lbcwallet/chain/bitcoind_client.go
Wilmer Paulino 39f81c630b
chain: add IsCurrent method to chain.Interface
IsCurrent allows us to determine if the chain backend considers itself
"current" with the chain.
2019-06-13 18:08:59 -07:00

1291 lines
37 KiB
Go

package chain
import (
"container/list"
"encoding/hex"
"errors"
"fmt"
"sync"
"sync/atomic"
"time"
"github.com/btcsuite/btcd/btcjson"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/btcsuite/btcwallet/waddrmgr"
"github.com/btcsuite/btcwallet/wtxmgr"
)
var (
// ErrBitcoindClientShuttingDown is an error returned when we attempt
// to receive a notification for a specific item and the bitcoind client
// is in the middle of shutting down.
ErrBitcoindClientShuttingDown = errors.New("client is shutting down")
)
// BitcoindClient represents a persistent client connection to a bitcoind server
// for information regarding the current best block chain.
type BitcoindClient struct {
started int32 // To be used atomically.
stopped int32 // To be used atomically.
// birthday is the earliest time for which we should begin scanning the
// chain.
birthday time.Time
// chainParams are the parameters of the current chain this client is
// active under.
chainParams *chaincfg.Params
// id is the unique ID of this client assigned by the backing bitcoind
// connection.
id uint64
// chainConn is the backing client to our rescan client that contains
// the RPC and ZMQ connections to a bitcoind node.
chainConn *BitcoindConn
// bestBlock keeps track of the tip of the current best chain.
bestBlockMtx sync.RWMutex
bestBlock waddrmgr.BlockStamp
// notifyBlocks signals whether the client is sending block
// notifications to the caller.
notifyBlocks uint32
// rescanUpdate is a channel will be sent items that we should match
// transactions against while processing a chain rescan to determine if
// they are relevant to the client.
rescanUpdate chan interface{}
// watchedAddresses, watchedOutPoints, and watchedTxs are the set of
// items we should match transactions against while processing a chain
// rescan to determine if they are relevant to the client.
watchMtx sync.RWMutex
watchedAddresses map[string]struct{}
watchedOutPoints map[wire.OutPoint]struct{}
watchedTxs map[chainhash.Hash]struct{}
// mempool keeps track of all relevant transactions that have yet to be
// confirmed. This is used to shortcut the filtering process of a
// transaction when a new confirmed transaction notification is
// received.
//
// NOTE: This requires the watchMtx to be held.
mempool map[chainhash.Hash]struct{}
// expiredMempool keeps track of a set of confirmed transactions along
// with the height at which they were included in a block. These
// transactions will then be removed from the mempool after a period of
// 288 blocks. This is done to ensure the transactions are safe from a
// reorg in the chain.
//
// NOTE: This requires the watchMtx to be held.
expiredMempool map[int32]map[chainhash.Hash]struct{}
// notificationQueue is a concurrent unbounded queue that handles
// dispatching notifications to the subscriber of this client.
//
// TODO: Rather than leaving this as an unbounded queue for all types of
// notifications, try dropping ones where a later enqueued notification
// can fully invalidate one waiting to be processed. For example,
// BlockConnected notifications for greater block heights can remove the
// need to process earlier notifications still waiting to be processed.
notificationQueue *ConcurrentQueue
// zmqTxNtfns is a channel through which ZMQ transaction events will be
// retrieved from the backing bitcoind connection.
zmqTxNtfns chan *wire.MsgTx
// zmqBlockNtfns is a channel through which ZMQ block events will be
// retrieved from the backing bitcoind connection.
zmqBlockNtfns chan *wire.MsgBlock
quit chan struct{}
wg sync.WaitGroup
}
// A compile-time check to ensure that BitcoindClient satisfies the
// chain.Interface interface.
var _ Interface = (*BitcoindClient)(nil)
// BackEnd returns the name of the driver.
func (c *BitcoindClient) BackEnd() string {
return "bitcoind"
}
// GetBestBlock returns the highest block known to bitcoind.
func (c *BitcoindClient) GetBestBlock() (*chainhash.Hash, int32, error) {
bcinfo, err := c.chainConn.client.GetBlockChainInfo()
if err != nil {
return nil, 0, err
}
hash, err := chainhash.NewHashFromStr(bcinfo.BestBlockHash)
if err != nil {
return nil, 0, err
}
return hash, bcinfo.Blocks, nil
}
// GetBlockHeight returns the height for the hash, if known, or returns an
// error.
func (c *BitcoindClient) GetBlockHeight(hash *chainhash.Hash) (int32, error) {
header, err := c.chainConn.client.GetBlockHeaderVerbose(hash)
if err != nil {
return 0, err
}
return header.Height, nil
}
// GetBlock returns a block from the hash.
func (c *BitcoindClient) GetBlock(hash *chainhash.Hash) (*wire.MsgBlock, error) {
return c.chainConn.client.GetBlock(hash)
}
// GetBlockVerbose returns a verbose block from the hash.
func (c *BitcoindClient) GetBlockVerbose(
hash *chainhash.Hash) (*btcjson.GetBlockVerboseResult, error) {
return c.chainConn.client.GetBlockVerbose(hash)
}
// GetBlockHash returns a block hash from the height.
func (c *BitcoindClient) GetBlockHash(height int64) (*chainhash.Hash, error) {
return c.chainConn.client.GetBlockHash(height)
}
// GetBlockHeader returns a block header from the hash.
func (c *BitcoindClient) GetBlockHeader(
hash *chainhash.Hash) (*wire.BlockHeader, error) {
return c.chainConn.client.GetBlockHeader(hash)
}
// GetBlockHeaderVerbose returns a block header from the hash.
func (c *BitcoindClient) GetBlockHeaderVerbose(
hash *chainhash.Hash) (*btcjson.GetBlockHeaderVerboseResult, error) {
return c.chainConn.client.GetBlockHeaderVerbose(hash)
}
// IsCurrent returns whether the chain backend considers its view of the network
// as "current".
func (c *BitcoindClient) IsCurrent() bool {
bestHash, _, err := c.GetBestBlock()
if err != nil {
return false
}
bestHeader, err := c.GetBlockHeader(bestHash)
if err != nil {
return false
}
return bestHeader.Timestamp.After(time.Now().Add(-isCurrentDelta))
}
// GetRawTransactionVerbose returns a transaction from the tx hash.
func (c *BitcoindClient) GetRawTransactionVerbose(
hash *chainhash.Hash) (*btcjson.TxRawResult, error) {
return c.chainConn.client.GetRawTransactionVerbose(hash)
}
// GetTxOut returns a txout from the outpoint info provided.
func (c *BitcoindClient) GetTxOut(txHash *chainhash.Hash, index uint32,
mempool bool) (*btcjson.GetTxOutResult, error) {
return c.chainConn.client.GetTxOut(txHash, index, mempool)
}
// SendRawTransaction sends a raw transaction via bitcoind.
func (c *BitcoindClient) SendRawTransaction(tx *wire.MsgTx,
allowHighFees bool) (*chainhash.Hash, error) {
return c.chainConn.client.SendRawTransaction(tx, allowHighFees)
}
// Notifications returns a channel to retrieve notifications from.
//
// NOTE: This is part of the chain.Interface interface.
func (c *BitcoindClient) Notifications() <-chan interface{} {
return c.notificationQueue.ChanOut()
}
// NotifyReceived allows the chain backend to notify the caller whenever a
// transaction pays to any of the given addresses.
//
// NOTE: This is part of the chain.Interface interface.
func (c *BitcoindClient) NotifyReceived(addrs []btcutil.Address) error {
c.NotifyBlocks()
select {
case c.rescanUpdate <- addrs:
case <-c.quit:
return ErrBitcoindClientShuttingDown
}
return nil
}
// NotifySpent allows the chain backend to notify the caller whenever a
// transaction spends any of the given outpoints.
func (c *BitcoindClient) NotifySpent(outPoints []*wire.OutPoint) error {
c.NotifyBlocks()
select {
case c.rescanUpdate <- outPoints:
case <-c.quit:
return ErrBitcoindClientShuttingDown
}
return nil
}
// NotifyTx allows the chain backend to notify the caller whenever any of the
// given transactions confirm within the chain.
func (c *BitcoindClient) NotifyTx(txids []chainhash.Hash) error {
c.NotifyBlocks()
select {
case c.rescanUpdate <- txids:
case <-c.quit:
return ErrBitcoindClientShuttingDown
}
return nil
}
// NotifyBlocks allows the chain backend to notify the caller whenever a block
// is connected or disconnected.
//
// NOTE: This is part of the chain.Interface interface.
func (c *BitcoindClient) NotifyBlocks() error {
atomic.StoreUint32(&c.notifyBlocks, 1)
return nil
}
// shouldNotifyBlocks determines whether the client should send block
// notifications to the caller.
func (c *BitcoindClient) shouldNotifyBlocks() bool {
return atomic.LoadUint32(&c.notifyBlocks) == 1
}
// LoadTxFilter uses the given filters to what we should match transactions
// against to determine if they are relevant to the client. The reset argument
// is used to reset the current filters.
//
// The current filters supported are of the following types:
// []btcutil.Address
// []wire.OutPoint
// []*wire.OutPoint
// map[wire.OutPoint]btcutil.Address
// []chainhash.Hash
// []*chainhash.Hash
func (c *BitcoindClient) LoadTxFilter(reset bool, filters ...interface{}) error {
if reset {
select {
case c.rescanUpdate <- struct{}{}:
case <-c.quit:
return ErrBitcoindClientShuttingDown
}
}
updateFilter := func(filter interface{}) error {
select {
case c.rescanUpdate <- filter:
case <-c.quit:
return ErrBitcoindClientShuttingDown
}
return nil
}
// In order to make this operation atomic, we'll iterate through the
// filters twice: the first to ensure there aren't any unsupported
// filter types, and the second to actually update our filters.
for _, filter := range filters {
switch filter := filter.(type) {
case []btcutil.Address, []wire.OutPoint, []*wire.OutPoint,
map[wire.OutPoint]btcutil.Address, []chainhash.Hash,
[]*chainhash.Hash:
// Proceed to check the next filter type.
default:
return fmt.Errorf("unsupported filter type %T", filter)
}
}
for _, filter := range filters {
if err := updateFilter(filter); err != nil {
return err
}
}
return nil
}
// RescanBlocks rescans any blocks passed, returning only the blocks that
// matched as []btcjson.BlockDetails.
func (c *BitcoindClient) RescanBlocks(
blockHashes []chainhash.Hash) ([]btcjson.RescannedBlock, error) {
rescannedBlocks := make([]btcjson.RescannedBlock, 0, len(blockHashes))
for _, hash := range blockHashes {
header, err := c.GetBlockHeaderVerbose(&hash)
if err != nil {
log.Warnf("Unable to get header %s from bitcoind: %s",
hash, err)
continue
}
block, err := c.GetBlock(&hash)
if err != nil {
log.Warnf("Unable to get block %s from bitcoind: %s",
hash, err)
continue
}
relevantTxs := c.filterBlock(block, header.Height, false)
if len(relevantTxs) > 0 {
rescannedBlock := btcjson.RescannedBlock{
Hash: hash.String(),
}
for _, tx := range relevantTxs {
rescannedBlock.Transactions = append(
rescannedBlock.Transactions,
hex.EncodeToString(tx.SerializedTx),
)
}
rescannedBlocks = append(rescannedBlocks, rescannedBlock)
}
}
return rescannedBlocks, nil
}
// Rescan rescans from the block with the given hash until the current block,
// after adding the passed addresses and outpoints to the client's watch list.
func (c *BitcoindClient) Rescan(blockHash *chainhash.Hash,
addresses []btcutil.Address, outPoints map[wire.OutPoint]btcutil.Address) error {
// A block hash is required to use as the starting point of the rescan.
if blockHash == nil {
return errors.New("rescan requires a starting block hash")
}
// We'll then update our filters with the given outpoints and addresses.
select {
case c.rescanUpdate <- addresses:
case <-c.quit:
return ErrBitcoindClientShuttingDown
}
select {
case c.rescanUpdate <- outPoints:
case <-c.quit:
return ErrBitcoindClientShuttingDown
}
// Once the filters have been updated, we can begin the rescan.
select {
case c.rescanUpdate <- *blockHash:
case <-c.quit:
return ErrBitcoindClientShuttingDown
}
return nil
}
// Start initializes the bitcoind rescan client using the backing bitcoind
// connection and starts all goroutines necessary in order to process rescans
// and ZMQ notifications.
//
// NOTE: This is part of the chain.Interface interface.
func (c *BitcoindClient) Start() error {
if !atomic.CompareAndSwapInt32(&c.started, 0, 1) {
return nil
}
// Start the notification queue and immediately dispatch a
// ClientConnected notification to the caller. This is needed as some of
// the callers will require this notification before proceeding.
c.notificationQueue.Start()
c.notificationQueue.ChanIn() <- ClientConnected{}
// Retrieve the best block of the chain.
bestHash, bestHeight, err := c.GetBestBlock()
if err != nil {
return fmt.Errorf("unable to retrieve best block: %v", err)
}
bestHeader, err := c.GetBlockHeaderVerbose(bestHash)
if err != nil {
return fmt.Errorf("unable to retrieve header for best block: "+
"%v", err)
}
c.bestBlockMtx.Lock()
c.bestBlock = waddrmgr.BlockStamp{
Hash: *bestHash,
Height: bestHeight,
Timestamp: time.Unix(bestHeader.Time, 0),
}
c.bestBlockMtx.Unlock()
// Once the client has started successfully, we'll include it in the set
// of rescan clients of the backing bitcoind connection in order to
// received ZMQ event notifications.
c.chainConn.AddClient(c)
c.wg.Add(2)
go c.rescanHandler()
go c.ntfnHandler()
return nil
}
// Stop stops the bitcoind rescan client from processing rescans and ZMQ
// notifications.
//
// NOTE: This is part of the chain.Interface interface.
func (c *BitcoindClient) Stop() {
if !atomic.CompareAndSwapInt32(&c.stopped, 0, 1) {
return
}
close(c.quit)
// Remove this client's reference from the bitcoind connection to
// prevent sending notifications to it after it's been stopped.
c.chainConn.RemoveClient(c.id)
c.notificationQueue.Stop()
}
// WaitForShutdown blocks until the client has finished disconnecting and all
// handlers have exited.
//
// NOTE: This is part of the chain.Interface interface.
func (c *BitcoindClient) WaitForShutdown() {
c.wg.Wait()
}
// rescanHandler handles the logic needed for the caller to trigger a chain
// rescan.
//
// NOTE: This must be called as a goroutine.
func (c *BitcoindClient) rescanHandler() {
defer c.wg.Done()
for {
select {
case update := <-c.rescanUpdate:
switch update := update.(type) {
// We're clearing the filters.
case struct{}:
c.watchMtx.Lock()
c.watchedOutPoints = make(map[wire.OutPoint]struct{})
c.watchedAddresses = make(map[string]struct{})
c.watchedTxs = make(map[chainhash.Hash]struct{})
c.watchMtx.Unlock()
// We're adding the addresses to our filter.
case []btcutil.Address:
c.watchMtx.Lock()
for _, addr := range update {
c.watchedAddresses[addr.String()] = struct{}{}
}
c.watchMtx.Unlock()
// We're adding the outpoints to our filter.
case []wire.OutPoint:
c.watchMtx.Lock()
for _, op := range update {
c.watchedOutPoints[op] = struct{}{}
}
c.watchMtx.Unlock()
case []*wire.OutPoint:
c.watchMtx.Lock()
for _, op := range update {
c.watchedOutPoints[*op] = struct{}{}
}
c.watchMtx.Unlock()
// We're adding the outpoints that map to the scripts
// that we should scan for to our filter.
case map[wire.OutPoint]btcutil.Address:
c.watchMtx.Lock()
for op := range update {
c.watchedOutPoints[op] = struct{}{}
}
c.watchMtx.Unlock()
// We're adding the transactions to our filter.
case []chainhash.Hash:
c.watchMtx.Lock()
for _, txid := range update {
c.watchedTxs[txid] = struct{}{}
}
c.watchMtx.Unlock()
case []*chainhash.Hash:
c.watchMtx.Lock()
for _, txid := range update {
c.watchedTxs[*txid] = struct{}{}
}
c.watchMtx.Unlock()
// We're starting a rescan from the hash.
case chainhash.Hash:
if err := c.rescan(update); err != nil {
log.Errorf("Unable to complete chain "+
"rescan: %v", err)
}
default:
log.Warnf("Received unexpected filter type %T",
update)
}
case <-c.quit:
return
}
}
}
// ntfnHandler handles the logic to retrieve ZMQ notifications from the backing
// bitcoind connection.
//
// NOTE: This must be called as a goroutine.
func (c *BitcoindClient) ntfnHandler() {
defer c.wg.Done()
for {
select {
case tx := <-c.zmqTxNtfns:
if _, _, err := c.filterTx(tx, nil, true); err != nil {
log.Errorf("Unable to filter transaction %v: %v",
tx.TxHash(), err)
}
case newBlock := <-c.zmqBlockNtfns:
// If the new block's previous hash matches the best
// hash known to us, then the new block is the next
// successor, so we'll update our best block to reflect
// this and determine if this new block matches any of
// our existing filters.
c.bestBlockMtx.Lock()
bestBlock := c.bestBlock
c.bestBlockMtx.Unlock()
if newBlock.Header.PrevBlock == bestBlock.Hash {
newBlockHeight := bestBlock.Height + 1
_ = c.filterBlock(newBlock, newBlockHeight, true)
// With the block succesfully filtered, we'll
// make it our new best block.
bestBlock.Hash = newBlock.BlockHash()
bestBlock.Height = newBlockHeight
bestBlock.Timestamp = newBlock.Header.Timestamp
c.bestBlockMtx.Lock()
c.bestBlock = bestBlock
c.bestBlockMtx.Unlock()
continue
}
// Otherwise, we've encountered a reorg.
if err := c.reorg(bestBlock, newBlock); err != nil {
log.Errorf("Unable to process chain reorg: %v",
err)
}
case <-c.quit:
return
}
}
}
// SetBirthday sets the birthday of the bitcoind rescan client.
//
// NOTE: This should be done before the client has been started in order for it
// to properly carry its duties.
func (c *BitcoindClient) SetBirthday(t time.Time) {
c.birthday = t
}
// BlockStamp returns the latest block notified by the client, or an error
// if the client has been shut down.
func (c *BitcoindClient) BlockStamp() (*waddrmgr.BlockStamp, error) {
c.bestBlockMtx.RLock()
bestBlock := c.bestBlock
c.bestBlockMtx.RUnlock()
return &bestBlock, nil
}
// onBlockConnected is a callback that's executed whenever a new block has been
// detected. This will queue a BlockConnected notification to the caller.
func (c *BitcoindClient) onBlockConnected(hash *chainhash.Hash, height int32,
timestamp time.Time) {
if c.shouldNotifyBlocks() {
select {
case c.notificationQueue.ChanIn() <- BlockConnected{
Block: wtxmgr.Block{
Hash: *hash,
Height: height,
},
Time: timestamp,
}:
case <-c.quit:
}
}
}
// onFilteredBlockConnected is an alternative callback that's executed whenever
// a new block has been detected. It serves the same purpose as
// onBlockConnected, but it also includes a list of the relevant transactions
// found within the block being connected. This will queue a
// FilteredBlockConnected notification to the caller.
func (c *BitcoindClient) onFilteredBlockConnected(height int32,
header *wire.BlockHeader, relevantTxs []*wtxmgr.TxRecord) {
if c.shouldNotifyBlocks() {
select {
case c.notificationQueue.ChanIn() <- FilteredBlockConnected{
Block: &wtxmgr.BlockMeta{
Block: wtxmgr.Block{
Hash: header.BlockHash(),
Height: height,
},
Time: header.Timestamp,
},
RelevantTxs: relevantTxs,
}:
case <-c.quit:
}
}
}
// onBlockDisconnected is a callback that's executed whenever a block has been
// disconnected. This will queue a BlockDisconnected notification to the caller
// with the details of the block being disconnected.
func (c *BitcoindClient) onBlockDisconnected(hash *chainhash.Hash, height int32,
timestamp time.Time) {
if c.shouldNotifyBlocks() {
select {
case c.notificationQueue.ChanIn() <- BlockDisconnected{
Block: wtxmgr.Block{
Hash: *hash,
Height: height,
},
Time: timestamp,
}:
case <-c.quit:
}
}
}
// onRelevantTx is a callback that's executed whenever a transaction is relevant
// to the caller. This means that the transaction matched a specific item in the
// client's different filters. This will queue a RelevantTx notification to the
// caller.
func (c *BitcoindClient) onRelevantTx(tx *wtxmgr.TxRecord,
blockDetails *btcjson.BlockDetails) {
block, err := parseBlock(blockDetails)
if err != nil {
log.Errorf("Unable to send onRelevantTx notification, failed "+
"parse block: %v", err)
return
}
select {
case c.notificationQueue.ChanIn() <- RelevantTx{
TxRecord: tx,
Block: block,
}:
case <-c.quit:
}
}
// onRescanProgress is a callback that's executed whenever a rescan is in
// progress. This will queue a RescanProgress notification to the caller with
// the current rescan progress details.
func (c *BitcoindClient) onRescanProgress(hash *chainhash.Hash, height int32,
timestamp time.Time) {
select {
case c.notificationQueue.ChanIn() <- &RescanProgress{
Hash: hash,
Height: height,
Time: timestamp,
}:
case <-c.quit:
}
}
// onRescanFinished is a callback that's executed whenever a rescan has
// finished. This will queue a RescanFinished notification to the caller with
// the details of the last block in the range of the rescan.
func (c *BitcoindClient) onRescanFinished(hash *chainhash.Hash, height int32,
timestamp time.Time) {
log.Infof("Rescan finished at %d (%s)", height, hash)
select {
case c.notificationQueue.ChanIn() <- &RescanFinished{
Hash: hash,
Height: height,
Time: timestamp,
}:
case <-c.quit:
}
}
// reorg processes a reorganization during chain synchronization. This is
// separate from a rescan's handling of a reorg. This will rewind back until it
// finds a common ancestor and notify all the new blocks since then.
func (c *BitcoindClient) reorg(currentBlock waddrmgr.BlockStamp,
reorgBlock *wire.MsgBlock) error {
// Retrieve the best known height based on the block which caused the
// reorg. This way, we can preserve the chain of blocks we need to
// retrieve.
bestHash := reorgBlock.BlockHash()
bestHeight, err := c.GetBlockHeight(&bestHash)
if err != nil {
return fmt.Errorf("unable to get block height for %v: %v",
bestHash, err)
}
log.Debugf("Possible reorg at block: height=%v, hash=%s", bestHash,
bestHeight)
if bestHeight < currentBlock.Height {
log.Debugf("Detected multiple reorgs: best_height=%v below "+
"current_height=%v", bestHeight, currentBlock.Height)
return nil
}
// We'll now keep track of all the blocks known to the *chain*, starting
// from the best block known to us until the best block in the chain.
// This will let us fast-forward despite any future reorgs.
blocksToNotify := list.New()
blocksToNotify.PushFront(reorgBlock)
previousBlock := reorgBlock.Header.PrevBlock
for i := bestHeight - 1; i >= currentBlock.Height; i-- {
block, err := c.GetBlock(&previousBlock)
if err != nil {
return fmt.Errorf("unable to get block %v: %v",
previousBlock, err)
}
blocksToNotify.PushFront(block)
previousBlock = block.Header.PrevBlock
}
// Rewind back to the last common ancestor block using the previous
// block hash from each header to avoid any race conditions. If we
// encounter more reorgs, they'll be queued and we'll repeat the cycle.
//
// We'll start by retrieving the header to the best block known to us.
currentHeader, err := c.GetBlockHeader(&currentBlock.Hash)
if err != nil {
return fmt.Errorf("unable to get block header for %v: %v",
currentBlock.Hash, err)
}
// Then, we'll walk backwards in the chain until we find our common
// ancestor.
for previousBlock != currentHeader.PrevBlock {
// Since the previous hashes don't match, the current block has
// been reorged out of the chain, so we should send a
// BlockDisconnected notification for it.
log.Debugf("Disconnecting block: height=%v, hash=%v",
currentBlock.Height, currentBlock.Hash)
c.onBlockDisconnected(
&currentBlock.Hash, currentBlock.Height,
currentBlock.Timestamp,
)
// Our current block should now reflect the previous one to
// continue the common ancestor search.
currentHeader, err = c.GetBlockHeader(&currentHeader.PrevBlock)
if err != nil {
return fmt.Errorf("unable to get block header for %v: %v",
currentHeader.PrevBlock, err)
}
currentBlock.Height--
currentBlock.Hash = currentHeader.PrevBlock
currentBlock.Timestamp = currentHeader.Timestamp
// Store the correct block in our list in order to notify it
// once we've found our common ancestor.
block, err := c.GetBlock(&previousBlock)
if err != nil {
return fmt.Errorf("unable to get block %v: %v",
previousBlock, err)
}
blocksToNotify.PushFront(block)
previousBlock = block.Header.PrevBlock
}
// Disconnect the last block from the old chain. Since the previous
// block remains the same between the old and new chains, the tip will
// now be the last common ancestor.
log.Debugf("Disconnecting block: height=%v, hash=%v",
currentBlock.Height, currentBlock.Hash)
c.onBlockDisconnected(
&currentBlock.Hash, currentBlock.Height, currentHeader.Timestamp,
)
currentBlock.Height--
// Now we fast-forward to the new block, notifying along the way.
for blocksToNotify.Front() != nil {
nextBlock := blocksToNotify.Front().Value.(*wire.MsgBlock)
nextHeight := currentBlock.Height + 1
nextHash := nextBlock.BlockHash()
nextHeader, err := c.GetBlockHeader(&nextHash)
if err != nil {
return fmt.Errorf("unable to get block header for %v: %v",
nextHash, err)
}
_ = c.filterBlock(nextBlock, nextHeight, true)
currentBlock.Height = nextHeight
currentBlock.Hash = nextHash
currentBlock.Timestamp = nextHeader.Timestamp
blocksToNotify.Remove(blocksToNotify.Front())
}
c.bestBlockMtx.Lock()
c.bestBlock = currentBlock
c.bestBlockMtx.Unlock()
return nil
}
// FilterBlocks scans the blocks contained in the FilterBlocksRequest for any
// addresses of interest. Each block will be fetched and filtered sequentially,
// returning a FilterBlocksReponse for the first block containing a matching
// address. If no matches are found in the range of blocks requested, the
// returned response will be nil.
//
// NOTE: This is part of the chain.Interface interface.
func (c *BitcoindClient) FilterBlocks(
req *FilterBlocksRequest) (*FilterBlocksResponse, error) {
blockFilterer := NewBlockFilterer(c.chainParams, req)
// Iterate over the requested blocks, fetching each from the rpc client.
// Each block will scanned using the reverse addresses indexes generated
// above, breaking out early if any addresses are found.
for i, block := range req.Blocks {
// TODO(conner): add prefetching, since we already know we'll be
// fetching *every* block
rawBlock, err := c.GetBlock(&block.Hash)
if err != nil {
return nil, err
}
if !blockFilterer.FilterBlock(rawBlock) {
continue
}
// If any external or internal addresses were detected in this
// block, we return them to the caller so that the rescan
// windows can widened with subsequent addresses. The
// `BatchIndex` is returned so that the caller can compute the
// *next* block from which to begin again.
resp := &FilterBlocksResponse{
BatchIndex: uint32(i),
BlockMeta: block,
FoundExternalAddrs: blockFilterer.FoundExternal,
FoundInternalAddrs: blockFilterer.FoundInternal,
FoundOutPoints: blockFilterer.FoundOutPoints,
RelevantTxns: blockFilterer.RelevantTxns,
}
return resp, nil
}
// No addresses were found for this range.
return nil, nil
}
// rescan performs a rescan of the chain using a bitcoind backend, from the
// specified hash to the best known hash, while watching out for reorgs that
// happen during the rescan. It uses the addresses and outputs being tracked by
// the client in the watch list. This is called only within a queue processing
// loop.
func (c *BitcoindClient) rescan(start chainhash.Hash) error {
// We start by getting the best already processed block. We only use
// the height, as the hash can change during a reorganization, which we
// catch by testing connectivity from known blocks to the previous
// block.
bestHash, bestHeight, err := c.GetBestBlock()
if err != nil {
return err
}
bestHeader, err := c.GetBlockHeaderVerbose(bestHash)
if err != nil {
return err
}
bestBlock := waddrmgr.BlockStamp{
Hash: *bestHash,
Height: bestHeight,
Timestamp: time.Unix(bestHeader.Time, 0),
}
// Create a list of headers sorted in forward order. We'll use this in
// the event that we need to backtrack due to a chain reorg.
headers := list.New()
previousHeader, err := c.GetBlockHeaderVerbose(&start)
if err != nil {
return err
}
previousHash, err := chainhash.NewHashFromStr(previousHeader.Hash)
if err != nil {
return err
}
headers.PushBack(previousHeader)
// Cycle through all of the blocks known to bitcoind, being mindful of
// reorgs.
for i := previousHeader.Height + 1; i <= bestBlock.Height; i++ {
hash, err := c.GetBlockHash(int64(i))
if err != nil {
return err
}
// If the previous header is before the wallet birthday, fetch
// the current header and construct a dummy block, rather than
// fetching the whole block itself. This speeds things up as we
// no longer have to fetch the whole block when we know it won't
// match any of our filters.
var block *wire.MsgBlock
afterBirthday := previousHeader.Time >= c.birthday.Unix()
if !afterBirthday {
header, err := c.GetBlockHeader(hash)
if err != nil {
return err
}
block = &wire.MsgBlock{
Header: *header,
}
afterBirthday = c.birthday.Before(header.Timestamp)
if afterBirthday {
c.onRescanProgress(
previousHash, i,
block.Header.Timestamp,
)
}
}
if afterBirthday {
block, err = c.GetBlock(hash)
if err != nil {
return err
}
}
for block.Header.PrevBlock.String() != previousHeader.Hash {
// If we're in this for loop, it looks like we've been
// reorganized. We now walk backwards to the common
// ancestor between the best chain and the known chain.
//
// First, we signal a disconnected block to rewind the
// rescan state.
c.onBlockDisconnected(
previousHash, previousHeader.Height,
time.Unix(previousHeader.Time, 0),
)
// Get the previous block of the best chain.
hash, err := c.GetBlockHash(int64(i - 1))
if err != nil {
return err
}
block, err = c.GetBlock(hash)
if err != nil {
return err
}
// Then, we'll the get the header of this previous
// block.
if headers.Back() != nil {
// If it's already in the headers list, we can
// just get it from there and remove the
// current hash.
headers.Remove(headers.Back())
if headers.Back() != nil {
previousHeader = headers.Back().
Value.(*btcjson.GetBlockHeaderVerboseResult)
previousHash, err = chainhash.NewHashFromStr(
previousHeader.Hash,
)
if err != nil {
return err
}
}
} else {
// Otherwise, we get it from bitcoind.
previousHash, err = chainhash.NewHashFromStr(
previousHeader.PreviousHash,
)
if err != nil {
return err
}
previousHeader, err = c.GetBlockHeaderVerbose(
previousHash,
)
if err != nil {
return err
}
}
}
// Now that we've ensured we haven't come across a reorg, we'll
// add the current block header to our list of headers.
blockHash := block.BlockHash()
previousHash = &blockHash
previousHeader = &btcjson.GetBlockHeaderVerboseResult{
Hash: blockHash.String(),
Height: i,
PreviousHash: block.Header.PrevBlock.String(),
Time: block.Header.Timestamp.Unix(),
}
headers.PushBack(previousHeader)
// Notify the block and any of its relevant transacations.
_ = c.filterBlock(block, i, true)
if i%10000 == 0 {
c.onRescanProgress(
previousHash, i, block.Header.Timestamp,
)
}
// If we've reached the previously best known block, check to
// make sure the underlying node hasn't synchronized additional
// blocks. If it has, update the best known block and continue
// to rescan to that point.
if i == bestBlock.Height {
bestHash, bestHeight, err = c.GetBestBlock()
if err != nil {
return err
}
bestHeader, err = c.GetBlockHeaderVerbose(bestHash)
if err != nil {
return err
}
bestBlock.Hash = *bestHash
bestBlock.Height = bestHeight
bestBlock.Timestamp = time.Unix(bestHeader.Time, 0)
}
}
c.onRescanFinished(bestHash, bestHeight, time.Unix(bestHeader.Time, 0))
return nil
}
// filterBlock filters a block for watched outpoints and addresses, and returns
// any matching transactions, sending notifications along the way.
func (c *BitcoindClient) filterBlock(block *wire.MsgBlock, height int32,
notify bool) []*wtxmgr.TxRecord {
// If this block happened before the client's birthday, then we'll skip
// it entirely.
if block.Header.Timestamp.Before(c.birthday) {
return nil
}
if c.shouldNotifyBlocks() {
log.Debugf("Filtering block %d (%s) with %d transactions",
height, block.BlockHash(), len(block.Transactions))
}
// Create a block details template to use for all of the confirmed
// transactions found within this block.
blockHash := block.BlockHash()
blockDetails := &btcjson.BlockDetails{
Hash: blockHash.String(),
Height: height,
Time: block.Header.Timestamp.Unix(),
}
// Now, we'll through all of the transactions in the block keeping track
// of any relevant to the caller.
var relevantTxs []*wtxmgr.TxRecord
confirmedTxs := make(map[chainhash.Hash]struct{})
for i, tx := range block.Transactions {
// Update the index in the block details with the index of this
// transaction.
blockDetails.Index = i
isRelevant, rec, err := c.filterTx(tx, blockDetails, notify)
if err != nil {
log.Warnf("Unable to filter transaction %v: %v",
tx.TxHash(), err)
continue
}
if isRelevant {
relevantTxs = append(relevantTxs, rec)
confirmedTxs[tx.TxHash()] = struct{}{}
}
}
// Update the expiration map by setting the block's confirmed
// transactions and deleting any in the mempool that were confirmed
// over 288 blocks ago.
c.watchMtx.Lock()
c.expiredMempool[height] = confirmedTxs
if oldBlock, ok := c.expiredMempool[height-288]; ok {
for txHash := range oldBlock {
delete(c.mempool, txHash)
}
delete(c.expiredMempool, height-288)
}
c.watchMtx.Unlock()
if notify {
c.onFilteredBlockConnected(height, &block.Header, relevantTxs)
c.onBlockConnected(&blockHash, height, block.Header.Timestamp)
}
return relevantTxs
}
// filterTx determines whether a transaction is relevant to the client by
// inspecting the client's different filters.
func (c *BitcoindClient) filterTx(tx *wire.MsgTx,
blockDetails *btcjson.BlockDetails,
notify bool) (bool, *wtxmgr.TxRecord, error) {
txDetails := btcutil.NewTx(tx)
if blockDetails != nil {
txDetails.SetIndex(blockDetails.Index)
}
rec, err := wtxmgr.NewTxRecordFromMsgTx(txDetails.MsgTx(), time.Now())
if err != nil {
log.Errorf("Cannot create transaction record for relevant "+
"tx: %v", err)
return false, nil, err
}
if blockDetails != nil {
rec.Received = time.Unix(blockDetails.Time, 0)
}
// We'll begin the filtering process by holding the lock to ensure we
// match exactly against what's currently in the filters.
c.watchMtx.Lock()
defer c.watchMtx.Unlock()
// If we've already seen this transaction and it's now been confirmed,
// then we'll shortcut the filter process by immediately sending a
// notification to the caller that the filter matches.
if _, ok := c.mempool[tx.TxHash()]; ok {
if notify && blockDetails != nil {
c.onRelevantTx(rec, blockDetails)
}
return true, rec, nil
}
// Otherwise, this is a new transaction we have yet to see. We'll need
// to determine if this transaction is somehow relevant to the caller.
var isRelevant bool
// We'll start by checking all inputs and determining whether it spends
// an existing outpoint or a pkScript encoded as an address in our watch
// list.
for _, txIn := range tx.TxIn {
// If it matches an outpoint in our watch list, we can exit our
// loop early.
if _, ok := c.watchedOutPoints[txIn.PreviousOutPoint]; ok {
isRelevant = true
break
}
// Otherwise, we'll check whether it matches a pkScript in our
// watch list encoded as an address. To do so, we'll re-derive
// the pkScript of the output the input is attempting to spend.
pkScript, err := txscript.ComputePkScript(
txIn.SignatureScript, txIn.Witness,
)
if err != nil {
// Non-standard outputs can be safely skipped.
continue
}
addr, err := pkScript.Address(c.chainParams)
if err != nil {
// Non-standard outputs can be safely skipped.
continue
}
if _, ok := c.watchedAddresses[addr.String()]; ok {
isRelevant = true
break
}
}
// We'll also cycle through its outputs to determine if it pays to
// any of the currently watched addresses. If an output matches, we'll
// add it to our watch list.
for i, txOut := range tx.TxOut {
_, addrs, _, err := txscript.ExtractPkScriptAddrs(
txOut.PkScript, c.chainParams,
)
if err != nil {
// Non-standard outputs can be safely skipped.
continue
}
for _, addr := range addrs {
if _, ok := c.watchedAddresses[addr.String()]; ok {
isRelevant = true
op := wire.OutPoint{
Hash: tx.TxHash(),
Index: uint32(i),
}
c.watchedOutPoints[op] = struct{}{}
}
}
}
// If the transaction didn't pay to any of our watched addresses, we'll
// check if we're currently watching for the hash of this transaction.
if !isRelevant {
if _, ok := c.watchedTxs[tx.TxHash()]; ok {
isRelevant = true
}
}
// If the transaction is not relevant to us, we can simply exit.
if !isRelevant {
return false, rec, nil
}
// Otherwise, the transaction matched our filters, so we should dispatch
// a notification for it. If it's still unconfirmed, we'll include it in
// our mempool so that it can also be notified as part of
// FilteredBlockConnected once it confirms.
if blockDetails == nil {
c.mempool[tx.TxHash()] = struct{}{}
}
c.onRelevantTx(rec, blockDetails)
return true, rec, nil
}