lbry.go/dht/bits/bitmap.go
2019-01-09 17:37:29 -05:00

400 lines
9.9 KiB
Go

package bits
import (
"crypto/rand"
"encoding/hex"
"math/big"
"strconv"
"strings"
"github.com/lbryio/lbry.go/extras/errors"
"github.com/lyoshenka/bencode"
)
// TODO: http://roaringbitmap.org/
const (
NumBytes = 48 // bytes
NumBits = NumBytes * 8
)
// Bitmap is a generalized representation of an identifier or data that can be sorted, compared fast. Used by the DHT
// package as a way to handle the unique identifiers of a DHT node.
type Bitmap [NumBytes]byte
func (b Bitmap) RawString() string {
return string(b[:])
}
func (b Bitmap) String() string {
return b.Hex()
}
// BString returns the bitmap as a string of 0s and 1s
func (b Bitmap) BString() string {
var s string
for _, byte := range b {
s += strconv.FormatInt(int64(byte), 2)
}
return s
}
// Hex returns a hexadecimal representation of the bitmap.
func (b Bitmap) Hex() string {
return hex.EncodeToString(b[:])
}
// HexShort returns a hexadecimal representation of the first 4 bytes.
func (b Bitmap) HexShort() string {
return hex.EncodeToString(b[:4])
}
// HexSimplified returns the hexadecimal representation with all leading 0's removed
func (b Bitmap) HexSimplified() string {
simple := strings.TrimLeft(b.Hex(), "0")
if simple == "" {
simple = "0"
}
return simple
}
func (b Bitmap) Big() *big.Int {
i := new(big.Int)
i.SetString(b.Hex(), 16)
return i
}
// Cmp compares b and other and returns:
//
// -1 if b < other
// 0 if b == other
// +1 if b > other
//
func (b Bitmap) Cmp(other Bitmap) int {
for k := range b {
if b[k] < other[k] {
return -1
} else if b[k] > other[k] {
return 1
}
}
return 0
}
// Closer returns true if dist(b,x) < dist(b,y)
func (b Bitmap) Closer(x, y Bitmap) bool {
return x.Xor(b).Cmp(y.Xor(b)) < 0
}
// Equals returns true if every byte in bitmap are equal, false otherwise
func (b Bitmap) Equals(other Bitmap) bool {
return b.Cmp(other) == 0
}
// Copy returns a duplicate value for the bitmap.
func (b Bitmap) Copy() Bitmap {
var ret Bitmap
copy(ret[:], b[:])
return ret
}
// Xor returns a diff bitmap. If they are equal, the returned bitmap will be all 0's. If 100% unique the returned
// bitmap will be all 1's.
func (b Bitmap) Xor(other Bitmap) Bitmap {
var ret Bitmap
for k := range b {
ret[k] = b[k] ^ other[k]
}
return ret
}
// And returns a comparison bitmap, that for each byte returns the AND true table result
func (b Bitmap) And(other Bitmap) Bitmap {
var ret Bitmap
for k := range b {
ret[k] = b[k] & other[k]
}
return ret
}
// Or returns a comparison bitmap, that for each byte returns the OR true table result
func (b Bitmap) Or(other Bitmap) Bitmap {
var ret Bitmap
for k := range b {
ret[k] = b[k] | other[k]
}
return ret
}
// Not returns a complimentary bitmap that is an inverse. So b.NOT.NOT = b
func (b Bitmap) Not() Bitmap {
var ret Bitmap
for k := range b {
ret[k] = ^b[k]
}
return ret
}
func (b Bitmap) add(other Bitmap) (Bitmap, bool) {
var ret Bitmap
carry := false
for i := NumBits - 1; i >= 0; i-- {
bBit := getBit(b[:], i)
oBit := getBit(other[:], i)
setBit(ret[:], i, bBit != oBit != carry)
carry = (bBit && oBit) || (bBit && carry) || (oBit && carry)
}
return ret, carry
}
// Add returns a bitmap that treats both bitmaps as numbers and adding them together. Since the size of a bitmap is
// limited, an overflow is possible when adding bitmaps.
func (b Bitmap) Add(other Bitmap) Bitmap {
ret, carry := b.add(other)
if carry {
panic("overflow in bitmap addition. limited to " + strconv.Itoa(NumBits) + " bits.")
}
return ret
}
// Sub returns a bitmap that treats both bitmaps as numbers and subtracts then via the inverse of the other and adding
// then together a + (-b). Negative bitmaps are not supported so other must be greater than this.
func (b Bitmap) Sub(other Bitmap) Bitmap {
if b.Cmp(other) < 0 {
// ToDo: Why is this not supported? Should it say not implemented? BitMap might have a generic use case outside of dht.
panic("negative bitmaps not supported")
}
complement, _ := other.Not().add(FromShortHexP("1"))
ret, _ := b.add(complement)
return ret
}
// Get returns the binary bit at the position passed.
func (b Bitmap) Get(n int) bool {
return getBit(b[:], n)
}
// Set sets the binary bit at the position passed.
func (b Bitmap) Set(n int, one bool) Bitmap {
ret := b.Copy()
setBit(ret[:], n, one)
return ret
}
// PrefixLen returns the number of leading 0 bits
func (b Bitmap) PrefixLen() int {
for i := range b {
for j := 0; j < 8; j++ {
if (b[i]>>uint8(7-j))&0x1 != 0 {
return i*8 + j
}
}
}
return NumBits
}
// Prefix returns a copy of b with the first n bits set to 1 (if `one` is true) or 0 (if `one` is false)
// https://stackoverflow.com/a/23192263/182709
func (b Bitmap) Prefix(n int, one bool) Bitmap {
ret := b.Copy()
Outer:
for i := range ret {
for j := 0; j < 8; j++ {
if i*8+j < n {
if one {
ret[i] |= 1 << uint(7-j)
} else {
ret[i] &= ^(1 << uint(7-j))
}
} else {
break Outer
}
}
}
return ret
}
// Suffix returns a copy of b with the last n bits set to 1 (if `one` is true) or 0 (if `one` is false)
// https://stackoverflow.com/a/23192263/182709
func (b Bitmap) Suffix(n int, one bool) Bitmap {
ret := b.Copy()
Outer:
for i := len(ret) - 1; i >= 0; i-- {
for j := 7; j >= 0; j-- {
if i*8+j >= NumBits-n {
if one {
ret[i] |= 1 << uint(7-j)
} else {
ret[i] &= ^(1 << uint(7-j))
}
} else {
break Outer
}
}
}
return ret
}
// MarshalBencode implements the Marshaller(bencode)/Message interface.
func (b Bitmap) MarshalBencode() ([]byte, error) {
str := string(b[:])
return bencode.EncodeBytes(str)
}
// UnmarshalBencode implements the Marshaller(bencode)/Message interface.
func (b *Bitmap) UnmarshalBencode(encoded []byte) error {
var str string
err := bencode.DecodeBytes(encoded, &str)
if err != nil {
return err
}
if len(str) != NumBytes {
return errors.Err("invalid bitmap length")
}
copy(b[:], str)
return nil
}
// FromBytes returns a bitmap as long as the byte array is of a specific length specified in the parameters.
func FromBytes(data []byte) (Bitmap, error) {
var bmp Bitmap
if len(data) != len(bmp) {
return bmp, errors.Err("invalid bitmap of length %d", len(data))
}
copy(bmp[:], data)
return bmp, nil
}
// FromBytesP returns a bitmap as long as the byte array is of a specific length specified in the parameters
// otherwise it wil panic.
func FromBytesP(data []byte) Bitmap {
bmp, err := FromBytes(data)
if err != nil {
panic(err)
}
return bmp
}
//FromString returns a bitmap by converting the string to bytes and creating from bytes as long as the byte array
// is of a specific length specified in the parameters
func FromString(data string) (Bitmap, error) {
return FromBytes([]byte(data))
}
//FromStringP returns a bitmap by converting the string to bytes and creating from bytes as long as the byte array
// is of a specific length specified in the parameters otherwise it wil panic.
func FromStringP(data string) Bitmap {
bmp, err := FromString(data)
if err != nil {
panic(err)
}
return bmp
}
//FromHex returns a bitmap by converting the hex string to bytes and creating from bytes as long as the byte array
// is of a specific length specified in the parameters
func FromHex(hexStr string) (Bitmap, error) {
decoded, err := hex.DecodeString(hexStr)
if err != nil {
return Bitmap{}, errors.Err(err)
}
return FromBytes(decoded)
}
//FromHexP returns a bitmap by converting the hex string to bytes and creating from bytes as long as the byte array
// is of a specific length specified in the parameters otherwise it wil panic.
func FromHexP(hexStr string) Bitmap {
bmp, err := FromHex(hexStr)
if err != nil {
panic(err)
}
return bmp
}
//FromShortHex returns a bitmap by converting the hex string to bytes, adding the leading zeros prefix to the
// hex string and creating from bytes as long as the byte array is of a specific length specified in the parameters
func FromShortHex(hexStr string) (Bitmap, error) {
return FromHex(strings.Repeat("0", NumBytes*2-len(hexStr)) + hexStr)
}
//FromShortHexP returns a bitmap by converting the hex string to bytes, adding the leading zeros prefix to the
// hex string and creating from bytes as long as the byte array is of a specific length specified in the parameters
// otherwise it wil panic.
func FromShortHexP(hexStr string) Bitmap {
bmp, err := FromShortHex(hexStr)
if err != nil {
panic(err)
}
return bmp
}
func FromBigP(b *big.Int) Bitmap {
return FromShortHexP(b.Text(16))
}
// MaxP returns a bitmap with all bits set to 1
func MaxP() Bitmap {
return FromHexP(strings.Repeat("f", NumBytes*2))
}
// Rand generates a cryptographically random bitmap with the confines of the parameters specified.
func Rand() Bitmap {
var id Bitmap
_, err := rand.Read(id[:])
if err != nil {
panic(err)
}
return id
}
// RandInRangeP generates a cryptographically random bitmap and while it is greater than the high threshold
// bitmap will subtract the diff between high and low until it is no longer greater that the high.
func RandInRangeP(low, high Bitmap) Bitmap {
diff := high.Sub(low)
r := Rand()
for r.Cmp(diff) > 0 {
r = r.Sub(diff)
}
//ToDo - Adding the low at this point doesn't gurantee it will be within the range. Consider bitmaps as numbers and
// I have a range of 50-100. If get to say 60, and add 50, I would be at 110. Should protect against this?
return r.Add(low)
}
func getBit(b []byte, n int) bool {
i := n / 8
j := n % 8
return b[i]&(1<<uint(7-j)) > 0
}
func setBit(b []byte, n int, one bool) {
i := n / 8
j := n % 8
if one {
b[i] |= 1 << uint(7-j)
} else {
b[i] &= ^(1 << uint(7-j))
}
}
// Closest returns the closest bitmap to target. if no bitmaps are provided, target itself is returned
func Closest(target Bitmap, bitmaps ...Bitmap) Bitmap {
if len(bitmaps) == 0 {
return target
}
var closest *Bitmap
for _, b := range bitmaps {
if closest == nil || target.Closer(b, *closest) {
closest = &b
}
}
return *closest
}