lbcwallet/internal/legacy/keystore/keystore.go
2018-05-23 19:38:56 -07:00

3241 lines
81 KiB
Go

// Copyright (c) 2013-2016 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package keystore
import (
"bytes"
"crypto/aes"
"crypto/cipher"
"crypto/rand"
"crypto/sha512"
"encoding/binary"
"encoding/hex"
"errors"
"fmt"
"io"
"io/ioutil"
"math/big"
"os"
"path/filepath"
"sync"
"time"
"golang.org/x/crypto/ripemd160"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/btcsuite/btcwallet/internal/legacy/rename"
)
const (
Filename = "wallet.bin"
// Length in bytes of KDF output.
kdfOutputBytes = 32
// Maximum length in bytes of a comment that can have a size represented
// as a uint16.
maxCommentLen = (1 << 16) - 1
)
const (
defaultKdfComputeTime = 0.25
defaultKdfMaxMem = 32 * 1024 * 1024
)
// Possible errors when dealing with key stores.
var (
ErrAddressNotFound = errors.New("address not found")
ErrAlreadyEncrypted = errors.New("private key is already encrypted")
ErrChecksumMismatch = errors.New("checksum mismatch")
ErrDuplicate = errors.New("duplicate key or address")
ErrMalformedEntry = errors.New("malformed entry")
ErrWatchingOnly = errors.New("keystore is watching-only")
ErrLocked = errors.New("keystore is locked")
ErrWrongPassphrase = errors.New("wrong passphrase")
)
var fileID = [8]byte{0xba, 'W', 'A', 'L', 'L', 'E', 'T', 0x00}
type entryHeader byte
const (
addrCommentHeader entryHeader = 1 << iota
txCommentHeader
deletedHeader
scriptHeader
addrHeader entryHeader = 0
)
// We want to use binaryRead and binaryWrite instead of binary.Read
// and binary.Write because those from the binary package do not return
// the number of bytes actually written or read. We need to return
// this value to correctly support the io.ReaderFrom and io.WriterTo
// interfaces.
func binaryRead(r io.Reader, order binary.ByteOrder, data interface{}) (n int64, err error) {
var read int
buf := make([]byte, binary.Size(data))
if read, err = io.ReadFull(r, buf); err != nil {
return int64(read), err
}
return int64(read), binary.Read(bytes.NewBuffer(buf), order, data)
}
// See comment for binaryRead().
func binaryWrite(w io.Writer, order binary.ByteOrder, data interface{}) (n int64, err error) {
buf := bytes.Buffer{}
if err = binary.Write(&buf, order, data); err != nil {
return 0, err
}
written, err := w.Write(buf.Bytes())
return int64(written), err
}
// pubkeyFromPrivkey creates an encoded pubkey based on a
// 32-byte privkey. The returned pubkey is 33 bytes if compressed,
// or 65 bytes if uncompressed.
func pubkeyFromPrivkey(privkey []byte, compress bool) (pubkey []byte) {
_, pk := btcec.PrivKeyFromBytes(btcec.S256(), privkey)
if compress {
return pk.SerializeCompressed()
}
return pk.SerializeUncompressed()
}
func keyOneIter(passphrase, salt []byte, memReqts uint64) []byte {
saltedpass := append(passphrase, salt...)
lutbl := make([]byte, memReqts)
// Seed for lookup table
seed := sha512.Sum512(saltedpass)
copy(lutbl[:sha512.Size], seed[:])
for nByte := 0; nByte < (int(memReqts) - sha512.Size); nByte += sha512.Size {
hash := sha512.Sum512(lutbl[nByte : nByte+sha512.Size])
copy(lutbl[nByte+sha512.Size:nByte+2*sha512.Size], hash[:])
}
x := lutbl[cap(lutbl)-sha512.Size:]
seqCt := uint32(memReqts / sha512.Size)
nLookups := seqCt / 2
for i := uint32(0); i < nLookups; i++ {
// Armory ignores endianness here. We assume LE.
newIdx := binary.LittleEndian.Uint32(x[cap(x)-4:]) % seqCt
// Index of hash result at newIdx
vIdx := newIdx * sha512.Size
v := lutbl[vIdx : vIdx+sha512.Size]
// XOR hash x with hash v
for j := 0; j < sha512.Size; j++ {
x[j] ^= v[j]
}
// Save new hash to x
hash := sha512.Sum512(x)
copy(x, hash[:])
}
return x[:kdfOutputBytes]
}
// kdf implements the key derivation function used by Armory
// based on the ROMix algorithm described in Colin Percival's paper
// "Stronger Key Derivation via Sequential Memory-Hard Functions"
// (http://www.tarsnap.com/scrypt/scrypt.pdf).
func kdf(passphrase []byte, params *kdfParameters) []byte {
masterKey := passphrase
for i := uint32(0); i < params.nIter; i++ {
masterKey = keyOneIter(masterKey, params.salt[:], params.mem)
}
return masterKey
}
func pad(size int, b []byte) []byte {
// Prevent a possible panic if the input exceeds the expected size.
if len(b) > size {
size = len(b)
}
p := make([]byte, size)
copy(p[size-len(b):], b)
return p
}
// chainedPrivKey deterministically generates a new private key using a
// previous address and chaincode. privkey and chaincode must be 32
// bytes long, and pubkey may either be 33 or 65 bytes.
func chainedPrivKey(privkey, pubkey, chaincode []byte) ([]byte, error) {
if len(privkey) != 32 {
return nil, fmt.Errorf("invalid privkey length %d (must be 32)",
len(privkey))
}
if len(chaincode) != 32 {
return nil, fmt.Errorf("invalid chaincode length %d (must be 32)",
len(chaincode))
}
switch n := len(pubkey); n {
case btcec.PubKeyBytesLenUncompressed, btcec.PubKeyBytesLenCompressed:
// Correct length
default:
return nil, fmt.Errorf("invalid pubkey length %d", n)
}
xorbytes := make([]byte, 32)
chainMod := chainhash.DoubleHashB(pubkey)
for i := range xorbytes {
xorbytes[i] = chainMod[i] ^ chaincode[i]
}
chainXor := new(big.Int).SetBytes(xorbytes)
privint := new(big.Int).SetBytes(privkey)
t := new(big.Int).Mul(chainXor, privint)
b := t.Mod(t, btcec.S256().N).Bytes()
return pad(32, b), nil
}
// chainedPubKey deterministically generates a new public key using a
// previous public key and chaincode. pubkey must be 33 or 65 bytes, and
// chaincode must be 32 bytes long.
func chainedPubKey(pubkey, chaincode []byte) ([]byte, error) {
var compressed bool
switch n := len(pubkey); n {
case btcec.PubKeyBytesLenUncompressed:
compressed = false
case btcec.PubKeyBytesLenCompressed:
compressed = true
default:
// Incorrect serialized pubkey length
return nil, fmt.Errorf("invalid pubkey length %d", n)
}
if len(chaincode) != 32 {
return nil, fmt.Errorf("invalid chaincode length %d (must be 32)",
len(chaincode))
}
xorbytes := make([]byte, 32)
chainMod := chainhash.DoubleHashB(pubkey)
for i := range xorbytes {
xorbytes[i] = chainMod[i] ^ chaincode[i]
}
oldPk, err := btcec.ParsePubKey(pubkey, btcec.S256())
if err != nil {
return nil, err
}
newX, newY := btcec.S256().ScalarMult(oldPk.X, oldPk.Y, xorbytes)
if err != nil {
return nil, err
}
newPk := &btcec.PublicKey{
Curve: btcec.S256(),
X: newX,
Y: newY,
}
if compressed {
return newPk.SerializeCompressed(), nil
}
return newPk.SerializeUncompressed(), nil
}
type version struct {
major byte
minor byte
bugfix byte
autoincrement byte
}
// Enforce that version satisifies the io.ReaderFrom and
// io.WriterTo interfaces.
var _ io.ReaderFrom = &version{}
var _ io.WriterTo = &version{}
// readerFromVersion is an io.ReaderFrom and io.WriterTo that
// can specify any particular key store file format for reading
// depending on the key store file version.
type readerFromVersion interface {
readFromVersion(version, io.Reader) (int64, error)
io.WriterTo
}
func (v version) String() string {
str := fmt.Sprintf("%d.%d", v.major, v.minor)
if v.bugfix != 0x00 || v.autoincrement != 0x00 {
str += fmt.Sprintf(".%d", v.bugfix)
}
if v.autoincrement != 0x00 {
str += fmt.Sprintf(".%d", v.autoincrement)
}
return str
}
func (v version) Uint32() uint32 {
return uint32(v.major)<<6 | uint32(v.minor)<<4 | uint32(v.bugfix)<<2 | uint32(v.autoincrement)
}
func (v *version) ReadFrom(r io.Reader) (int64, error) {
// Read 4 bytes for the version.
var versBytes [4]byte
n, err := io.ReadFull(r, versBytes[:])
if err != nil {
return int64(n), err
}
v.major = versBytes[0]
v.minor = versBytes[1]
v.bugfix = versBytes[2]
v.autoincrement = versBytes[3]
return int64(n), nil
}
func (v *version) WriteTo(w io.Writer) (int64, error) {
// Write 4 bytes for the version.
versBytes := []byte{
v.major,
v.minor,
v.bugfix,
v.autoincrement,
}
n, err := w.Write(versBytes)
return int64(n), err
}
// LT returns whether v is an earlier version than v2.
func (v version) LT(v2 version) bool {
switch {
case v.major < v2.major:
return true
case v.minor < v2.minor:
return true
case v.bugfix < v2.bugfix:
return true
case v.autoincrement < v2.autoincrement:
return true
default:
return false
}
}
// EQ returns whether v2 is an equal version to v.
func (v version) EQ(v2 version) bool {
switch {
case v.major != v2.major:
return false
case v.minor != v2.minor:
return false
case v.bugfix != v2.bugfix:
return false
case v.autoincrement != v2.autoincrement:
return false
default:
return true
}
}
// GT returns whether v is a later version than v2.
func (v version) GT(v2 version) bool {
switch {
case v.major > v2.major:
return true
case v.minor > v2.minor:
return true
case v.bugfix > v2.bugfix:
return true
case v.autoincrement > v2.autoincrement:
return true
default:
return false
}
}
// Various versions.
var (
// VersArmory is the latest version used by Armory.
VersArmory = version{1, 35, 0, 0}
// Vers20LastBlocks is the version where key store files now hold
// the 20 most recently seen block hashes.
Vers20LastBlocks = version{1, 36, 0, 0}
// VersUnsetNeedsPrivkeyFlag is the bugfix version where the
// createPrivKeyNextUnlock address flag is correctly unset
// after creating and encrypting its private key after unlock.
// Otherwise, re-creating private keys will occur too early
// in the address chain and fail due to encrypting an already
// encrypted address. Key store versions at or before this
// version include a special case to allow the duplicate
// encrypt.
VersUnsetNeedsPrivkeyFlag = version{1, 36, 1, 0}
// VersCurrent is the current key store file version.
VersCurrent = VersUnsetNeedsPrivkeyFlag
)
type varEntries struct {
store *Store
entries []io.WriterTo
}
func (v *varEntries) WriteTo(w io.Writer) (n int64, err error) {
ss := v.entries
var written int64
for _, s := range ss {
var err error
if written, err = s.WriteTo(w); err != nil {
return n + written, err
}
n += written
}
return n, nil
}
func (v *varEntries) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
// Remove any previous entries.
v.entries = nil
wts := v.entries
// Keep reading entries until an EOF is reached.
for {
var header entryHeader
if read, err = binaryRead(r, binary.LittleEndian, &header); err != nil {
// EOF here is not an error.
if err == io.EOF {
return n + read, nil
}
return n + read, err
}
n += read
var wt io.WriterTo
switch header {
case addrHeader:
var entry addrEntry
entry.addr.store = v.store
if read, err = entry.ReadFrom(r); err != nil {
return n + read, err
}
n += read
wt = &entry
case scriptHeader:
var entry scriptEntry
entry.script.store = v.store
if read, err = entry.ReadFrom(r); err != nil {
return n + read, err
}
n += read
wt = &entry
default:
return n, fmt.Errorf("unknown entry header: %d", uint8(header))
}
if wt != nil {
wts = append(wts, wt)
v.entries = wts
}
}
}
// Key stores use a custom network parameters type so it can be an io.ReaderFrom.
// Due to the way and order that key stores are currently serialized and how
// address reading requires the key store's network parameters, setting and
// erroring on unknown key store networks must happen on the read itself and not
// after the fact. This is admitidly a hack, but with a bip32 keystore on the
// horizon I'm not too motivated to clean this up.
type netParams chaincfg.Params
func (net *netParams) ReadFrom(r io.Reader) (int64, error) {
var buf [4]byte
uint32Bytes := buf[:4]
n, err := io.ReadFull(r, uint32Bytes)
n64 := int64(n)
if err != nil {
return n64, err
}
switch wire.BitcoinNet(binary.LittleEndian.Uint32(uint32Bytes)) {
case wire.MainNet:
*net = (netParams)(chaincfg.MainNetParams)
case wire.TestNet3:
*net = (netParams)(chaincfg.TestNet3Params)
case wire.SimNet:
*net = (netParams)(chaincfg.SimNetParams)
default:
return n64, errors.New("unknown network")
}
return n64, nil
}
func (net *netParams) WriteTo(w io.Writer) (int64, error) {
var buf [4]byte
uint32Bytes := buf[:4]
binary.LittleEndian.PutUint32(uint32Bytes, uint32(net.Net))
n, err := w.Write(uint32Bytes)
n64 := int64(n)
return n64, err
}
// Stringified byte slices for use as map lookup keys.
type addressKey string
type transactionHashKey string
type comment []byte
func getAddressKey(addr btcutil.Address) addressKey {
return addressKey(addr.ScriptAddress())
}
// Store represents an key store in memory. It implements the
// io.ReaderFrom and io.WriterTo interfaces to read from and
// write to any type of byte streams, including files.
type Store struct {
// TODO: Use atomic operations for dirty so the reader lock
// doesn't need to be grabbed.
dirty bool
path string
dir string
file string
mtx sync.RWMutex
vers version
net *netParams
flags walletFlags
createDate int64
name [32]byte
desc [256]byte
highestUsed int64
kdfParams kdfParameters
keyGenerator btcAddress
// These are non-standard and fit in the extra 1024 bytes between the
// root address and the appended entries.
recent recentBlocks
addrMap map[addressKey]walletAddress
// The rest of the fields in this struct are not serialized.
passphrase []byte
secret []byte
chainIdxMap map[int64]btcutil.Address
importedAddrs []walletAddress
lastChainIdx int64
missingKeysStart int64
}
// New creates and initializes a new Store. name's and desc's byte length
// must not exceed 32 and 256 bytes, respectively. All address private keys
// are encrypted with passphrase. The key store is returned locked.
func New(dir string, desc string, passphrase []byte, net *chaincfg.Params,
createdAt *BlockStamp) (*Store, error) {
// Check sizes of inputs.
if len(desc) > 256 {
return nil, errors.New("desc exceeds 256 byte maximum size")
}
// Randomly-generate rootkey and chaincode.
rootkey := make([]byte, 32)
if _, err := rand.Read(rootkey); err != nil {
return nil, err
}
chaincode := make([]byte, 32)
if _, err := rand.Read(chaincode); err != nil {
return nil, err
}
// Compute AES key and encrypt root address.
kdfp, err := computeKdfParameters(defaultKdfComputeTime, defaultKdfMaxMem)
if err != nil {
return nil, err
}
aeskey := kdf(passphrase, kdfp)
// Create and fill key store.
s := &Store{
path: filepath.Join(dir, Filename),
dir: dir,
file: Filename,
vers: VersCurrent,
net: (*netParams)(net),
flags: walletFlags{
useEncryption: true,
watchingOnly: false,
},
createDate: time.Now().Unix(),
highestUsed: rootKeyChainIdx,
kdfParams: *kdfp,
recent: recentBlocks{
lastHeight: createdAt.Height,
hashes: []*chainhash.Hash{
createdAt.Hash,
},
},
addrMap: make(map[addressKey]walletAddress),
chainIdxMap: make(map[int64]btcutil.Address),
lastChainIdx: rootKeyChainIdx,
missingKeysStart: rootKeyChainIdx,
secret: aeskey,
}
copy(s.desc[:], []byte(desc))
// Create new root address from key and chaincode.
root, err := newRootBtcAddress(s, rootkey, nil, chaincode,
createdAt)
if err != nil {
return nil, err
}
// Verify root address keypairs.
if err := root.verifyKeypairs(); err != nil {
return nil, err
}
if err := root.encrypt(aeskey); err != nil {
return nil, err
}
s.keyGenerator = *root
// Add root address to maps.
rootAddr := s.keyGenerator.Address()
s.addrMap[getAddressKey(rootAddr)] = &s.keyGenerator
s.chainIdxMap[rootKeyChainIdx] = rootAddr
// key store must be returned locked.
if err := s.Lock(); err != nil {
return nil, err
}
return s, nil
}
// ReadFrom reads data from a io.Reader and saves it to a key store,
// returning the number of bytes read and any errors encountered.
func (s *Store) ReadFrom(r io.Reader) (n int64, err error) {
s.mtx.Lock()
defer s.mtx.Unlock()
var read int64
s.net = &netParams{}
s.addrMap = make(map[addressKey]walletAddress)
s.chainIdxMap = make(map[int64]btcutil.Address)
var id [8]byte
appendedEntries := varEntries{store: s}
s.keyGenerator.store = s
// Iterate through each entry needing to be read. If data
// implements io.ReaderFrom, use its ReadFrom func. Otherwise,
// data is a pointer to a fixed sized value.
datas := []interface{}{
&id,
&s.vers,
s.net,
&s.flags,
make([]byte, 6), // Bytes for Armory unique ID
&s.createDate,
&s.name,
&s.desc,
&s.highestUsed,
&s.kdfParams,
make([]byte, 256),
&s.keyGenerator,
newUnusedSpace(1024, &s.recent),
&appendedEntries,
}
for _, data := range datas {
var err error
switch d := data.(type) {
case readerFromVersion:
read, err = d.readFromVersion(s.vers, r)
case io.ReaderFrom:
read, err = d.ReadFrom(r)
default:
read, err = binaryRead(r, binary.LittleEndian, d)
}
n += read
if err != nil {
return n, err
}
}
if id != fileID {
return n, errors.New("unknown file ID")
}
// Add root address to address map.
rootAddr := s.keyGenerator.Address()
s.addrMap[getAddressKey(rootAddr)] = &s.keyGenerator
s.chainIdxMap[rootKeyChainIdx] = rootAddr
s.lastChainIdx = rootKeyChainIdx
// Fill unserializied fields.
wts := appendedEntries.entries
for _, wt := range wts {
switch e := wt.(type) {
case *addrEntry:
addr := e.addr.Address()
s.addrMap[getAddressKey(addr)] = &e.addr
if e.addr.Imported() {
s.importedAddrs = append(s.importedAddrs, &e.addr)
} else {
s.chainIdxMap[e.addr.chainIndex] = addr
if s.lastChainIdx < e.addr.chainIndex {
s.lastChainIdx = e.addr.chainIndex
}
}
// If the private keys have not been created yet, mark the
// earliest so all can be created on next key store unlock.
if e.addr.flags.createPrivKeyNextUnlock {
switch {
case s.missingKeysStart == rootKeyChainIdx:
fallthrough
case e.addr.chainIndex < s.missingKeysStart:
s.missingKeysStart = e.addr.chainIndex
}
}
case *scriptEntry:
addr := e.script.Address()
s.addrMap[getAddressKey(addr)] = &e.script
// script are always imported.
s.importedAddrs = append(s.importedAddrs, &e.script)
default:
return n, errors.New("unknown appended entry")
}
}
return n, nil
}
// WriteTo serializes a key store and writes it to a io.Writer,
// returning the number of bytes written and any errors encountered.
func (s *Store) WriteTo(w io.Writer) (n int64, err error) {
s.mtx.RLock()
defer s.mtx.RUnlock()
return s.writeTo(w)
}
func (s *Store) writeTo(w io.Writer) (n int64, err error) {
var wts []io.WriterTo
var chainedAddrs = make([]io.WriterTo, len(s.chainIdxMap)-1)
var importedAddrs []io.WriterTo
for _, wAddr := range s.addrMap {
switch btcAddr := wAddr.(type) {
case *btcAddress:
e := &addrEntry{
addr: *btcAddr,
}
copy(e.pubKeyHash160[:], btcAddr.AddrHash())
if btcAddr.Imported() {
// No order for imported addresses.
importedAddrs = append(importedAddrs, e)
} else if btcAddr.chainIndex >= 0 {
// Chained addresses are sorted. This is
// kind of nice but probably isn't necessary.
chainedAddrs[btcAddr.chainIndex] = e
}
case *scriptAddress:
e := &scriptEntry{
script: *btcAddr,
}
copy(e.scriptHash160[:], btcAddr.AddrHash())
// scripts are always imported
importedAddrs = append(importedAddrs, e)
}
}
wts = append(chainedAddrs, importedAddrs...)
appendedEntries := varEntries{store: s, entries: wts}
// Iterate through each entry needing to be written. If data
// implements io.WriterTo, use its WriteTo func. Otherwise,
// data is a pointer to a fixed size value.
datas := []interface{}{
&fileID,
&VersCurrent,
s.net,
&s.flags,
make([]byte, 6), // Bytes for Armory unique ID
&s.createDate,
&s.name,
&s.desc,
&s.highestUsed,
&s.kdfParams,
make([]byte, 256),
&s.keyGenerator,
newUnusedSpace(1024, &s.recent),
&appendedEntries,
}
var written int64
for _, data := range datas {
if s, ok := data.(io.WriterTo); ok {
written, err = s.WriteTo(w)
} else {
written, err = binaryWrite(w, binary.LittleEndian, data)
}
n += written
if err != nil {
return n, err
}
}
return n, nil
}
// TODO: set this automatically.
func (s *Store) MarkDirty() {
s.mtx.Lock()
defer s.mtx.Unlock()
s.dirty = true
}
func (s *Store) WriteIfDirty() error {
s.mtx.RLock()
if !s.dirty {
s.mtx.RUnlock()
return nil
}
// TempFile creates the file 0600, so no need to chmod it.
fi, err := ioutil.TempFile(s.dir, s.file)
if err != nil {
s.mtx.RUnlock()
return err
}
fiPath := fi.Name()
_, err = s.writeTo(fi)
if err != nil {
s.mtx.RUnlock()
fi.Close()
return err
}
err = fi.Sync()
if err != nil {
s.mtx.RUnlock()
fi.Close()
return err
}
fi.Close()
err = rename.Atomic(fiPath, s.path)
s.mtx.RUnlock()
if err == nil {
s.mtx.Lock()
s.dirty = false
s.mtx.Unlock()
}
return err
}
// OpenDir opens a new key store from the specified directory. If the file
// does not exist, the error from the os package will be returned, and can
// be checked with os.IsNotExist to differentiate missing file errors from
// others (including deserialization).
func OpenDir(dir string) (*Store, error) {
path := filepath.Join(dir, Filename)
fi, err := os.OpenFile(path, os.O_RDONLY, 0)
if err != nil {
return nil, err
}
defer fi.Close()
store := new(Store)
_, err = store.ReadFrom(fi)
if err != nil {
return nil, err
}
store.path = path
store.dir = dir
store.file = Filename
return store, nil
}
// Unlock derives an AES key from passphrase and key store's KDF
// parameters and unlocks the root key of the key store. If
// the unlock was successful, the key store's secret key is saved,
// allowing the decryption of any encrypted private key. Any
// addresses created while the key store was locked without private
// keys are created at this time.
func (s *Store) Unlock(passphrase []byte) error {
s.mtx.Lock()
defer s.mtx.Unlock()
if s.flags.watchingOnly {
return ErrWatchingOnly
}
// Derive key from KDF parameters and passphrase.
key := kdf(passphrase, &s.kdfParams)
// Unlock root address with derived key.
if _, err := s.keyGenerator.unlock(key); err != nil {
return err
}
// If unlock was successful, save the passphrase and aes key.
s.passphrase = passphrase
s.secret = key
return s.createMissingPrivateKeys()
}
// Lock performs a best try effort to remove and zero all secret keys
// associated with the key store.
func (s *Store) Lock() (err error) {
s.mtx.Lock()
defer s.mtx.Unlock()
if s.flags.watchingOnly {
return ErrWatchingOnly
}
// Remove clear text passphrase from key store.
if s.isLocked() {
err = ErrLocked
} else {
zero(s.passphrase)
s.passphrase = nil
zero(s.secret)
s.secret = nil
}
// Remove clear text private keys from all address entries.
for _, addr := range s.addrMap {
if baddr, ok := addr.(*btcAddress); ok {
_ = baddr.lock()
}
}
return err
}
// ChangePassphrase creates a new AES key from a new passphrase and
// re-encrypts all encrypted private keys with the new key.
func (s *Store) ChangePassphrase(new []byte) error {
s.mtx.Lock()
defer s.mtx.Unlock()
if s.flags.watchingOnly {
return ErrWatchingOnly
}
if s.isLocked() {
return ErrLocked
}
oldkey := s.secret
newkey := kdf(new, &s.kdfParams)
for _, wa := range s.addrMap {
// Only btcAddresses curently have private keys.
a, ok := wa.(*btcAddress)
if !ok {
continue
}
if err := a.changeEncryptionKey(oldkey, newkey); err != nil {
return err
}
}
// zero old secrets.
zero(s.passphrase)
zero(s.secret)
// Save new secrets.
s.passphrase = new
s.secret = newkey
return nil
}
func zero(b []byte) {
for i := range b {
b[i] = 0
}
}
// IsLocked returns whether a key store is unlocked (in which case the
// key is saved in memory), or locked.
func (s *Store) IsLocked() bool {
s.mtx.RLock()
defer s.mtx.RUnlock()
return s.isLocked()
}
func (s *Store) isLocked() bool {
return len(s.secret) != 32
}
// NextChainedAddress attempts to get the next chained address. If the key
// store is unlocked, the next pubkey and private key of the address chain are
// derived. If the key store is locke, only the next pubkey is derived, and
// the private key will be generated on next unlock.
func (s *Store) NextChainedAddress(bs *BlockStamp) (btcutil.Address, error) {
s.mtx.Lock()
defer s.mtx.Unlock()
return s.nextChainedAddress(bs)
}
func (s *Store) nextChainedAddress(bs *BlockStamp) (btcutil.Address, error) {
addr, err := s.nextChainedBtcAddress(bs)
if err != nil {
return nil, err
}
return addr.Address(), nil
}
// ChangeAddress returns the next chained address from the key store, marking
// the address for a change transaction output.
func (s *Store) ChangeAddress(bs *BlockStamp) (btcutil.Address, error) {
s.mtx.Lock()
defer s.mtx.Unlock()
addr, err := s.nextChainedBtcAddress(bs)
if err != nil {
return nil, err
}
addr.flags.change = true
// Create and return payment address for address hash.
return addr.Address(), nil
}
func (s *Store) nextChainedBtcAddress(bs *BlockStamp) (*btcAddress, error) {
// Attempt to get address hash of next chained address.
nextAPKH, ok := s.chainIdxMap[s.highestUsed+1]
if !ok {
if s.isLocked() {
// Chain pubkeys.
if err := s.extendLocked(bs); err != nil {
return nil, err
}
} else {
// Chain private and pubkeys.
if err := s.extendUnlocked(bs); err != nil {
return nil, err
}
}
// Should be added to the internal maps, try lookup again.
nextAPKH, ok = s.chainIdxMap[s.highestUsed+1]
if !ok {
return nil, errors.New("chain index map inproperly updated")
}
}
// Look up address.
addr, ok := s.addrMap[getAddressKey(nextAPKH)]
if !ok {
return nil, errors.New("cannot find generated address")
}
btcAddr, ok := addr.(*btcAddress)
if !ok {
return nil, errors.New("found non-pubkey chained address")
}
s.highestUsed++
return btcAddr, nil
}
// LastChainedAddress returns the most recently requested chained
// address from calling NextChainedAddress, or the root address if
// no chained addresses have been requested.
func (s *Store) LastChainedAddress() btcutil.Address {
s.mtx.RLock()
defer s.mtx.RUnlock()
return s.chainIdxMap[s.highestUsed]
}
// extendUnlocked grows address chain for an unlocked keystore.
func (s *Store) extendUnlocked(bs *BlockStamp) error {
// Get last chained address. New chained addresses will be
// chained off of this address's chaincode and private key.
a := s.chainIdxMap[s.lastChainIdx]
waddr, ok := s.addrMap[getAddressKey(a)]
if !ok {
return errors.New("expected last chained address not found")
}
if s.isLocked() {
return ErrLocked
}
lastAddr, ok := waddr.(*btcAddress)
if !ok {
return errors.New("found non-pubkey chained address")
}
privkey, err := lastAddr.unlock(s.secret)
if err != nil {
return err
}
cc := lastAddr.chaincode[:]
privkey, err = chainedPrivKey(privkey, lastAddr.pubKeyBytes(), cc)
if err != nil {
return err
}
newAddr, err := newBtcAddress(s, privkey, nil, bs, true)
if err != nil {
return err
}
if err := newAddr.verifyKeypairs(); err != nil {
return err
}
if err = newAddr.encrypt(s.secret); err != nil {
return err
}
a = newAddr.Address()
s.addrMap[getAddressKey(a)] = newAddr
newAddr.chainIndex = lastAddr.chainIndex + 1
s.chainIdxMap[newAddr.chainIndex] = a
s.lastChainIdx++
copy(newAddr.chaincode[:], cc)
return nil
}
// extendLocked creates one new address without a private key (allowing for
// extending the address chain from a locked key store) chained from the
// last used chained address and adds the address to the key store's internal
// bookkeeping structures.
func (s *Store) extendLocked(bs *BlockStamp) error {
a := s.chainIdxMap[s.lastChainIdx]
waddr, ok := s.addrMap[getAddressKey(a)]
if !ok {
return errors.New("expected last chained address not found")
}
addr, ok := waddr.(*btcAddress)
if !ok {
return errors.New("found non-pubkey chained address")
}
cc := addr.chaincode[:]
nextPubkey, err := chainedPubKey(addr.pubKeyBytes(), cc)
if err != nil {
return err
}
newaddr, err := newBtcAddressWithoutPrivkey(s, nextPubkey, nil, bs)
if err != nil {
return err
}
a = newaddr.Address()
s.addrMap[getAddressKey(a)] = newaddr
newaddr.chainIndex = addr.chainIndex + 1
s.chainIdxMap[newaddr.chainIndex] = a
s.lastChainIdx++
copy(newaddr.chaincode[:], cc)
if s.missingKeysStart == rootKeyChainIdx {
s.missingKeysStart = newaddr.chainIndex
}
return nil
}
func (s *Store) createMissingPrivateKeys() error {
idx := s.missingKeysStart
if idx == rootKeyChainIdx {
return nil
}
// Lookup previous address.
apkh, ok := s.chainIdxMap[idx-1]
if !ok {
return errors.New("missing previous chained address")
}
prevWAddr := s.addrMap[getAddressKey(apkh)]
if s.isLocked() {
return ErrLocked
}
prevAddr, ok := prevWAddr.(*btcAddress)
if !ok {
return errors.New("found non-pubkey chained address")
}
prevPrivKey, err := prevAddr.unlock(s.secret)
if err != nil {
return err
}
for i := idx; ; i++ {
// Get the next private key for the ith address in the address chain.
ithPrivKey, err := chainedPrivKey(prevPrivKey,
prevAddr.pubKeyBytes(), prevAddr.chaincode[:])
if err != nil {
return err
}
// Get the address with the missing private key, set, and
// encrypt.
apkh, ok := s.chainIdxMap[i]
if !ok {
// Finished.
break
}
waddr := s.addrMap[getAddressKey(apkh)]
addr, ok := waddr.(*btcAddress)
if !ok {
return errors.New("found non-pubkey chained address")
}
addr.privKeyCT = ithPrivKey
if err := addr.encrypt(s.secret); err != nil {
// Avoid bug: see comment for VersUnsetNeedsPrivkeyFlag.
if err != ErrAlreadyEncrypted || s.vers.LT(VersUnsetNeedsPrivkeyFlag) {
return err
}
}
addr.flags.createPrivKeyNextUnlock = false
// Set previous address and private key for next iteration.
prevAddr = addr
prevPrivKey = ithPrivKey
}
s.missingKeysStart = rootKeyChainIdx
return nil
}
// Address returns an walletAddress structure for an address in a key store.
// This address may be typecast into other interfaces (like PubKeyAddress
// and ScriptAddress) if specific information e.g. keys is required.
func (s *Store) Address(a btcutil.Address) (WalletAddress, error) {
s.mtx.RLock()
defer s.mtx.RUnlock()
// Look up address by address hash.
btcaddr, ok := s.addrMap[getAddressKey(a)]
if !ok {
return nil, ErrAddressNotFound
}
return btcaddr, nil
}
// Net returns the bitcoin network parameters for this key store.
func (s *Store) Net() *chaincfg.Params {
s.mtx.RLock()
defer s.mtx.RUnlock()
return s.netParams()
}
func (s *Store) netParams() *chaincfg.Params {
return (*chaincfg.Params)(s.net)
}
// SetSyncStatus sets the sync status for a single key store address. This
// may error if the address is not found in the key store.
//
// When marking an address as unsynced, only the type Unsynced matters.
// The value is ignored.
func (s *Store) SetSyncStatus(a btcutil.Address, ss SyncStatus) error {
s.mtx.Lock()
defer s.mtx.Unlock()
wa, ok := s.addrMap[getAddressKey(a)]
if !ok {
return ErrAddressNotFound
}
wa.setSyncStatus(ss)
return nil
}
// SetSyncedWith marks already synced addresses in the key store to be in
// sync with the recently-seen block described by the blockstamp.
// Unsynced addresses are unaffected by this method and must be marked
// as in sync with MarkAddressSynced or MarkAllSynced to be considered
// in sync with bs.
//
// If bs is nil, the entire key store is marked unsynced.
func (s *Store) SetSyncedWith(bs *BlockStamp) {
s.mtx.Lock()
defer s.mtx.Unlock()
if bs == nil {
s.recent.hashes = s.recent.hashes[:0]
s.recent.lastHeight = s.keyGenerator.firstBlock
s.keyGenerator.setSyncStatus(Unsynced(s.keyGenerator.firstBlock))
return
}
// Check if we're trying to rollback the last seen history.
// If so, and this bs is already saved, remove anything
// after and return. Otherwire, remove previous hashes.
if bs.Height < s.recent.lastHeight {
maybeIdx := len(s.recent.hashes) - 1 - int(s.recent.lastHeight-bs.Height)
if maybeIdx >= 0 && maybeIdx < len(s.recent.hashes) &&
*s.recent.hashes[maybeIdx] == *bs.Hash {
s.recent.lastHeight = bs.Height
// subslice out the removed hashes.
s.recent.hashes = s.recent.hashes[:maybeIdx]
return
}
s.recent.hashes = nil
}
if bs.Height != s.recent.lastHeight+1 {
s.recent.hashes = nil
}
s.recent.lastHeight = bs.Height
if len(s.recent.hashes) == 20 {
// Make room for the most recent hash.
copy(s.recent.hashes, s.recent.hashes[1:])
// Set new block in the last position.
s.recent.hashes[19] = bs.Hash
} else {
s.recent.hashes = append(s.recent.hashes, bs.Hash)
}
}
// SyncHeight returns details about the block that a wallet is marked at least
// synced through. The height is the height that rescans should start at when
// syncing a wallet back to the best chain.
//
// NOTE: If the hash of the synced block is not known, hash will be nil, and
// must be obtained from elsewhere. This must be explicitly checked before
// dereferencing the pointer.
func (s *Store) SyncedTo() (hash *chainhash.Hash, height int32) {
s.mtx.RLock()
defer s.mtx.RUnlock()
switch h, ok := s.keyGenerator.SyncStatus().(PartialSync); {
case ok && int32(h) > s.recent.lastHeight:
height = int32(h)
default:
height = s.recent.lastHeight
if n := len(s.recent.hashes); n != 0 {
hash = s.recent.hashes[n-1]
}
}
for _, a := range s.addrMap {
var syncHeight int32
switch e := a.SyncStatus().(type) {
case Unsynced:
syncHeight = int32(e)
case PartialSync:
syncHeight = int32(e)
case FullSync:
continue
}
if syncHeight < height {
height = syncHeight
hash = nil
// Can't go lower than 0.
if height == 0 {
return
}
}
}
return
}
// NewIterateRecentBlocks returns an iterator for recently-seen blocks.
// The iterator starts at the most recently-added block, and Prev should
// be used to access earlier blocks.
func (s *Store) NewIterateRecentBlocks() *BlockIterator {
s.mtx.RLock()
defer s.mtx.RUnlock()
return s.recent.iter(s)
}
// ImportPrivateKey imports a WIF private key into the keystore. The imported
// address is created using either a compressed or uncompressed serialized
// public key, depending on the CompressPubKey bool of the WIF.
func (s *Store) ImportPrivateKey(wif *btcutil.WIF, bs *BlockStamp) (btcutil.Address, error) {
s.mtx.Lock()
defer s.mtx.Unlock()
if s.flags.watchingOnly {
return nil, ErrWatchingOnly
}
// First, must check that the key being imported will not result
// in a duplicate address.
pkh := btcutil.Hash160(wif.SerializePubKey())
if _, ok := s.addrMap[addressKey(pkh)]; ok {
return nil, ErrDuplicate
}
// The key store must be unlocked to encrypt the imported private key.
if s.isLocked() {
return nil, ErrLocked
}
// Create new address with this private key.
privKey := wif.PrivKey.Serialize()
btcaddr, err := newBtcAddress(s, privKey, nil, bs, wif.CompressPubKey)
if err != nil {
return nil, err
}
btcaddr.chainIndex = importedKeyChainIdx
// Mark as unsynced if import height is below currently-synced
// height.
if len(s.recent.hashes) != 0 && bs.Height < s.recent.lastHeight {
btcaddr.flags.unsynced = true
}
// Encrypt imported address with the derived AES key.
if err = btcaddr.encrypt(s.secret); err != nil {
return nil, err
}
addr := btcaddr.Address()
// Add address to key store's bookkeeping structures. Adding to
// the map will result in the imported address being serialized
// on the next WriteTo call.
s.addrMap[getAddressKey(addr)] = btcaddr
s.importedAddrs = append(s.importedAddrs, btcaddr)
// Create and return address.
return addr, nil
}
// ImportScript creates a new scriptAddress with a user-provided script
// and adds it to the key store.
func (s *Store) ImportScript(script []byte, bs *BlockStamp) (btcutil.Address, error) {
s.mtx.Lock()
defer s.mtx.Unlock()
if s.flags.watchingOnly {
return nil, ErrWatchingOnly
}
if _, ok := s.addrMap[addressKey(btcutil.Hash160(script))]; ok {
return nil, ErrDuplicate
}
// Create new address with this private key.
scriptaddr, err := newScriptAddress(s, script, bs)
if err != nil {
return nil, err
}
// Mark as unsynced if import height is below currently-synced
// height.
if len(s.recent.hashes) != 0 && bs.Height < s.recent.lastHeight {
scriptaddr.flags.unsynced = true
}
// Add address to key store's bookkeeping structures. Adding to
// the map will result in the imported address being serialized
// on the next WriteTo call.
addr := scriptaddr.Address()
s.addrMap[getAddressKey(addr)] = scriptaddr
s.importedAddrs = append(s.importedAddrs, scriptaddr)
// Create and return address.
return addr, nil
}
// CreateDate returns the Unix time of the key store creation time. This
// is used to compare the key store creation time against block headers and
// set a better minimum block height of where to being rescans.
func (s *Store) CreateDate() int64 {
s.mtx.RLock()
defer s.mtx.RUnlock()
return s.createDate
}
// ExportWatchingWallet creates and returns a new key store with the same
// addresses in w, but as a watching-only key store without any private keys.
// New addresses created by the watching key store will match the new addresses
// created the original key store (thanks to public key address chaining), but
// will be missing the associated private keys.
func (s *Store) ExportWatchingWallet() (*Store, error) {
s.mtx.RLock()
defer s.mtx.RUnlock()
// Don't continue if key store is already watching-only.
if s.flags.watchingOnly {
return nil, ErrWatchingOnly
}
// Copy members of w into a new key store, but mark as watching-only and
// do not include any private keys.
ws := &Store{
vers: s.vers,
net: s.net,
flags: walletFlags{
useEncryption: false,
watchingOnly: true,
},
name: s.name,
desc: s.desc,
createDate: s.createDate,
highestUsed: s.highestUsed,
recent: recentBlocks{
lastHeight: s.recent.lastHeight,
},
addrMap: make(map[addressKey]walletAddress),
// todo oga make me a list
chainIdxMap: make(map[int64]btcutil.Address),
lastChainIdx: s.lastChainIdx,
}
kgwc := s.keyGenerator.watchingCopy(ws)
ws.keyGenerator = *(kgwc.(*btcAddress))
if len(s.recent.hashes) != 0 {
ws.recent.hashes = make([]*chainhash.Hash, 0, len(s.recent.hashes))
for _, hash := range s.recent.hashes {
hashCpy := *hash
ws.recent.hashes = append(ws.recent.hashes, &hashCpy)
}
}
for apkh, addr := range s.addrMap {
if !addr.Imported() {
// Must be a btcAddress if !imported.
btcAddr := addr.(*btcAddress)
ws.chainIdxMap[btcAddr.chainIndex] =
addr.Address()
}
apkhCopy := apkh
ws.addrMap[apkhCopy] = addr.watchingCopy(ws)
}
if len(s.importedAddrs) != 0 {
ws.importedAddrs = make([]walletAddress, 0,
len(s.importedAddrs))
for _, addr := range s.importedAddrs {
ws.importedAddrs = append(ws.importedAddrs, addr.watchingCopy(ws))
}
}
return ws, nil
}
// SyncStatus is the interface type for all sync variants.
type SyncStatus interface {
ImplementsSyncStatus()
}
type (
// Unsynced is a type representing an unsynced address. When this is
// returned by a key store method, the value is the recorded first seen
// block height.
Unsynced int32
// PartialSync is a type representing a partially synced address (for
// example, due to the result of a partially-completed rescan).
PartialSync int32
// FullSync is a type representing an address that is in sync with the
// recently seen blocks.
FullSync struct{}
)
// ImplementsSyncStatus is implemented to make Unsynced a SyncStatus.
func (u Unsynced) ImplementsSyncStatus() {}
// ImplementsSyncStatus is implemented to make PartialSync a SyncStatus.
func (p PartialSync) ImplementsSyncStatus() {}
// ImplementsSyncStatus is implemented to make FullSync a SyncStatus.
func (f FullSync) ImplementsSyncStatus() {}
// WalletAddress is an interface that provides acces to information regarding an
// address managed by a key store. Concrete implementations of this type may
// provide further fields to provide information specific to that type of
// address.
type WalletAddress interface {
// Address returns a btcutil.Address for the backing address.
Address() btcutil.Address
// AddrHash returns the key or script hash related to the address
AddrHash() string
// FirstBlock returns the first block an address could be in.
FirstBlock() int32
// Compressed returns true if the backing address was imported instead
// of being part of an address chain.
Imported() bool
// Compressed returns true if the backing address was created for a
// change output of a transaction.
Change() bool
// Compressed returns true if the backing address is compressed.
Compressed() bool
// SyncStatus returns the current synced state of an address.
SyncStatus() SyncStatus
}
// SortedActiveAddresses returns all key store addresses that have been
// requested to be generated. These do not include unused addresses in
// the key pool. Use this when ordered addresses are needed. Otherwise,
// ActiveAddresses is preferred.
func (s *Store) SortedActiveAddresses() []WalletAddress {
s.mtx.RLock()
defer s.mtx.RUnlock()
addrs := make([]WalletAddress, 0,
s.highestUsed+int64(len(s.importedAddrs))+1)
for i := int64(rootKeyChainIdx); i <= s.highestUsed; i++ {
a := s.chainIdxMap[i]
info, ok := s.addrMap[getAddressKey(a)]
if ok {
addrs = append(addrs, info)
}
}
for _, addr := range s.importedAddrs {
addrs = append(addrs, addr)
}
return addrs
}
// ActiveAddresses returns a map between active payment addresses
// and their full info. These do not include unused addresses in the
// key pool. If addresses must be sorted, use SortedActiveAddresses.
func (s *Store) ActiveAddresses() map[btcutil.Address]WalletAddress {
s.mtx.RLock()
defer s.mtx.RUnlock()
addrs := make(map[btcutil.Address]WalletAddress)
for i := int64(rootKeyChainIdx); i <= s.highestUsed; i++ {
a := s.chainIdxMap[i]
addr := s.addrMap[getAddressKey(a)]
addrs[addr.Address()] = addr
}
for _, addr := range s.importedAddrs {
addrs[addr.Address()] = addr
}
return addrs
}
// ExtendActiveAddresses gets or creates the next n addresses from the
// address chain and marks each as active. This is used to recover
// deterministic (not imported) addresses from a key store backup, or to
// keep the active addresses in sync between an encrypted key store with
// private keys and an exported watching key store without.
//
// A slice is returned with the btcutil.Address of each new address.
// The blockchain must be rescanned for these addresses.
func (s *Store) ExtendActiveAddresses(n int) ([]btcutil.Address, error) {
s.mtx.Lock()
defer s.mtx.Unlock()
last := s.addrMap[getAddressKey(s.chainIdxMap[s.highestUsed])]
bs := &BlockStamp{Height: last.FirstBlock()}
addrs := make([]btcutil.Address, n)
for i := 0; i < n; i++ {
addr, err := s.nextChainedAddress(bs)
if err != nil {
return nil, err
}
addrs[i] = addr
}
return addrs, nil
}
type walletFlags struct {
useEncryption bool
watchingOnly bool
}
func (wf *walletFlags) ReadFrom(r io.Reader) (int64, error) {
var b [8]byte
n, err := io.ReadFull(r, b[:])
if err != nil {
return int64(n), err
}
wf.useEncryption = b[0]&(1<<0) != 0
wf.watchingOnly = b[0]&(1<<1) != 0
return int64(n), nil
}
func (wf *walletFlags) WriteTo(w io.Writer) (int64, error) {
var b [8]byte
if wf.useEncryption {
b[0] |= 1 << 0
}
if wf.watchingOnly {
b[0] |= 1 << 1
}
n, err := w.Write(b[:])
return int64(n), err
}
type addrFlags struct {
hasPrivKey bool
hasPubKey bool
encrypted bool
createPrivKeyNextUnlock bool
compressed bool
change bool
unsynced bool
partialSync bool
}
func (af *addrFlags) ReadFrom(r io.Reader) (int64, error) {
var b [8]byte
n, err := io.ReadFull(r, b[:])
if err != nil {
return int64(n), err
}
af.hasPrivKey = b[0]&(1<<0) != 0
af.hasPubKey = b[0]&(1<<1) != 0
af.encrypted = b[0]&(1<<2) != 0
af.createPrivKeyNextUnlock = b[0]&(1<<3) != 0
af.compressed = b[0]&(1<<4) != 0
af.change = b[0]&(1<<5) != 0
af.unsynced = b[0]&(1<<6) != 0
af.partialSync = b[0]&(1<<7) != 0
// Currently (at least until watching-only key stores are implemented)
// btcwallet shall refuse to open any unencrypted addresses. This
// check only makes sense if there is a private key to encrypt, which
// there may not be if the keypool was extended from just the last
// public key and no private keys were written.
if af.hasPrivKey && !af.encrypted {
return int64(n), errors.New("private key is unencrypted")
}
return int64(n), nil
}
func (af *addrFlags) WriteTo(w io.Writer) (int64, error) {
var b [8]byte
if af.hasPrivKey {
b[0] |= 1 << 0
}
if af.hasPubKey {
b[0] |= 1 << 1
}
if af.hasPrivKey && !af.encrypted {
// We only support encrypted privkeys.
return 0, errors.New("address must be encrypted")
}
if af.encrypted {
b[0] |= 1 << 2
}
if af.createPrivKeyNextUnlock {
b[0] |= 1 << 3
}
if af.compressed {
b[0] |= 1 << 4
}
if af.change {
b[0] |= 1 << 5
}
if af.unsynced {
b[0] |= 1 << 6
}
if af.partialSync {
b[0] |= 1 << 7
}
n, err := w.Write(b[:])
return int64(n), err
}
// recentBlocks holds at most the last 20 seen block hashes as well as
// the block height of the most recently seen block.
type recentBlocks struct {
hashes []*chainhash.Hash
lastHeight int32
}
func (rb *recentBlocks) readFromVersion(v version, r io.Reader) (int64, error) {
if !v.LT(Vers20LastBlocks) {
// Use current version.
return rb.ReadFrom(r)
}
// Old file versions only saved the most recently seen
// block height and hash, not the last 20.
var read int64
// Read height.
var heightBytes [4]byte // 4 bytes for a int32
n, err := io.ReadFull(r, heightBytes[:])
read += int64(n)
if err != nil {
return read, err
}
rb.lastHeight = int32(binary.LittleEndian.Uint32(heightBytes[:]))
// If height is -1, the last synced block is unknown, so don't try
// to read a block hash.
if rb.lastHeight == -1 {
rb.hashes = nil
return read, nil
}
// Read block hash.
var syncedBlockHash chainhash.Hash
n, err = io.ReadFull(r, syncedBlockHash[:])
read += int64(n)
if err != nil {
return read, err
}
rb.hashes = []*chainhash.Hash{
&syncedBlockHash,
}
return read, nil
}
func (rb *recentBlocks) ReadFrom(r io.Reader) (int64, error) {
var read int64
// Read number of saved blocks. This should not exceed 20.
var nBlockBytes [4]byte // 4 bytes for a uint32
n, err := io.ReadFull(r, nBlockBytes[:])
read += int64(n)
if err != nil {
return read, err
}
nBlocks := binary.LittleEndian.Uint32(nBlockBytes[:])
if nBlocks > 20 {
return read, errors.New("number of last seen blocks exceeds maximum of 20")
}
// Read most recently seen block height.
var heightBytes [4]byte // 4 bytes for a int32
n, err = io.ReadFull(r, heightBytes[:])
read += int64(n)
if err != nil {
return read, err
}
height := int32(binary.LittleEndian.Uint32(heightBytes[:]))
// height should not be -1 (or any other negative number)
// since at this point we should be reading in at least one
// known block.
if height < 0 {
return read, errors.New("expected a block but specified height is negative")
}
// Set last seen height.
rb.lastHeight = height
// Read nBlocks block hashes. Hashes are expected to be in
// order of oldest to newest, but there's no way to check
// that here.
rb.hashes = make([]*chainhash.Hash, 0, nBlocks)
for i := uint32(0); i < nBlocks; i++ {
var blockHash chainhash.Hash
n, err := io.ReadFull(r, blockHash[:])
read += int64(n)
if err != nil {
return read, err
}
rb.hashes = append(rb.hashes, &blockHash)
}
return read, nil
}
func (rb *recentBlocks) WriteTo(w io.Writer) (int64, error) {
var written int64
// Write number of saved blocks. This should not exceed 20.
nBlocks := uint32(len(rb.hashes))
if nBlocks > 20 {
return written, errors.New("number of last seen blocks exceeds maximum of 20")
}
if nBlocks != 0 && rb.lastHeight < 0 {
return written, errors.New("number of block hashes is positive, but height is negative")
}
var nBlockBytes [4]byte // 4 bytes for a uint32
binary.LittleEndian.PutUint32(nBlockBytes[:], nBlocks)
n, err := w.Write(nBlockBytes[:])
written += int64(n)
if err != nil {
return written, err
}
// Write most recently seen block height.
var heightBytes [4]byte // 4 bytes for a int32
binary.LittleEndian.PutUint32(heightBytes[:], uint32(rb.lastHeight))
n, err = w.Write(heightBytes[:])
written += int64(n)
if err != nil {
return written, err
}
// Write block hashes.
for _, hash := range rb.hashes {
n, err := w.Write(hash[:])
written += int64(n)
if err != nil {
return written, err
}
}
return written, nil
}
// BlockIterator allows for the forwards and backwards iteration of recently
// seen blocks.
type BlockIterator struct {
storeMtx *sync.RWMutex
height int32
index int
rb *recentBlocks
}
func (rb *recentBlocks) iter(s *Store) *BlockIterator {
if rb.lastHeight == -1 || len(rb.hashes) == 0 {
return nil
}
return &BlockIterator{
storeMtx: &s.mtx,
height: rb.lastHeight,
index: len(rb.hashes) - 1,
rb: rb,
}
}
func (it *BlockIterator) Next() bool {
it.storeMtx.RLock()
defer it.storeMtx.RUnlock()
if it.index+1 >= len(it.rb.hashes) {
return false
}
it.index++
return true
}
func (it *BlockIterator) Prev() bool {
it.storeMtx.RLock()
defer it.storeMtx.RUnlock()
if it.index-1 < 0 {
return false
}
it.index--
return true
}
func (it *BlockIterator) BlockStamp() BlockStamp {
it.storeMtx.RLock()
defer it.storeMtx.RUnlock()
return BlockStamp{
Height: it.rb.lastHeight - int32(len(it.rb.hashes)-1-it.index),
Hash: it.rb.hashes[it.index],
}
}
// unusedSpace is a wrapper type to read or write one or more types
// that btcwallet fits into an unused space left by Armory's key store file
// format.
type unusedSpace struct {
nBytes int // number of unused bytes that armory left.
rfvs []readerFromVersion
}
func newUnusedSpace(nBytes int, rfvs ...readerFromVersion) *unusedSpace {
return &unusedSpace{
nBytes: nBytes,
rfvs: rfvs,
}
}
func (u *unusedSpace) readFromVersion(v version, r io.Reader) (int64, error) {
var read int64
for _, rfv := range u.rfvs {
n, err := rfv.readFromVersion(v, r)
if err != nil {
return read + n, err
}
read += n
if read > int64(u.nBytes) {
return read, errors.New("read too much from armory's unused space")
}
}
// Read rest of actually unused bytes.
unused := make([]byte, u.nBytes-int(read))
n, err := io.ReadFull(r, unused)
return read + int64(n), err
}
func (u *unusedSpace) WriteTo(w io.Writer) (int64, error) {
var written int64
for _, wt := range u.rfvs {
n, err := wt.WriteTo(w)
if err != nil {
return written + n, err
}
written += n
if written > int64(u.nBytes) {
return written, errors.New("wrote too much to armory's unused space")
}
}
// Write rest of actually unused bytes.
unused := make([]byte, u.nBytes-int(written))
n, err := w.Write(unused)
return written + int64(n), err
}
// walletAddress is the internal interface used to abstracted around the
// different address types.
type walletAddress interface {
io.ReaderFrom
io.WriterTo
WalletAddress
watchingCopy(*Store) walletAddress
setSyncStatus(SyncStatus)
}
type btcAddress struct {
store *Store
address btcutil.Address
flags addrFlags
chaincode [32]byte
chainIndex int64
chainDepth int64 // unused
initVector [16]byte
privKey [32]byte
pubKey *btcec.PublicKey
firstSeen int64
lastSeen int64
firstBlock int32
partialSyncHeight int32 // This is reappropriated from armory's `lastBlock` field.
privKeyCT []byte // non-nil if unlocked.
}
const (
// Root address has a chain index of -1. Each subsequent
// chained address increments the index.
rootKeyChainIdx = -1
// Imported private keys are not part of the chain, and have a
// special index of -2.
importedKeyChainIdx = -2
)
const (
pubkeyCompressed byte = 0x2
pubkeyUncompressed byte = 0x4
)
type publicKey []byte
func (k *publicKey) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
var format byte
read, err = binaryRead(r, binary.LittleEndian, &format)
if err != nil {
return n + read, err
}
n += read
// Remove the oddness from the format
noodd := format
noodd &= ^byte(0x1)
var s []byte
switch noodd {
case pubkeyUncompressed:
// Read the remaining 64 bytes.
s = make([]byte, 64)
case pubkeyCompressed:
// Read the remaining 32 bytes.
s = make([]byte, 32)
default:
return n, errors.New("unrecognized pubkey format")
}
read, err = binaryRead(r, binary.LittleEndian, &s)
if err != nil {
return n + read, err
}
n += read
*k = append([]byte{format}, s...)
return
}
func (k *publicKey) WriteTo(w io.Writer) (n int64, err error) {
return binaryWrite(w, binary.LittleEndian, []byte(*k))
}
// PubKeyAddress implements WalletAddress and additionally provides the
// pubkey for a pubkey-based address.
type PubKeyAddress interface {
WalletAddress
// PubKey returns the public key associated with the address.
PubKey() *btcec.PublicKey
// ExportPubKey returns the public key associated with the address
// serialised as a hex encoded string.
ExportPubKey() string
// PrivKey returns the private key for the address.
// It can fail if the key store is watching only, the key store is locked,
// or the address doesn't have any keys.
PrivKey() (*btcec.PrivateKey, error)
// ExportPrivKey exports the WIF private key.
ExportPrivKey() (*btcutil.WIF, error)
}
// newBtcAddress initializes and returns a new address. privkey must
// be 32 bytes. iv must be 16 bytes, or nil (in which case it is
// randomly generated).
func newBtcAddress(wallet *Store, privkey, iv []byte, bs *BlockStamp, compressed bool) (addr *btcAddress, err error) {
if len(privkey) != 32 {
return nil, errors.New("private key is not 32 bytes")
}
addr, err = newBtcAddressWithoutPrivkey(wallet,
pubkeyFromPrivkey(privkey, compressed), iv, bs)
if err != nil {
return nil, err
}
addr.flags.createPrivKeyNextUnlock = false
addr.flags.hasPrivKey = true
addr.privKeyCT = privkey
return addr, nil
}
// newBtcAddressWithoutPrivkey initializes and returns a new address with an
// unknown (at the time) private key that must be found later. pubkey must be
// 33 or 65 bytes, and iv must be 16 bytes or empty (in which case it is
// randomly generated).
func newBtcAddressWithoutPrivkey(s *Store, pubkey, iv []byte, bs *BlockStamp) (addr *btcAddress, err error) {
var compressed bool
switch n := len(pubkey); n {
case btcec.PubKeyBytesLenCompressed:
compressed = true
case btcec.PubKeyBytesLenUncompressed:
compressed = false
default:
return nil, fmt.Errorf("invalid pubkey length %d", n)
}
if len(iv) == 0 {
iv = make([]byte, 16)
if _, err := rand.Read(iv); err != nil {
return nil, err
}
} else if len(iv) != 16 {
return nil, errors.New("init vector must be nil or 16 bytes large")
}
pk, err := btcec.ParsePubKey(pubkey, btcec.S256())
if err != nil {
return nil, err
}
address, err := btcutil.NewAddressPubKeyHash(btcutil.Hash160(pubkey), s.netParams())
if err != nil {
return nil, err
}
addr = &btcAddress{
flags: addrFlags{
hasPrivKey: false,
hasPubKey: true,
encrypted: false,
createPrivKeyNextUnlock: true,
compressed: compressed,
change: false,
unsynced: false,
},
store: s,
address: address,
firstSeen: time.Now().Unix(),
firstBlock: bs.Height,
pubKey: pk,
}
copy(addr.initVector[:], iv)
return addr, nil
}
// newRootBtcAddress generates a new address, also setting the
// chaincode and chain index to represent this address as a root
// address.
func newRootBtcAddress(s *Store, privKey, iv, chaincode []byte,
bs *BlockStamp) (addr *btcAddress, err error) {
if len(chaincode) != 32 {
return nil, errors.New("chaincode is not 32 bytes")
}
// Create new btcAddress with provided inputs. This will
// always use a compressed pubkey.
addr, err = newBtcAddress(s, privKey, iv, bs, true)
if err != nil {
return nil, err
}
copy(addr.chaincode[:], chaincode)
addr.chainIndex = rootKeyChainIdx
return addr, err
}
// verifyKeypairs creates a signature using the parsed private key and
// verifies the signature with the parsed public key. If either of these
// steps fail, the keypair generation failed and any funds sent to this
// address will be unspendable. This step requires an unencrypted or
// unlocked btcAddress.
func (a *btcAddress) verifyKeypairs() error {
if len(a.privKeyCT) != 32 {
return errors.New("private key unavailable")
}
privKey := &btcec.PrivateKey{
PublicKey: *a.pubKey.ToECDSA(),
D: new(big.Int).SetBytes(a.privKeyCT),
}
data := "String to sign."
sig, err := privKey.Sign([]byte(data))
if err != nil {
return err
}
ok := sig.Verify([]byte(data), privKey.PubKey())
if !ok {
return errors.New("pubkey verification failed")
}
return nil
}
// ReadFrom reads an encrypted address from an io.Reader.
func (a *btcAddress) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
// Checksums
var chkPubKeyHash uint32
var chkChaincode uint32
var chkInitVector uint32
var chkPrivKey uint32
var chkPubKey uint32
var pubKeyHash [ripemd160.Size]byte
var pubKey publicKey
// Read serialized key store into addr fields and checksums.
datas := []interface{}{
&pubKeyHash,
&chkPubKeyHash,
make([]byte, 4), // version
&a.flags,
&a.chaincode,
&chkChaincode,
&a.chainIndex,
&a.chainDepth,
&a.initVector,
&chkInitVector,
&a.privKey,
&chkPrivKey,
&pubKey,
&chkPubKey,
&a.firstSeen,
&a.lastSeen,
&a.firstBlock,
&a.partialSyncHeight,
}
for _, data := range datas {
if rf, ok := data.(io.ReaderFrom); ok {
read, err = rf.ReadFrom(r)
} else {
read, err = binaryRead(r, binary.LittleEndian, data)
}
if err != nil {
return n + read, err
}
n += read
}
// Verify checksums, correct errors where possible.
checks := []struct {
data []byte
chk uint32
}{
{pubKeyHash[:], chkPubKeyHash},
{a.chaincode[:], chkChaincode},
{a.initVector[:], chkInitVector},
{a.privKey[:], chkPrivKey},
{pubKey, chkPubKey},
}
for i := range checks {
if err = verifyAndFix(checks[i].data, checks[i].chk); err != nil {
return n, err
}
}
if !a.flags.hasPubKey {
return n, errors.New("read in an address without a public key")
}
pk, err := btcec.ParsePubKey(pubKey, btcec.S256())
if err != nil {
return n, err
}
a.pubKey = pk
addr, err := btcutil.NewAddressPubKeyHash(pubKeyHash[:], a.store.netParams())
if err != nil {
return n, err
}
a.address = addr
return n, nil
}
func (a *btcAddress) WriteTo(w io.Writer) (n int64, err error) {
var written int64
pubKey := a.pubKeyBytes()
hash := a.address.ScriptAddress()
datas := []interface{}{
&hash,
walletHash(hash),
make([]byte, 4), //version
&a.flags,
&a.chaincode,
walletHash(a.chaincode[:]),
&a.chainIndex,
&a.chainDepth,
&a.initVector,
walletHash(a.initVector[:]),
&a.privKey,
walletHash(a.privKey[:]),
&pubKey,
walletHash(pubKey),
&a.firstSeen,
&a.lastSeen,
&a.firstBlock,
&a.partialSyncHeight,
}
for _, data := range datas {
if wt, ok := data.(io.WriterTo); ok {
written, err = wt.WriteTo(w)
} else {
written, err = binaryWrite(w, binary.LittleEndian, data)
}
if err != nil {
return n + written, err
}
n += written
}
return n, nil
}
// encrypt attempts to encrypt an address's clear text private key,
// failing if the address is already encrypted or if the private key is
// not 32 bytes. If successful, the encryption flag is set.
func (a *btcAddress) encrypt(key []byte) error {
if a.flags.encrypted {
return ErrAlreadyEncrypted
}
if len(a.privKeyCT) != 32 {
return errors.New("invalid clear text private key")
}
aesBlockEncrypter, err := aes.NewCipher(key)
if err != nil {
return err
}
aesEncrypter := cipher.NewCFBEncrypter(aesBlockEncrypter, a.initVector[:])
aesEncrypter.XORKeyStream(a.privKey[:], a.privKeyCT)
a.flags.hasPrivKey = true
a.flags.encrypted = true
return nil
}
// lock removes the reference this address holds to its clear text
// private key. This function fails if the address is not encrypted.
func (a *btcAddress) lock() error {
if !a.flags.encrypted {
return errors.New("unable to lock unencrypted address")
}
zero(a.privKeyCT)
a.privKeyCT = nil
return nil
}
// unlock decrypts and stores a pointer to an address's private key,
// failing if the address is not encrypted, or the provided key is
// incorrect. The returned clear text private key will always be a copy
// that may be safely used by the caller without worrying about it being
// zeroed during an address lock.
func (a *btcAddress) unlock(key []byte) (privKeyCT []byte, err error) {
if !a.flags.encrypted {
return nil, errors.New("unable to unlock unencrypted address")
}
// Decrypt private key with AES key.
aesBlockDecrypter, err := aes.NewCipher(key)
if err != nil {
return nil, err
}
aesDecrypter := cipher.NewCFBDecrypter(aesBlockDecrypter, a.initVector[:])
privkey := make([]byte, 32)
aesDecrypter.XORKeyStream(privkey, a.privKey[:])
// If secret is already saved, simply compare the bytes.
if len(a.privKeyCT) == 32 {
if !bytes.Equal(a.privKeyCT, privkey) {
return nil, ErrWrongPassphrase
}
privKeyCT := make([]byte, 32)
copy(privKeyCT, a.privKeyCT)
return privKeyCT, nil
}
x, y := btcec.S256().ScalarBaseMult(privkey)
if x.Cmp(a.pubKey.X) != 0 || y.Cmp(a.pubKey.Y) != 0 {
return nil, ErrWrongPassphrase
}
privkeyCopy := make([]byte, 32)
copy(privkeyCopy, privkey)
a.privKeyCT = privkey
return privkeyCopy, nil
}
// changeEncryptionKey re-encrypts the private keys for an address
// with a new AES encryption key. oldkey must be the old AES encryption key
// and is used to decrypt the private key.
func (a *btcAddress) changeEncryptionKey(oldkey, newkey []byte) error {
// Address must have a private key and be encrypted to continue.
if !a.flags.hasPrivKey {
return errors.New("no private key")
}
if !a.flags.encrypted {
return errors.New("address is not encrypted")
}
privKeyCT, err := a.unlock(oldkey)
if err != nil {
return err
}
aesBlockEncrypter, err := aes.NewCipher(newkey)
if err != nil {
return err
}
newIV := make([]byte, len(a.initVector))
if _, err := rand.Read(newIV); err != nil {
return err
}
copy(a.initVector[:], newIV)
aesEncrypter := cipher.NewCFBEncrypter(aesBlockEncrypter, a.initVector[:])
aesEncrypter.XORKeyStream(a.privKey[:], privKeyCT)
return nil
}
// Address returns the pub key address, implementing AddressInfo.
func (a *btcAddress) Address() btcutil.Address {
return a.address
}
// AddrHash returns the pub key hash, implementing WalletAddress.
func (a *btcAddress) AddrHash() string {
return string(a.address.ScriptAddress())
}
// FirstBlock returns the first block the address is seen in, implementing
// AddressInfo.
func (a *btcAddress) FirstBlock() int32 {
return a.firstBlock
}
// Imported returns the pub if the address was imported, or a chained address,
// implementing AddressInfo.
func (a *btcAddress) Imported() bool {
return a.chainIndex == importedKeyChainIdx
}
// Change returns true if the address was created as a change address,
// implementing AddressInfo.
func (a *btcAddress) Change() bool {
return a.flags.change
}
// Compressed returns true if the address backing key is compressed,
// implementing AddressInfo.
func (a *btcAddress) Compressed() bool {
return a.flags.compressed
}
// SyncStatus returns a SyncStatus type for how the address is currently
// synced. For an Unsynced type, the value is the recorded first seen
// block height of the address.
func (a *btcAddress) SyncStatus() SyncStatus {
switch {
case a.flags.unsynced && !a.flags.partialSync:
return Unsynced(a.firstBlock)
case a.flags.unsynced && a.flags.partialSync:
return PartialSync(a.partialSyncHeight)
default:
return FullSync{}
}
}
// PubKey returns the hex encoded pubkey for the address. Implementing
// PubKeyAddress.
func (a *btcAddress) PubKey() *btcec.PublicKey {
return a.pubKey
}
func (a *btcAddress) pubKeyBytes() []byte {
if a.Compressed() {
return a.pubKey.SerializeCompressed()
}
return a.pubKey.SerializeUncompressed()
}
// ExportPubKey returns the public key associated with the address serialised as
// a hex encoded string. Implemnts PubKeyAddress
func (a *btcAddress) ExportPubKey() string {
return hex.EncodeToString(a.pubKeyBytes())
}
// PrivKey implements PubKeyAddress by returning the private key, or an error
// if the key store is locked, watching only or the private key is missing.
func (a *btcAddress) PrivKey() (*btcec.PrivateKey, error) {
if a.store.flags.watchingOnly {
return nil, ErrWatchingOnly
}
if !a.flags.hasPrivKey {
return nil, errors.New("no private key for address")
}
// Key store must be unlocked to decrypt the private key.
if a.store.isLocked() {
return nil, ErrLocked
}
// Unlock address with key store secret. unlock returns a copy of
// the clear text private key, and may be used safely even
// during an address lock.
privKeyCT, err := a.unlock(a.store.secret)
if err != nil {
return nil, err
}
return &btcec.PrivateKey{
PublicKey: *a.pubKey.ToECDSA(),
D: new(big.Int).SetBytes(privKeyCT),
}, nil
}
// ExportPrivKey exports the private key as a WIF for encoding as a string
// in the Wallet Import Formt.
func (a *btcAddress) ExportPrivKey() (*btcutil.WIF, error) {
pk, err := a.PrivKey()
if err != nil {
return nil, err
}
// NewWIF only errors if the network is nil. In this case, panic,
// as our program's assumptions are so broken that this needs to be
// caught immediately, and a stack trace here is more useful than
// elsewhere.
wif, err := btcutil.NewWIF((*btcec.PrivateKey)(pk), a.store.netParams(),
a.Compressed())
if err != nil {
panic(err)
}
return wif, nil
}
// watchingCopy creates a copy of an address without a private key.
// This is used to fill a watching a key store with addresses from a
// normal key store.
func (a *btcAddress) watchingCopy(s *Store) walletAddress {
return &btcAddress{
store: s,
address: a.address,
flags: addrFlags{
hasPrivKey: false,
hasPubKey: true,
encrypted: false,
createPrivKeyNextUnlock: false,
compressed: a.flags.compressed,
change: a.flags.change,
unsynced: a.flags.unsynced,
},
chaincode: a.chaincode,
chainIndex: a.chainIndex,
chainDepth: a.chainDepth,
pubKey: a.pubKey,
firstSeen: a.firstSeen,
lastSeen: a.lastSeen,
firstBlock: a.firstBlock,
partialSyncHeight: a.partialSyncHeight,
}
}
// setSyncStatus sets the address flags and possibly the partial sync height
// depending on the type of s.
func (a *btcAddress) setSyncStatus(s SyncStatus) {
switch e := s.(type) {
case Unsynced:
a.flags.unsynced = true
a.flags.partialSync = false
a.partialSyncHeight = 0
case PartialSync:
a.flags.unsynced = true
a.flags.partialSync = true
a.partialSyncHeight = int32(e)
case FullSync:
a.flags.unsynced = false
a.flags.partialSync = false
a.partialSyncHeight = 0
}
}
// note that there is no encrypted bit here since if we had a script encrypted
// and then used it on the blockchain this provides a simple known plaintext in
// the key store file. It was determined that the script in a p2sh transaction is
// not a secret and any sane situation would also require a signature (which
// does have a secret).
type scriptFlags struct {
hasScript bool
change bool
unsynced bool
partialSync bool
}
// ReadFrom implements the io.ReaderFrom interface by reading from r into sf.
func (sf *scriptFlags) ReadFrom(r io.Reader) (int64, error) {
var b [8]byte
n, err := io.ReadFull(r, b[:])
if err != nil {
return int64(n), err
}
// We match bits from addrFlags for similar fields. hence hasScript uses
// the same bit as hasPubKey and the change bit is the same for both.
sf.hasScript = b[0]&(1<<1) != 0
sf.change = b[0]&(1<<5) != 0
sf.unsynced = b[0]&(1<<6) != 0
sf.partialSync = b[0]&(1<<7) != 0
return int64(n), nil
}
// WriteTo implements the io.WriteTo interface by writing sf into w.
func (sf *scriptFlags) WriteTo(w io.Writer) (int64, error) {
var b [8]byte
if sf.hasScript {
b[0] |= 1 << 1
}
if sf.change {
b[0] |= 1 << 5
}
if sf.unsynced {
b[0] |= 1 << 6
}
if sf.partialSync {
b[0] |= 1 << 7
}
n, err := w.Write(b[:])
return int64(n), err
}
// p2SHScript represents the variable length script entry in a key store.
type p2SHScript []byte
// ReadFrom implements the ReaderFrom interface by reading the P2SH script from
// r in the format <4 bytes little endian length><script bytes>
func (a *p2SHScript) ReadFrom(r io.Reader) (n int64, err error) {
//read length
var lenBytes [4]byte
read, err := io.ReadFull(r, lenBytes[:])
n += int64(read)
if err != nil {
return n, err
}
length := binary.LittleEndian.Uint32(lenBytes[:])
script := make([]byte, length)
read, err = io.ReadFull(r, script)
n += int64(read)
if err != nil {
return n, err
}
*a = script
return n, nil
}
// WriteTo implements the WriterTo interface by writing the P2SH script to w in
// the format <4 bytes little endian length><script bytes>
func (a *p2SHScript) WriteTo(w io.Writer) (n int64, err error) {
// Prepare and write 32-bit little-endian length header
var lenBytes [4]byte
binary.LittleEndian.PutUint32(lenBytes[:], uint32(len(*a)))
written, err := w.Write(lenBytes[:])
n += int64(written)
if err != nil {
return n, err
}
// Now write the bytes themselves.
written, err = w.Write(*a)
return n + int64(written), err
}
type scriptAddress struct {
store *Store
address btcutil.Address
class txscript.ScriptClass
addresses []btcutil.Address
reqSigs int
flags scriptFlags
script p2SHScript // variable length
firstSeen int64
lastSeen int64
firstBlock int32
partialSyncHeight int32
}
// ScriptAddress is an interface representing a Pay-to-Script-Hash style of
// bitcoind address.
type ScriptAddress interface {
WalletAddress
// Returns the script associated with the address.
Script() []byte
// Returns the class of the script associated with the address.
ScriptClass() txscript.ScriptClass
// Returns the addresses that are required to sign transactions from the
// script address.
Addresses() []btcutil.Address
// Returns the number of signatures required by the script address.
RequiredSigs() int
}
// newScriptAddress initializes and returns a new P2SH address.
// iv must be 16 bytes, or nil (in which case it is randomly generated).
func newScriptAddress(s *Store, script []byte, bs *BlockStamp) (addr *scriptAddress, err error) {
class, addresses, reqSigs, err :=
txscript.ExtractPkScriptAddrs(script, s.netParams())
if err != nil {
return nil, err
}
scriptHash := btcutil.Hash160(script)
address, err := btcutil.NewAddressScriptHashFromHash(scriptHash, s.netParams())
if err != nil {
return nil, err
}
addr = &scriptAddress{
store: s,
address: address,
addresses: addresses,
class: class,
reqSigs: reqSigs,
flags: scriptFlags{
hasScript: true,
change: false,
},
script: script,
firstSeen: time.Now().Unix(),
firstBlock: bs.Height,
}
return addr, nil
}
// ReadFrom reads an script address from an io.Reader.
func (sa *scriptAddress) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
// Checksums
var chkScriptHash uint32
var chkScript uint32
var scriptHash [ripemd160.Size]byte
// Read serialized key store into addr fields and checksums.
datas := []interface{}{
&scriptHash,
&chkScriptHash,
make([]byte, 4), // version
&sa.flags,
&sa.script,
&chkScript,
&sa.firstSeen,
&sa.lastSeen,
&sa.firstBlock,
&sa.partialSyncHeight,
}
for _, data := range datas {
if rf, ok := data.(io.ReaderFrom); ok {
read, err = rf.ReadFrom(r)
} else {
read, err = binaryRead(r, binary.LittleEndian, data)
}
if err != nil {
return n + read, err
}
n += read
}
// Verify checksums, correct errors where possible.
checks := []struct {
data []byte
chk uint32
}{
{scriptHash[:], chkScriptHash},
{sa.script, chkScript},
}
for i := range checks {
if err = verifyAndFix(checks[i].data, checks[i].chk); err != nil {
return n, err
}
}
address, err := btcutil.NewAddressScriptHashFromHash(scriptHash[:],
sa.store.netParams())
if err != nil {
return n, err
}
sa.address = address
if !sa.flags.hasScript {
return n, errors.New("read in an addresss with no script")
}
class, addresses, reqSigs, err :=
txscript.ExtractPkScriptAddrs(sa.script, sa.store.netParams())
if err != nil {
return n, err
}
sa.class = class
sa.addresses = addresses
sa.reqSigs = reqSigs
return n, nil
}
// WriteTo implements io.WriterTo by writing the scriptAddress to w.
func (sa *scriptAddress) WriteTo(w io.Writer) (n int64, err error) {
var written int64
hash := sa.address.ScriptAddress()
datas := []interface{}{
&hash,
walletHash(hash),
make([]byte, 4), //version
&sa.flags,
&sa.script,
walletHash(sa.script),
&sa.firstSeen,
&sa.lastSeen,
&sa.firstBlock,
&sa.partialSyncHeight,
}
for _, data := range datas {
if wt, ok := data.(io.WriterTo); ok {
written, err = wt.WriteTo(w)
} else {
written, err = binaryWrite(w, binary.LittleEndian, data)
}
if err != nil {
return n + written, err
}
n += written
}
return n, nil
}
// address returns a btcutil.AddressScriptHash for a btcAddress.
func (sa *scriptAddress) Address() btcutil.Address {
return sa.address
}
// AddrHash returns the script hash, implementing AddressInfo.
func (sa *scriptAddress) AddrHash() string {
return string(sa.address.ScriptAddress())
}
// FirstBlock returns the first blockheight the address is known at.
func (sa *scriptAddress) FirstBlock() int32 {
return sa.firstBlock
}
// Imported currently always returns true since script addresses are always
// imported addressed and not part of any chain.
func (sa *scriptAddress) Imported() bool {
return true
}
// Change returns true if the address was created as a change address.
func (sa *scriptAddress) Change() bool {
return sa.flags.change
}
// Compressed returns false since script addresses are never compressed.
// Implements WalletAddress.
func (sa *scriptAddress) Compressed() bool {
return false
}
// Script returns the script that is represented by the address. It should not
// be modified.
func (sa *scriptAddress) Script() []byte {
return sa.script
}
// Addresses returns the list of addresses that must sign the script.
func (sa *scriptAddress) Addresses() []btcutil.Address {
return sa.addresses
}
// ScriptClass returns the type of script the address is.
func (sa *scriptAddress) ScriptClass() txscript.ScriptClass {
return sa.class
}
// RequiredSigs returns the number of signatures required by the script.
func (sa *scriptAddress) RequiredSigs() int {
return sa.reqSigs
}
// SyncStatus returns a SyncStatus type for how the address is currently
// synced. For an Unsynced type, the value is the recorded first seen
// block height of the address.
// Implements WalletAddress.
func (sa *scriptAddress) SyncStatus() SyncStatus {
switch {
case sa.flags.unsynced && !sa.flags.partialSync:
return Unsynced(sa.firstBlock)
case sa.flags.unsynced && sa.flags.partialSync:
return PartialSync(sa.partialSyncHeight)
default:
return FullSync{}
}
}
// setSyncStatus sets the address flags and possibly the partial sync height
// depending on the type of s.
func (sa *scriptAddress) setSyncStatus(s SyncStatus) {
switch e := s.(type) {
case Unsynced:
sa.flags.unsynced = true
sa.flags.partialSync = false
sa.partialSyncHeight = 0
case PartialSync:
sa.flags.unsynced = true
sa.flags.partialSync = true
sa.partialSyncHeight = int32(e)
case FullSync:
sa.flags.unsynced = false
sa.flags.partialSync = false
sa.partialSyncHeight = 0
}
}
// watchingCopy creates a copy of an address without a private key.
// This is used to fill a watching key store with addresses from a
// normal key store.
func (sa *scriptAddress) watchingCopy(s *Store) walletAddress {
return &scriptAddress{
store: s,
address: sa.address,
addresses: sa.addresses,
class: sa.class,
reqSigs: sa.reqSigs,
flags: scriptFlags{
change: sa.flags.change,
unsynced: sa.flags.unsynced,
},
script: sa.script,
firstSeen: sa.firstSeen,
lastSeen: sa.lastSeen,
firstBlock: sa.firstBlock,
partialSyncHeight: sa.partialSyncHeight,
}
}
func walletHash(b []byte) uint32 {
sum := chainhash.DoubleHashB(b)
return binary.LittleEndian.Uint32(sum)
}
// TODO(jrick) add error correction.
func verifyAndFix(b []byte, chk uint32) error {
if walletHash(b) != chk {
return ErrChecksumMismatch
}
return nil
}
type kdfParameters struct {
mem uint64
nIter uint32
salt [32]byte
}
// computeKdfParameters returns best guess parameters to the
// memory-hard key derivation function to make the computation last
// targetSec seconds, while using no more than maxMem bytes of memory.
func computeKdfParameters(targetSec float64, maxMem uint64) (*kdfParameters, error) {
params := &kdfParameters{}
if _, err := rand.Read(params.salt[:]); err != nil {
return nil, err
}
testKey := []byte("This is an example key to test KDF iteration speed")
memoryReqtBytes := uint64(1024)
approxSec := float64(0)
for approxSec <= targetSec/4 && memoryReqtBytes < maxMem {
memoryReqtBytes *= 2
before := time.Now()
_ = keyOneIter(testKey, params.salt[:], memoryReqtBytes)
approxSec = time.Since(before).Seconds()
}
allItersSec := float64(0)
nIter := uint32(1)
for allItersSec < 0.02 { // This is a magic number straight from armory's source.
nIter *= 2
before := time.Now()
for i := uint32(0); i < nIter; i++ {
_ = keyOneIter(testKey, params.salt[:], memoryReqtBytes)
}
allItersSec = time.Since(before).Seconds()
}
params.mem = memoryReqtBytes
params.nIter = nIter
return params, nil
}
func (params *kdfParameters) WriteTo(w io.Writer) (n int64, err error) {
var written int64
memBytes := make([]byte, 8)
nIterBytes := make([]byte, 4)
binary.LittleEndian.PutUint64(memBytes, params.mem)
binary.LittleEndian.PutUint32(nIterBytes, params.nIter)
chkedBytes := append(memBytes, nIterBytes...)
chkedBytes = append(chkedBytes, params.salt[:]...)
datas := []interface{}{
&params.mem,
&params.nIter,
&params.salt,
walletHash(chkedBytes),
make([]byte, 256-(binary.Size(params)+4)), // padding
}
for _, data := range datas {
if written, err = binaryWrite(w, binary.LittleEndian, data); err != nil {
return n + written, err
}
n += written
}
return n, nil
}
func (params *kdfParameters) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
// These must be read in but are not saved directly to params.
chkedBytes := make([]byte, 44)
var chk uint32
padding := make([]byte, 256-(binary.Size(params)+4))
datas := []interface{}{
chkedBytes,
&chk,
padding,
}
for _, data := range datas {
if read, err = binaryRead(r, binary.LittleEndian, data); err != nil {
return n + read, err
}
n += read
}
// Verify checksum
if err = verifyAndFix(chkedBytes, chk); err != nil {
return n, err
}
// Read params
buf := bytes.NewBuffer(chkedBytes)
datas = []interface{}{
&params.mem,
&params.nIter,
&params.salt,
}
for _, data := range datas {
if err = binary.Read(buf, binary.LittleEndian, data); err != nil {
return n, err
}
}
return n, nil
}
type addrEntry struct {
pubKeyHash160 [ripemd160.Size]byte
addr btcAddress
}
func (e *addrEntry) WriteTo(w io.Writer) (n int64, err error) {
var written int64
// Write header
if written, err = binaryWrite(w, binary.LittleEndian, addrHeader); err != nil {
return n + written, err
}
n += written
// Write hash
if written, err = binaryWrite(w, binary.LittleEndian, &e.pubKeyHash160); err != nil {
return n + written, err
}
n += written
// Write btcAddress
written, err = e.addr.WriteTo(w)
n += written
return n, err
}
func (e *addrEntry) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
if read, err = binaryRead(r, binary.LittleEndian, &e.pubKeyHash160); err != nil {
return n + read, err
}
n += read
read, err = e.addr.ReadFrom(r)
return n + read, err
}
// scriptEntry is the entry type for a P2SH script.
type scriptEntry struct {
scriptHash160 [ripemd160.Size]byte
script scriptAddress
}
// WriteTo implements io.WriterTo by writing the entry to w.
func (e *scriptEntry) WriteTo(w io.Writer) (n int64, err error) {
var written int64
// Write header
if written, err = binaryWrite(w, binary.LittleEndian, scriptHeader); err != nil {
return n + written, err
}
n += written
// Write hash
if written, err = binaryWrite(w, binary.LittleEndian, &e.scriptHash160); err != nil {
return n + written, err
}
n += written
// Write btcAddress
written, err = e.script.WriteTo(w)
n += written
return n, err
}
// ReadFrom implements io.ReaderFrom by reading the entry from e.
func (e *scriptEntry) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
if read, err = binaryRead(r, binary.LittleEndian, &e.scriptHash160); err != nil {
return n + read, err
}
n += read
read, err = e.script.ReadFrom(r)
return n + read, err
}
// BlockStamp defines a block (by height and a unique hash) and is
// used to mark a point in the blockchain that a key store element is
// synced to.
type BlockStamp struct {
Hash *chainhash.Hash
Height int32
}