
// returning the number of bytes read and any errors encountered.
func (w *Wallet) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
w.addrMap = make(map[addressHashKey]*btcAddress)
w.addrCommentMap = make(map[addressHashKey]comment)
w.chainIdxMap = make(map[int64]addressHashKey)
w.txCommentMap = make(map[transactionHashKey]comment)
var id [8]byte
var appendedEntries varEntries
// Iterate through each entry needing to be read. If data
// implements io.ReaderFrom, use its ReadFrom func. Otherwise,
// data is a pointer to a fixed sized value.
datas := []interface{}{
&id,
&w.version,
&w.net,
&w.flags,
&w.uniqID,
&w.createDate,
&w.name,
&w.desc,
&w.highestUsed,
&w.kdfParams,
make([]byte, 256),
&w.keyGenerator,
&w.syncedBlockHeight,
&w.syncedBlockHash,
make([]byte, UnusedWalletBytes),
&appendedEntries,
}
for _, data := range datas {
var err error
if rf, ok := data.(io.ReaderFrom); ok {
read, err = rf.ReadFrom(r)
} else {
read, err = binaryRead(r, binary.LittleEndian, data)
}
n += read
if err != nil {
return n, err
}
}
if id != fileID {
return n, errors.New("unknown file ID")
}
// Add root address to address map.
rootAddrKey := addressHashKey(w.keyGenerator.pubKeyHash[:])
w.addrMap[rootAddrKey] = &w.keyGenerator
w.chainIdxMap[rootKeyChainIdx] = rootAddrKey
// Fill unserializied fields.
wts := ([]io.WriterTo)(appendedEntries)
for _, wt := range wts {
switch e := wt.(type) {
case *addrEntry:
addrKey := addressHashKey(e.pubKeyHash160[:])
w.addrMap[addrKey] = &e.addr
if e.addr.chainIndex == importedKeyChainIdx {
w.importedAddrs = append(w.importedAddrs, &e.addr)
} else {
w.chainIdxMap[e.addr.chainIndex] = addrKey
if w.lastChainIdx < e.addr.chainIndex {
w.lastChainIdx = e.addr.chainIndex
}
}
case *addrCommentEntry:
addrKey := addressHashKey(e.pubKeyHash160[:])
w.addrCommentMap[addrKey] = comment(e.comment)
case *txCommentEntry:
txKey := transactionHashKey(e.txHash[:])
w.txCommentMap[txKey] = comment(e.comment)
default:
return n, errors.New("unknown appended entry")
}
}
return n, nil
}
// WriteTo serializes a Wallet and writes it to a io.Writer,
// returning the number of bytes written and any errors encountered.
func (w *Wallet) WriteTo(wtr io.Writer) (n int64, err error) {
var wts []io.WriterTo
var chainedAddrs = make([]io.WriterTo, len(w.chainIdxMap)-1)
var importedAddrs []io.WriterTo
for hash, addr := range w.addrMap {
e := &addrEntry{
addr: *addr,
}
copy(e.pubKeyHash160[:], []byte(hash))
if addr.chainIndex >= 0 {
// Chained addresses are sorted. This is
// kind of nice but probably isn't necessary.
chainedAddrs[addr.chainIndex] = e
} else if addr.chainIndex == importedKeyChainIdx {
// No order for imported addresses.
importedAddrs = append(importedAddrs, e)
}
}
wts = append(chainedAddrs, importedAddrs...)
for hash, comment := range w.addrCommentMap {
e := &addrCommentEntry{
comment: []byte(comment),
}
copy(e.pubKeyHash160[:], []byte(hash))
wts = append(wts, e)
}
for hash, comment := range w.txCommentMap {
e := &txCommentEntry{
comment: []byte(comment),
}
copy(e.txHash[:], []byte(hash))
wts = append(wts, e)
}
appendedEntries := varEntries(wts)
// Iterate through each entry needing to be written. If data
// implements io.WriterTo, use its WriteTo func. Otherwise,
// data is a pointer to a fixed size value.
datas := []interface{}{
&fileID,
&w.version,
&w.net,
&w.flags,
&w.uniqID,
&w.createDate,
&w.name,
&w.desc,
&w.highestUsed,
&w.kdfParams,
make([]byte, 256),
&w.keyGenerator,
&w.syncedBlockHeight,
&w.syncedBlockHash,
make([]byte, UnusedWalletBytes),
&appendedEntries,
}
var written int64
for _, data := range datas {
if s, ok := data.(io.WriterTo); ok {
written, err = s.WriteTo(wtr)
} else {
written, err = binaryWrite(wtr, binary.LittleEndian, data)
}
n += written
if err != nil {
return n, err
}
}
return n, nil
}
// Unlock derives an AES key from passphrase and wallet's KDF
// parameters and unlocks the root key of the wallet. If
// the unlock was successful, the wallet's secret key is saved,
// allowing the decryption of any encrypted private key.
func (w *Wallet) Unlock(passphrase []byte) error {
// Derive key from KDF parameters and passphrase.
key := Key(passphrase, &w.kdfParams)
// Unlock root address with derived key.
if _, err := w.keyGenerator.unlock(key); err != nil {
return err
}
// If unlock was successful, save the secret key.
w.secret.Lock()
w.secret.key = key
w.secret.Unlock()
return nil
}
// Lock performs a best try effort to remove and zero all secret keys
// associated with the wallet.
func (w *Wallet) Lock() (err error) {
// Remove clear text passphrase from wallet.
w.secret.Lock()
if w.secret.key == nil {
err = ErrWalletLocked
} else {
zero(w.secret.key)
w.secret.key = nil
}
w.secret.Unlock()
// Remove clear text private keys from all address entries.
for _, addr := range w.addrMap {
addr.privKeyCT.Lock()
zero(addr.privKeyCT.key)
addr.privKeyCT.key = nil
addr.privKeyCT.Unlock()
}
return err
}
func zero(b []byte) {
for i := range b {
b[i] = 0
}
}
// IsLocked returns whether a wallet is unlocked (in which case the
// key is saved in memory), or locked.
func (w *Wallet) IsLocked() (locked bool) {
w.secret.Lock()
locked = w.secret.key == nil
w.secret.Unlock()
return locked
}
// Version returns a wallet's version as a string and int.
// TODO(jrick)
func (w *Wallet) Version() (string, int) {
return "", 0
}
// NextChainedAddress attempts to get the next chained address,
// refilling the keypool if necessary.
func (w *Wallet) NextChainedAddress(bs *BlockStamp) (string, error) {
// Attempt to get address hash of next chained address.
next160, ok := w.chainIdxMap[w.highestUsed+1]
if !ok {
// Extending the keypool requires an unlocked wallet.
aeskey := make([]byte, 32)
w.secret.Lock()
if len(w.secret.key) != 32 {
w.secret.Unlock()
return "", ErrWalletLocked
}
copy(aeskey, w.secret.key)
w.secret.Unlock()
err := w.extendKeypool(nKeypoolIncrement, aeskey, bs)
if err != nil {
return "", err
}
next160, ok = w.chainIdxMap[w.highestUsed+1]
if !ok {
return "", errors.New("chain index map inproperly updated")
}
}
// Look up address.
addr, ok := w.addrMap[next160]
if !ok {
return "", errors.New("cannot find generated address")
}
w.highestUsed++
// Create and return payment address for address hash.
return addr.paymentAddress(w.net)
}
// extendKeypool grows the keypool by n addresses.
func (w *Wallet) extendKeypool(n uint, aeskey []byte, bs *BlockStamp) error {
// Get last chained address. New chained addresses will be
// chained off of this address's chaincode and private key.
addrKey := w.chainIdxMap[w.lastChainIdx]
addr, ok := w.addrMap[addrKey]
if !ok {
return errors.New("expected last chained address not found")
}
privkey, err := addr.unlock(aeskey)
if err != nil {
return err
}
cc := addr.chaincode[:]
// Create n encrypted addresses and add each to the wallet's
// bookkeeping maps.
for i := uint(0); i < n; i++ {
privkey, err = ChainedPrivKey(privkey, addr.pubKey, cc)
if err != nil {
return err
}
newaddr, err := newBtcAddress(privkey, nil, bs, true)
if err != nil {
return err
}
if err = newaddr.encrypt(aeskey); err != nil {
return err
}
addrKey := addressHashKey(newaddr.pubKeyHash[:])
w.addrMap[addrKey] = newaddr
newaddr.chainIndex = addr.chainIndex + 1
w.chainIdxMap[newaddr.chainIndex] = addrKey
w.lastChainIdx++
// armory does this.. but all the chaincodes are equal so why
// not use the root's?
copy(newaddr.chaincode[:], cc)
addr = newaddr
}
return nil
}
// addrHashForAddress decodes and returns the address hash for a
// payment address string, performing some basic sanity checking that it
// matches the Bitcoin network used by the wallet.
func (w *Wallet) addrHashForAddress(addr string) ([]byte, error) {
addr160, net, err := btcutil.DecodeAddress(addr)
if err != nil {
return nil, err
}
// Return error if address is for the wrong Bitcoin network.
switch {
case net == btcutil.MainNetAddr && w.net != btcwire.MainNet:
fallthrough
case net == btcutil.TestNetAddr && w.net != btcwire.TestNet:
return nil, ErrNetworkMismatch
}
return addr160, nil
}
// GetAddressKey returns the private key for a payment address stored
// in a wallet. This can fail if the payment address is for a different
// Bitcoin network than what this wallet uses, the address is not
// contained in the wallet, the address does not include a public and
// private key, or if the wallet is locked.
func (w *Wallet) GetAddressKey(addr string) (key *ecdsa.PrivateKey, err error) {
// Get address hash for payment address string.
addr160, err := w.addrHashForAddress(addr)
if err != nil {
return nil, err
}
// Lookup address from map.
btcaddr, ok := w.addrMap[addressHashKey(addr160)]
if !ok {
return nil, ErrAddressNotFound
}
// Both the pubkey and encrypted privkey must be recorded to return
// the private key. Error if neither are saved.
if !btcaddr.flags.hasPubKey {
return nil, errors.New("no public key for address")
}
if !btcaddr.flags.hasPrivKey {
return nil, errors.New("no private key for address")
}
// Parse public key.
pubkey, err := btcec.ParsePubKey(btcaddr.pubKey, btcec.S256())
if err != nil {
return nil, err
}
// The wallet's secret will be zeroed on lock, so make a local
// copy.
localSecret := make([]byte, 32)
w.secret.Lock()
if len(w.secret.key) != 32 {
w.secret.Unlock()
return nil, ErrWalletLocked
}
copy(localSecret, w.secret.key)
w.secret.Unlock()
// Unlock address with wallet secret. unlock returns a copy of the
// clear text private key, and may be used safely even during an address
// lock.
privKeyCT, err := btcaddr.unlock(localSecret)
if err != nil {
return nil, err
}
return &ecdsa.PrivateKey{
PublicKey: *pubkey,
D: new(big.Int).SetBytes(privKeyCT),
}, nil
}
// GetAddressInfo returns an AddressInfo for an address in a wallet.
func (w *Wallet) GetAddressInfo(addr string) (*AddressInfo, error) {
// Get address hash for addr.
addr160, err := w.addrHashForAddress(addr)
if err != nil {
return nil, err
}
// Look up address by address hash.
btcaddr, ok := w.addrMap[addressHashKey(addr160)]
if !ok {
return nil, errors.New("address not in wallet")
}
return btcaddr.info(w.net)
}
// Net returns the bitcoin network identifier for this wallet.
func (w *Wallet) Net() btcwire.BitcoinNet {
return w.net
}
// SetSyncedWith marks the wallet to be in sync with the block
// described by height and hash.
func (w *Wallet) SetSyncedWith(bs *BlockStamp) {
w.syncedBlockHeight = bs.Height
copy(w.syncedBlockHash[:], bs.Hash[:])
}
// SyncedWith returns the height and hash of the block the wallet is
// currently marked to be in sync with.
func (w *Wallet) SyncedWith() *BlockStamp {
return &BlockStamp{
Height: w.syncedBlockHeight,
Hash: w.syncedBlockHash,
}
}
// EarliestBlockHeight returns the height of the blockchain for when any
// wallet address first appeared. This will usually be the block height
// at the time of wallet creation, unless a private key with an earlier
// block height was imported into the wallet. This is needed when
// performing a full rescan to prevent unnecessary rescanning before
// wallet addresses first appeared.
func (w *Wallet) EarliestBlockHeight() int32 {
height := w.keyGenerator.firstBlock
// Imported keys will be the only ones that may have an earlier
// blockchain height. Check each and set the returned height
for _, addr := range w.importedAddrs {
if addr.firstBlock < height {
height = addr.firstBlock
// Can't go any lower than 0.
if height == 0 {
break
}
}
}
return height
}
// ImportPrivateKey creates a new encrypted btcAddress with a
// user-provided private key and adds it to the wallet. If the
// import is successful, the payment address string is returned.
func (w *Wallet) ImportPrivateKey(privkey []byte, compressed bool,
bs *BlockStamp) (string, error) {
// The wallet's secret will be zeroed on lock, so make a local
// copy.
w.secret.Lock()
if len(w.secret.key) != 32 {
w.secret.Unlock()
return "", ErrWalletLocked
}
localSecret := make([]byte, 32)
copy(localSecret, w.secret.key)
w.secret.Unlock()
// Create new address with this private key.
addr, err := newBtcAddress(privkey, nil, bs, compressed)
if err != nil {
return "", err
}
addr.chainIndex = importedKeyChainIdx
// Encrypt imported address with the derived AES key.
if err = addr.encrypt(localSecret); err != nil {
return "", err
}
// Create payment address string. If this fails, return an error
// before adding the address to the wallet.
addr160 := addr.pubKeyHash[:]
addrstr, err := btcutil.EncodeAddress(addr160, w.Net())
if err != nil {
return "", err
}
// Add address to wallet's bookkeeping structures. Adding to
// the map will result in the imported address being serialized
// on the next WriteTo call.
w.addrMap[addressHashKey(addr160)] = addr
w.importedAddrs = append(w.importedAddrs, addr)
return addrstr, nil
}
// AddressInfo holds information regarding an address needed to manage
// a complete wallet.
type AddressInfo struct {
Address string
AddrHash string
Compressed bool
FirstBlock int32
Imported bool
Pubkey string
}
// GetSortedActiveAddresses returns all wallet addresses that have been
// requested to be generated. These do not include unused addresses in
// the key pool. Use this when ordered addresses are needed. Otherwise,
// GetActiveAddresses is preferred.
func (w *Wallet) GetSortedActiveAddresses() []*AddressInfo {
addrs := make([]*AddressInfo, 0,
w.highestUsed+int64(len(w.importedAddrs))+1)
for i := int64(rootKeyChainIdx); i <= w.highestUsed; i++ {
addr160, ok := w.chainIdxMap[i]
if !ok {
return addrs
}
addr := w.addrMap[addr160]
info, err := addr.info(w.Net())
if err == nil {
addrs = append(addrs, info)
}
}
for _, addr := range w.importedAddrs {
info, err := addr.info(w.Net())
if err == nil {
addrs = append(addrs, info)
}
}
return addrs
}
// GetActiveAddresses returns a map between active payment addresses
// and their full info. These do not include unused addresses in the
// key pool. If addresses must be sorted, use GetSortedActiveAddresses.
func (w *Wallet) GetActiveAddresses() map[string]*AddressInfo {
addrs := make(map[string]*AddressInfo)
for i := int64(rootKeyChainIdx); i <= w.highestUsed; i++ {
addr160, ok := w.chainIdxMap[i]
if !ok {
return addrs
}
addr := w.addrMap[addr160]
info, err := addr.info(w.Net())
if err == nil {
addrs[info.Address] = info
}
}
for _, addr := range w.importedAddrs {
info, err := addr.info(w.Net())
if err == nil {
addrs[info.Address] = info
}
}
return addrs
}
type walletFlags struct {
useEncryption bool
watchingOnly bool
}
func (wf *walletFlags) ReadFrom(r io.Reader) (n int64, err error) {
raw := make([]byte, 8)
n, err = binaryRead(r, binary.LittleEndian, raw)
wf.useEncryption = raw[0] != 0
wf.watchingOnly = raw[1] != 0
return n, err
}
func (wf *walletFlags) WriteTo(w io.Writer) (n int64, err error) {
raw := make([]byte, 8)
if wf.useEncryption {
raw[0] = 1
}
if wf.watchingOnly {
raw[1] = 1
}
return binaryWrite(w, binary.LittleEndian, raw)
}
type addrFlags struct {
hasPrivKey bool
hasPubKey bool
encrypted bool
createPrivKeyNextUnlock bool // unimplemented in btcwallet
compressed bool
}
func (af *addrFlags) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
var b [8]byte
read, err = binaryRead(r, binary.LittleEndian, &b)
if err != nil {
return n + read, err
}
n += read
if b[0]&(1<<0) != 0 {
af.hasPrivKey = true
}
if b[0]&(1<<1) != 0 {
af.hasPubKey = true
}
if b[0]&(1<<2) == 0 {
return n, errors.New("address flag specifies unencrypted address")
}
af.encrypted = true
if b[0]&(1<<3) != 0 {
af.createPrivKeyNextUnlock = true
}
if b[0]&(1<<4) != 0 {
af.compressed = true
}
return n, nil
}
func (af *addrFlags) WriteTo(w io.Writer) (n int64, err error) {
var b [8]byte
if af.hasPrivKey {
b[0] |= 1 << 0
}
if af.hasPubKey {
b[0] |= 1 << 1
}
if !af.encrypted {
// We only support encrypted privkeys.
return n, errors.New("address must be encrypted")
}
b[0] |= 1 << 2
if af.createPrivKeyNextUnlock {
b[0] |= 1 << 3
}
if af.compressed {
b[0] |= 1 << 4
}
return binaryWrite(w, binary.LittleEndian, b)
}
type btcAddress struct {
pubKeyHash [ripemd160.Size]byte
flags addrFlags
chaincode [32]byte
chainIndex int64
chainDepth int64 // currently unused (will use when extending a locked wallet)
initVector [16]byte
privKey [32]byte
pubKey publicKey
firstSeen int64
lastSeen int64
firstBlock int32
lastBlock int32
privKeyCT struct {
sync.Mutex
key []byte // non-nil if unlocked.
}
}
const (
// Root address has a chain index of -1. Each subsequent
// chained address increments the index.
rootKeyChainIdx = -1
// Imported private keys are not part of the chain, and have a
// special index of -2.
importedKeyChainIdx = -2
)
const (
pubkeyCompressed byte = 0x2
pubkeyUncompressed byte = 0x4
)
type publicKey []byte
func (k *publicKey) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
var format byte
read, err = binaryRead(r, binary.LittleEndian, &format)
if err != nil {
return n + read, err
}
n += read
// Remove the oddness from the format
noodd := format
noodd &= ^byte(0x1)
var s []byte
switch noodd {
case pubkeyUncompressed:
// Read the remaining 64 bytes.
s = make([]byte, 64)
case pubkeyCompressed:
// Read the remaining 32 bytes.
s = make([]byte, 32)
default:
return n, errors.New("unrecognized pubkey format")
}
read, err = binaryRead(r, binary.LittleEndian, &s)
if err != nil {
return n + read, err
}
n += read
*k = append([]byte{format}, s...)
return
}
func (k *publicKey) WriteTo(w io.Writer) (n int64, err error) {
return binaryWrite(w, binary.LittleEndian, []byte(*k))
}
// newBtcAddress initializes and returns a new address. privkey must
// be 32 bytes. iv must be 16 bytes, or nil (in which case it is
// randomly generated).
func newBtcAddress(privkey, iv []byte, bs *BlockStamp, compressed bool) (addr *btcAddress, err error) {
if len(privkey) != 32 {
return nil, errors.New("private key is not 32 bytes")
}
if iv == nil {
iv = make([]byte, 16)
if _, err := rand.Read(iv); err != nil {
return nil, err
}
} else if len(iv) != 16 {
return nil, errors.New("init vector must be nil or 16 bytes large")
}
addr = &btcAddress{
flags: addrFlags{
hasPrivKey: true,
hasPubKey: true,
compressed: compressed,
},
firstSeen: time.Now().Unix(),
firstBlock: bs.Height,
}
addr.privKeyCT.key = privkey
copy(addr.initVector[:], iv)
addr.pubKey = pubkeyFromPrivkey(privkey, compressed)
copy(addr.pubKeyHash[:], calcHash160(addr.pubKey))
return addr, nil
}
// newRootBtcAddress generates a new address, also setting the
// chaincode and chain index to represent this address as a root
// address.
func newRootBtcAddress(privKey, iv, chaincode []byte,
bs *BlockStamp) (addr *btcAddress, err error) {
if len(chaincode) != 32 {
return nil, errors.New("chaincode is not 32 bytes")
}
// Create new btcAddress with provided inputs. This will
// always use a compressed pubkey.
addr, err = newBtcAddress(privKey, iv, bs, true)
if err != nil {
return nil, err
}
copy(addr.chaincode[:], chaincode)
addr.chainIndex = rootKeyChainIdx
return addr, err
}
// ReadFrom reads an encrypted address from an io.Reader.
func (a *btcAddress) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
// Checksums
var chkPubKeyHash uint32
var chkChaincode uint32
var chkInitVector uint32
var chkPrivKey uint32
var chkPubKey uint32
// Read serialized wallet into addr fields and checksums.
datas := []interface{}{
&a.pubKeyHash,
&chkPubKeyHash,
make([]byte, 4), // version
&a.flags,
&a.chaincode,
&chkChaincode,
&a.chainIndex,
&a.chainDepth,
&a.initVector,
&chkInitVector,
&a.privKey,
&chkPrivKey,
&a.pubKey,
&chkPubKey,
&a.firstSeen,
&a.lastSeen,
&a.firstBlock,
&a.lastBlock,
}
for _, data := range datas {
if rf, ok := data.(io.ReaderFrom); ok {
read, err = rf.ReadFrom(r)
} else {
read, err = binaryRead(r, binary.LittleEndian, data)
}
if err != nil {
return n + read, err
}
n += read
}
// Verify checksums, correct errors where possible.
checks := []struct {
data []byte
chk uint32
}{
{a.pubKeyHash[:], chkPubKeyHash},
{a.chaincode[:], chkChaincode},
{a.initVector[:], chkInitVector},
{a.privKey[:], chkPrivKey},
{a.pubKey, chkPubKey},
}
for i := range checks {
if err = verifyAndFix(checks[i].data, checks[i].chk); err != nil {
return n, err
}
}
return n, nil
}
func (a *btcAddress) WriteTo(w io.Writer) (n int64, err error) {
var written int64
datas := []interface{}{
&a.pubKeyHash,
walletHash(a.pubKeyHash[:]),
make([]byte, 4), //version
&a.flags,
&a.chaincode,
walletHash(a.chaincode[:]),
&a.chainIndex,
&a.chainDepth,
&a.initVector,
walletHash(a.initVector[:]),
&a.privKey,
walletHash(a.privKey[:]),
&a.pubKey,
walletHash(a.pubKey),
&a.firstSeen,
&a.lastSeen,
&a.firstBlock,
&a.lastBlock,
}
for _, data := range datas {
if wt, ok := data.(io.WriterTo); ok {
written, err = wt.WriteTo(w)
} else {
written, err = binaryWrite(w, binary.LittleEndian, data)
}
if err != nil {
return n + written, err
}
n += written
}
return n, nil
}
// encrypt attempts to encrypt an address's clear text private key,
// failing if the address is already encrypted or if the private key is
// not 32 bytes. If successful, the encryption flag is set.
func (a *btcAddress) encrypt(key []byte) error {
if a.flags.encrypted {
return errors.New("address already encrypted")
}
a.privKeyCT.Lock()
defer a.privKeyCT.Unlock()
if len(a.privKeyCT.key) != 32 {
return errors.New("invalid clear text private key")
}
aesBlockEncrypter, err := aes.NewCipher(key)
if err != nil {
return err
}
aesEncrypter := cipher.NewCFBEncrypter(aesBlockEncrypter, a.initVector[:])
aesEncrypter.XORKeyStream(a.privKey[:], a.privKeyCT.key)
a.flags.encrypted = true
return nil
}
// lock removes the reference this address holds to its clear text
// private key. This function fails if the address is not encrypted.
func (a *btcAddress) lock() error {
if !a.flags.encrypted {
return errors.New("unable to lock unencrypted address")
}
a.privKeyCT.Lock()
zero(a.privKeyCT.key)
a.privKeyCT.key = nil
a.privKeyCT.Unlock()
return nil
}
// unlock decrypts and stores a pointer to this address's private key,
// failing if the address is not encrypted, or the provided key is
// incorrect. The returned clear text private key will always be a copy
// that may be safely used by the caller without worrying about it being
// zeroed during an address lock.
func (a *btcAddress) unlock(key []byte) (privKeyCT []byte, err error) {
if !a.flags.encrypted {
return nil, errors.New("unable to unlock unencrypted address")
}
// If secret is already saved, return a copy without performing a full
// unlock.
a.privKeyCT.Lock()
if len(a.privKeyCT.key) == 32 {
privKeyCT := make([]byte, 32)
copy(privKeyCT, a.privKeyCT.key)
a.privKeyCT.Unlock()
return privKeyCT, nil
}
a.privKeyCT.Unlock()
// Decrypt private key with AES key.
aesBlockDecrypter, err := aes.NewCipher(key)
if err != nil {
return nil, err
}
aesDecrypter := cipher.NewCFBDecrypter(aesBlockDecrypter, a.initVector[:])
privkey := make([]byte, 32)
aesDecrypter.XORKeyStream(privkey, a.privKey[:])
// Generate new x, y from clear text private key and check that they
// match the recorded pubkey.
pubKey, err := btcec.ParsePubKey(a.pubKey, btcec.S256())
if err != nil {
return nil, fmt.Errorf("cannot parse pubkey: %s", err)
}
x, y := btcec.S256().ScalarBaseMult(privkey)
if x.Cmp(pubKey.X) != 0 || y.Cmp(pubKey.Y) != 0 {
return nil, errors.New("decryption failed")
}
privkeyCopy := make([]byte, 32)
copy(privkeyCopy, privkey)
a.privKeyCT.Lock()
a.privKeyCT.key = privkey
a.privKeyCT.Unlock()
return privkeyCopy, nil
}
// TODO(jrick)
func (a *btcAddress) changeEncryptionKey(oldkey, newkey []byte) error {
return errors.New("unimplemented")
}
// paymentAddress returns a human readable payment address string for
// an address.
func (a *btcAddress) paymentAddress(net btcwire.BitcoinNet) (string, error) {
return btcutil.EncodeAddress(a.pubKeyHash[:], net)
}
// info returns information about a btcAddress stored in a AddressInfo
// struct.
func (a *btcAddress) info(net btcwire.BitcoinNet) (*AddressInfo, error) {
address, err := a.paymentAddress(net)
if err != nil {
return nil, err
}
return &AddressInfo{
Address: address,
AddrHash: string(a.pubKeyHash[:]),
Compressed: a.flags.compressed,
FirstBlock: a.firstBlock,
Imported: a.chainIndex == importedKeyChainIdx,
Pubkey: hex.EncodeToString(a.pubKey),
}, nil
}
func walletHash(b []byte) uint32 {
sum := btcwire.DoubleSha256(b)
return binary.LittleEndian.Uint32(sum)
}
// TODO(jrick) add error correction.
func verifyAndFix(b []byte, chk uint32) error {
if walletHash(b) != chk {
return ErrChecksumMismatch
}
return nil
}
type kdfParameters struct {
mem uint64
nIter uint32
salt [32]byte
}
// computeKdfParameters returns best guess parameters to the
// memory-hard key derivation function to make the computation last
// targetSec seconds, while using no more than maxMem bytes of memory.
func computeKdfParameters(targetSec float64, maxMem uint64) (*kdfParameters, error) {
params := &kdfParameters{}
if _, err := rand.Read(params.salt[:]); err != nil {
return nil, err
}
testKey := []byte("This is an example key to test KDF iteration speed")
memoryReqtBytes := uint64(1024)
approxSec := float64(0)
for approxSec <= targetSec/4 && memoryReqtBytes < maxMem {
memoryReqtBytes *= 2
before := time.Now()
_ = keyOneIter(testKey, params.salt[:], memoryReqtBytes)
approxSec = time.Since(before).Seconds()
}
allItersSec := float64(0)
nIter := uint32(1)
for allItersSec < 0.02 { // This is a magic number straight from armory's source.
nIter *= 2
before := time.Now()
for i := uint32(0); i < nIter; i++ {
_ = keyOneIter(testKey, params.salt[:], memoryReqtBytes)
}
allItersSec = time.Since(before).Seconds()
}
params.mem = memoryReqtBytes
params.nIter = nIter
return params, nil
}
func (params *kdfParameters) WriteTo(w io.Writer) (n int64, err error) {
var written int64
memBytes := make([]byte, 8)
nIterBytes := make([]byte, 4)
binary.LittleEndian.PutUint64(memBytes, params.mem)
binary.LittleEndian.PutUint32(nIterBytes, params.nIter)
chkedBytes := append(memBytes, nIterBytes...)
chkedBytes = append(chkedBytes, params.salt[:]...)
datas := []interface{}{
&params.mem,
&params.nIter,
&params.salt,
walletHash(chkedBytes),
make([]byte, 256-(binary.Size(params)+4)), // padding
}
for _, data := range datas {
if written, err = binaryWrite(w, binary.LittleEndian, data); err != nil {
return n + written, err
}
n += written
}
return n, nil
}
func (params *kdfParameters) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
// These must be read in but are not saved directly to params.
chkedBytes := make([]byte, 44)
var chk uint32
padding := make([]byte, 256-(binary.Size(params)+4))
datas := []interface{}{
chkedBytes,
&chk,
padding,
}
for _, data := range datas {
if read, err = binaryRead(r, binary.LittleEndian, data); err != nil {
return n + read, err
}
n += read
}
// Verify checksum
if err = verifyAndFix(chkedBytes, chk); err != nil {
return n, err
}
// Read params
buf := bytes.NewBuffer(chkedBytes)
datas = []interface{}{
&params.mem,
&params.nIter,
&params.salt,
}
for _, data := range datas {
if err = binary.Read(buf, binary.LittleEndian, data); err != nil {
return n, err
}
}
return n, nil
}
type addrEntry struct {
pubKeyHash160 [ripemd160.Size]byte
addr btcAddress
}
func (e *addrEntry) WriteTo(w io.Writer) (n int64, err error) {
var written int64
// Write header
if written, err = binaryWrite(w, binary.LittleEndian, addrHeader); err != nil {
return n + written, err
}
n += written
// Write hash
if written, err = binaryWrite(w, binary.LittleEndian, &e.pubKeyHash160); err != nil {
return n + written, err
}
n += written
// Write btcAddress
written, err = e.addr.WriteTo(w)
n += written
return n, err
}
func (e *addrEntry) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
if read, err = binaryRead(r, binary.LittleEndian, &e.pubKeyHash160); err != nil {
return n + read, err
}
n += read
read, err = e.addr.ReadFrom(r)
return n + read, err
}
type addrCommentEntry struct {
pubKeyHash160 [ripemd160.Size]byte
comment []byte
}
func (e *addrCommentEntry) WriteTo(w io.Writer) (n int64, err error) {
var written int64
// Comments shall not overflow their entry.
if len(e.comment) > maxCommentLen {
return n, ErrMalformedEntry
}
// Write header
if written, err = binaryWrite(w, binary.LittleEndian, addrCommentHeader); err != nil {
return n + written, err
}
n += written
// Write hash
if written, err = binaryWrite(w, binary.LittleEndian, &e.pubKeyHash160); err != nil {
return n + written, err
}
n += written
// Write length
if written, err = binaryWrite(w, binary.LittleEndian, uint16(len(e.comment))); err != nil {
return n + written, err
}
n += written
// Write comment
written, err = binaryWrite(w, binary.LittleEndian, e.comment)
return n + written, err
}
func (e *addrCommentEntry) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
if read, err = binaryRead(r, binary.LittleEndian, &e.pubKeyHash160); err != nil {
return n + read, err
}
n += read
var clen uint16
if read, err = binaryRead(r, binary.LittleEndian, &clen); err != nil {
return n + read, err
}
n += read
e.comment = make([]byte, clen)
read, err = binaryRead(r, binary.LittleEndian, e.comment)
return n + read, err
}
type txCommentEntry struct {
txHash [sha256.Size]byte
comment []byte
}
func (e *txCommentEntry) WriteTo(w io.Writer) (n int64, err error) {
var written int64
// Comments shall not overflow their entry.
if len(e.comment) > maxCommentLen {
return n, ErrMalformedEntry
}
// Write header
if written, err = binaryWrite(w, binary.LittleEndian, txCommentHeader); err != nil {
return n + written, err
}
n += written
// Write length
if written, err = binaryWrite(w, binary.LittleEndian, uint16(len(e.comment))); err != nil {
return n + written, err
}
// Write comment
written, err = binaryWrite(w, binary.LittleEndian, e.comment)
return n + written, err
}
func (e *txCommentEntry) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
if read, err = binaryRead(r, binary.LittleEndian, &e.txHash); err != nil {
return n + read, err
}
n += read
var clen uint16
if read, err = binaryRead(r, binary.LittleEndian, &clen); err != nil {
return n + read, err
}
n += read
e.comment = make([]byte, clen)
read, err = binaryRead(r, binary.LittleEndian, e.comment)
return n + read, err
}
type deletedEntry struct{}
func (e *deletedEntry) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
var ulen uint16
if read, err = binaryRead(r, binary.LittleEndian, &ulen); err != nil {
return n + read, err
}
n += read
unused := make([]byte, ulen)
nRead, err := r.Read(unused)
if err == io.EOF {
return n + int64(nRead), nil
}
return n + int64(nRead), err
}
// BlockStamp defines a block (by height and a unique hash) and is
// used to mark a point in the blockchain that a wallet element is
// synced to.
type BlockStamp struct {
Height int32
Hash btcwire.ShaHash
}