lbrycrd/src/wallet.h

907 lines
26 KiB
C
Raw Normal View History

// Copyright (c) 2009-2010 Satoshi Nakamoto
2013-10-20 21:25:06 +02:00
// Copyright (c) 2009-2013 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_WALLET_H
#define BITCOIN_WALLET_H
#include "core.h"
#include "crypter.h"
#include "key.h"
#include "keystore.h"
#include "main.h"
#include "ui_interface.h"
#include "util.h"
#include "walletdb.h"
#include <algorithm>
#include <map>
#include <set>
#include <stdexcept>
#include <stdint.h>
#include <string>
#include <utility>
#include <vector>
// Settings
extern int64_t nTransactionFee;
class CAccountingEntry;
class CCoinControl;
class COutput;
class CReserveKey;
class CScript;
class CWalletTx;
2012-03-26 16:48:23 +02:00
/** (client) version numbers for particular wallet features */
enum WalletFeature
{
FEATURE_BASE = 10500, // the earliest version new wallets supports (only useful for getinfo's clientversion output)
FEATURE_WALLETCRYPT = 40000, // wallet encryption
FEATURE_COMPRPUBKEY = 60000, // compressed public keys
FEATURE_LATEST = 60000
};
2012-04-15 22:10:54 +02:00
/** A key pool entry */
class CKeyPool
{
public:
int64_t nTime;
2012-05-14 19:07:52 +02:00
CPubKey vchPubKey;
2012-04-15 22:10:54 +02:00
CKeyPool()
{
nTime = GetTime();
}
2012-05-14 19:07:52 +02:00
CKeyPool(const CPubKey& vchPubKeyIn)
2012-04-15 22:10:54 +02:00
{
nTime = GetTime();
vchPubKey = vchPubKeyIn;
}
IMPLEMENT_SERIALIZE
(
if (!(nType & SER_GETHASH))
READWRITE(nVersion);
READWRITE(nTime);
READWRITE(vchPubKey);
)
};
/** Address book data */
class CAddressBookData
{
public:
std::string name;
std::string purpose;
CAddressBookData()
{
purpose = "unknown";
}
};
2012-03-26 16:48:23 +02:00
/** A CWallet is an extension of a keystore, which also maintains a set of transactions and balances,
* and provides the ability to create new transactions.
*/
class CWallet : public CCryptoKeyStore, public CWalletInterface
{
private:
bool SelectCoins(int64_t nTargetValue, std::set<std::pair<const CWalletTx*,unsigned int> >& setCoinsRet, int64_t& nValueRet, const CCoinControl *coinControl = NULL) const;
CWalletDB *pwalletdbEncryption;
// the current wallet version: clients below this version are not able to load the wallet
2012-02-18 14:55:02 +01:00
int nWalletVersion;
2012-06-29 11:26:45 +02:00
// the maximum wallet format version: memory-only variable that specifies to what version this wallet may be upgraded
int nWalletMaxVersion;
int64_t nNextResend;
int64_t nLastResend;
public:
/// Main wallet lock.
/// This lock protects all the fields added by CWallet
/// except for:
/// fFileBacked (immutable after instantiation)
/// strWalletFile (immutable after instantiation)
mutable CCriticalSection cs_wallet;
bool fFileBacked;
std::string strWalletFile;
std::set<int64_t> setKeyPool;
std::map<CKeyID, CKeyMetadata> mapKeyMetadata;
2012-02-18 14:55:02 +01:00
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
typedef std::map<unsigned int, CMasterKey> MasterKeyMap;
MasterKeyMap mapMasterKeys;
unsigned int nMasterKeyMaxID;
CWallet()
{
nWalletVersion = FEATURE_BASE;
nWalletMaxVersion = FEATURE_BASE;
fFileBacked = false;
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
nMasterKeyMaxID = 0;
pwalletdbEncryption = NULL;
nOrderPosNext = 0;
nNextResend = 0;
nLastResend = 0;
}
CWallet(std::string strWalletFileIn)
{
nWalletVersion = FEATURE_BASE;
nWalletMaxVersion = FEATURE_BASE;
strWalletFile = strWalletFileIn;
fFileBacked = true;
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
nMasterKeyMaxID = 0;
pwalletdbEncryption = NULL;
nOrderPosNext = 0;
nNextResend = 0;
nLastResend = 0;
}
std::map<uint256, CWalletTx> mapWallet;
int64_t nOrderPosNext;
std::map<uint256, int> mapRequestCount;
std::map<CTxDestination, CAddressBookData> mapAddressBook;
2012-05-14 19:07:52 +02:00
CPubKey vchDefaultKey;
std::set<COutPoint> setLockedCoins;
int64_t nTimeFirstKey;
// check whether we are allowed to upgrade (or already support) to the named feature
bool CanSupportFeature(enum WalletFeature wf) { AssertLockHeld(cs_wallet); return nWalletMaxVersion >= wf; }
void AvailableCoins(std::vector<COutput>& vCoins, bool fOnlyConfirmed=true, const CCoinControl *coinControl = NULL) const;
bool SelectCoinsMinConf(int64_t nTargetValue, int nConfMine, int nConfTheirs, std::vector<COutput> vCoins, std::set<std::pair<const CWalletTx*,unsigned int> >& setCoinsRet, int64_t& nValueRet) const;
bool IsLockedCoin(uint256 hash, unsigned int n) const;
void LockCoin(COutPoint& output);
void UnlockCoin(COutPoint& output);
void UnlockAllCoins();
void ListLockedCoins(std::vector<COutPoint>& vOutpts);
2011-06-25 14:57:32 +02:00
// keystore implementation
2012-02-18 15:02:36 +01:00
// Generate a new key
2012-05-14 19:07:52 +02:00
CPubKey GenerateNewKey();
2011-11-07 00:05:42 +01:00
// Adds a key to the store, and saves it to disk.
bool AddKeyPubKey(const CKey& key, const CPubKey &pubkey);
2011-11-07 00:05:42 +01:00
// Adds a key to the store, without saving it to disk (used by LoadWallet)
bool LoadKey(const CKey& key, const CPubKey &pubkey) { return CCryptoKeyStore::AddKeyPubKey(key, pubkey); }
// Load metadata (used by LoadWallet)
bool LoadKeyMetadata(const CPubKey &pubkey, const CKeyMetadata &metadata);
2011-11-07 00:05:42 +01:00
bool LoadMinVersion(int nVersion) { AssertLockHeld(cs_wallet); nWalletVersion = nVersion; nWalletMaxVersion = std::max(nWalletMaxVersion, nVersion); return true; }
2012-02-18 14:55:02 +01:00
2011-11-07 00:05:42 +01:00
// Adds an encrypted key to the store, and saves it to disk.
bool AddCryptedKey(const CPubKey &vchPubKey, const std::vector<unsigned char> &vchCryptedSecret);
2011-11-07 00:05:42 +01:00
// Adds an encrypted key to the store, without saving it to disk (used by LoadWallet)
bool LoadCryptedKey(const CPubKey &vchPubKey, const std::vector<unsigned char> &vchCryptedSecret);
bool AddCScript(const CScript& redeemScript);
bool LoadCScript(const CScript& redeemScript) { return CCryptoKeyStore::AddCScript(redeemScript); }
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
bool Unlock(const SecureString& strWalletPassphrase);
bool ChangeWalletPassphrase(const SecureString& strOldWalletPassphrase, const SecureString& strNewWalletPassphrase);
bool EncryptWallet(const SecureString& strWalletPassphrase);
2011-06-25 14:57:32 +02:00
void GetKeyBirthTimes(std::map<CKeyID, int64_t> &mapKeyBirth) const;
/** Increment the next transaction order id
@return next transaction order id
*/
int64_t IncOrderPosNext(CWalletDB *pwalletdb = NULL);
typedef std::pair<CWalletTx*, CAccountingEntry*> TxPair;
typedef std::multimap<int64_t, TxPair > TxItems;
/** Get the wallet's activity log
@return multimap of ordered transactions and accounting entries
@warning Returned pointers are *only* valid within the scope of passed acentries
*/
TxItems OrderedTxItems(std::list<CAccountingEntry>& acentries, std::string strAccount = "");
void MarkDirty();
bool AddToWallet(const CWalletTx& wtxIn);
void SyncTransaction(const uint256 &hash, const CTransaction& tx, const CBlock* pblock);
bool AddToWalletIfInvolvingMe(const uint256 &hash, const CTransaction& tx, const CBlock* pblock, bool fUpdate);
void EraseFromWallet(const uint256 &hash);
void WalletUpdateSpent(const CTransaction& prevout);
int ScanForWalletTransactions(CBlockIndex* pindexStart, bool fUpdate = false);
void ReacceptWalletTransactions();
void ResendWalletTransactions();
int64_t GetBalance() const;
int64_t GetUnconfirmedBalance() const;
int64_t GetImmatureBalance() const;
bool CreateTransaction(const std::vector<std::pair<CScript, int64_t> >& vecSend,
CWalletTx& wtxNew, CReserveKey& reservekey, int64_t& nFeeRet, std::string& strFailReason, const CCoinControl *coinControl = NULL);
bool CreateTransaction(CScript scriptPubKey, int64_t nValue,
CWalletTx& wtxNew, CReserveKey& reservekey, int64_t& nFeeRet, std::string& strFailReason, const CCoinControl *coinControl = NULL);
bool CommitTransaction(CWalletTx& wtxNew, CReserveKey& reservekey);
std::string SendMoney(CScript scriptPubKey, int64_t nValue, CWalletTx& wtxNew);
std::string SendMoneyToDestination(const CTxDestination &address, int64_t nValue, CWalletTx& wtxNew);
bool NewKeyPool();
bool TopUpKeyPool(unsigned int kpSize = 0);
int64_t AddReserveKey(const CKeyPool& keypool);
void ReserveKeyFromKeyPool(int64_t& nIndex, CKeyPool& keypool);
void KeepKey(int64_t nIndex);
void ReturnKey(int64_t nIndex);
bool GetKeyFromPool(CPubKey &key);
int64_t GetOldestKeyPoolTime();
void GetAllReserveKeys(std::set<CKeyID>& setAddress) const;
std::set< std::set<CTxDestination> > GetAddressGroupings();
std::map<CTxDestination, int64_t> GetAddressBalances();
std::set<CTxDestination> GetAccountAddresses(std::string strAccount) const;
bool IsMine(const CTxIn& txin) const;
int64_t GetDebit(const CTxIn& txin) const;
bool IsMine(const CTxOut& txout) const
{
return ::IsMine(*this, txout.scriptPubKey);
}
int64_t GetCredit(const CTxOut& txout) const
{
if (!MoneyRange(txout.nValue))
throw std::runtime_error("CWallet::GetCredit() : value out of range");
return (IsMine(txout) ? txout.nValue : 0);
}
bool IsChange(const CTxOut& txout) const;
int64_t GetChange(const CTxOut& txout) const
{
if (!MoneyRange(txout.nValue))
throw std::runtime_error("CWallet::GetChange() : value out of range");
return (IsChange(txout) ? txout.nValue : 0);
}
bool IsMine(const CTransaction& tx) const
{
BOOST_FOREACH(const CTxOut& txout, tx.vout)
if (IsMine(txout))
return true;
return false;
}
bool IsFromMe(const CTransaction& tx) const
{
return (GetDebit(tx) > 0);
}
int64_t GetDebit(const CTransaction& tx) const
{
int64_t nDebit = 0;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
{
nDebit += GetDebit(txin);
if (!MoneyRange(nDebit))
throw std::runtime_error("CWallet::GetDebit() : value out of range");
}
return nDebit;
}
int64_t GetCredit(const CTransaction& tx) const
{
int64_t nCredit = 0;
BOOST_FOREACH(const CTxOut& txout, tx.vout)
{
nCredit += GetCredit(txout);
if (!MoneyRange(nCredit))
throw std::runtime_error("CWallet::GetCredit() : value out of range");
}
return nCredit;
}
int64_t GetChange(const CTransaction& tx) const
{
int64_t nChange = 0;
BOOST_FOREACH(const CTxOut& txout, tx.vout)
{
nChange += GetChange(txout);
if (!MoneyRange(nChange))
throw std::runtime_error("CWallet::GetChange() : value out of range");
}
return nChange;
}
2012-04-15 22:10:54 +02:00
void SetBestChain(const CBlockLocator& loc);
DBErrors LoadWallet(bool& fFirstRunRet);
bool SetAddressBook(const CTxDestination& address, const std::string& strName, const std::string& purpose);
bool DelAddressBook(const CTxDestination& address);
void UpdatedTransaction(const uint256 &hashTx);
void Inventory(const uint256 &hash)
{
{
LOCK(cs_wallet);
std::map<uint256, int>::iterator mi = mapRequestCount.find(hash);
if (mi != mapRequestCount.end())
(*mi).second++;
}
}
unsigned int GetKeyPoolSize()
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
{
AssertLockHeld(cs_wallet); // setKeyPool
Add wallet privkey encryption. This commit adds support for ckeys, or enCrypted private keys, to the wallet. All keys are stored in memory in their encrypted form and thus the passphrase is required from the user to spend coins, or to create new addresses. Keys are encrypted with AES-256-CBC using OpenSSL's EVP library. The key is calculated via EVP_BytesToKey using SHA512 with (by default) 25000 rounds and a random salt. By default, the user's wallet remains unencrypted until they call the RPC command encryptwallet <passphrase> or, from the GUI menu, Options-> Encrypt Wallet. When the user is attempting to call RPC functions which require the password to unlock the wallet, an error will be returned unless they call walletpassphrase <passphrase> <time to keep key in memory> first. A keypoolrefill command has been added which tops up the users keypool (requiring the passphrase via walletpassphrase first). keypoolsize has been added to the output of getinfo to show the user the number of keys left before they need to specify their passphrase (and call keypoolrefill). Note that walletpassphrase will automatically fill keypool in a separate thread which it spawns when the passphrase is set. This could cause some delays in other threads waiting for locks on the wallet passphrase, including one which could cause the passphrase to be stored longer than expected, however it will not allow the passphrase to be used longer than expected as ThreadCleanWalletPassphrase will attempt to get a lock on the key as soon as the specified lock time has arrived. When the keypool runs out (and wallet is locked) GetOrReuseKeyFromPool returns vchDefaultKey, meaning miners may start to generate many blocks to vchDefaultKey instead of a new key each time. A walletpassphrasechange <oldpassphrase> <newpassphrase> has been added to allow the user to change their password via RPC. Whenever keying material (unencrypted private keys, the user's passphrase, the wallet's AES key) is stored unencrypted in memory, any reasonable attempt is made to mlock/VirtualLock that memory before storing the keying material. This is not true in several (commented) cases where mlock/VirtualLocking the memory is not possible. Although encryption of private keys in memory can be very useful on desktop systems (as some small amount of protection against stupid viruses), on an RPC server, the password is entered fairly insecurely. Thus, the only main advantage encryption has for RPC servers is for RPC servers that do not spend coins, except in rare cases, eg. a webserver of a merchant which only receives payment except for cases of manual intervention. Thanks to jgarzik for the original patch and sipa, gmaxwell and many others for all their input. Conflicts: src/wallet.cpp
2011-07-08 15:47:35 +02:00
return setKeyPool.size();
}
2012-05-14 19:07:52 +02:00
bool SetDefaultKey(const CPubKey &vchPubKey);
2012-02-18 14:55:02 +01:00
// signify that a particular wallet feature is now used. this may change nWalletVersion and nWalletMaxVersion if those are lower
bool SetMinVersion(enum WalletFeature, CWalletDB* pwalletdbIn = NULL, bool fExplicit = false);
// change which version we're allowed to upgrade to (note that this does not immediately imply upgrading to that format)
bool SetMaxVersion(int nVersion);
// get the current wallet format (the oldest client version guaranteed to understand this wallet)
int GetVersion() { AssertLockHeld(cs_wallet); return nWalletVersion; }
/** Address book entry changed.
* @note called with lock cs_wallet held.
*/
boost::signals2::signal<void (CWallet *wallet, const CTxDestination
&address, const std::string &label, bool isMine,
const std::string &purpose,
ChangeType status)> NotifyAddressBookChanged;
/** Wallet transaction added, removed or updated.
* @note called with lock cs_wallet held.
*/
boost::signals2::signal<void (CWallet *wallet, const uint256 &hashTx,
ChangeType status)> NotifyTransactionChanged;
};
2012-03-26 16:48:23 +02:00
/** A key allocated from the key pool. */
class CReserveKey
{
protected:
CWallet* pwallet;
int64_t nIndex;
2012-05-14 19:07:52 +02:00
CPubKey vchPubKey;
public:
CReserveKey(CWallet* pwalletIn)
{
nIndex = -1;
pwallet = pwalletIn;
}
~CReserveKey()
{
2013-03-09 18:02:57 +01:00
ReturnKey();
}
void ReturnKey();
bool GetReservedKey(CPubKey &pubkey);
void KeepKey();
};
typedef std::map<std::string, std::string> mapValue_t;
static void ReadOrderPos(int64_t& nOrderPos, mapValue_t& mapValue)
{
if (!mapValue.count("n"))
{
nOrderPos = -1; // TODO: calculate elsewhere
return;
}
nOrderPos = atoi64(mapValue["n"].c_str());
}
static void WriteOrderPos(const int64_t& nOrderPos, mapValue_t& mapValue)
{
if (nOrderPos == -1)
return;
mapValue["n"] = i64tostr(nOrderPos);
}
/** A transaction with a bunch of additional info that only the owner cares about.
2012-03-26 16:48:23 +02:00
* It includes any unrecorded transactions needed to link it back to the block chain.
*/
class CWalletTx : public CMerkleTx
{
2011-06-28 23:45:22 +02:00
private:
const CWallet* pwallet;
2011-06-28 23:45:22 +02:00
public:
std::vector<CMerkleTx> vtxPrev;
mapValue_t mapValue;
std::vector<std::pair<std::string, std::string> > vOrderForm;
unsigned int fTimeReceivedIsTxTime;
unsigned int nTimeReceived; // time received by this node
unsigned int nTimeSmart;
char fFromMe;
std::string strFromAccount;
2011-11-07 00:05:42 +01:00
std::vector<char> vfSpent; // which outputs are already spent
int64_t nOrderPos; // position in ordered transaction list
// memory only
mutable bool fDebitCached;
mutable bool fCreditCached;
mutable bool fImmatureCreditCached;
mutable bool fAvailableCreditCached;
mutable bool fChangeCached;
mutable int64_t nDebitCached;
mutable int64_t nCreditCached;
mutable int64_t nImmatureCreditCached;
mutable int64_t nAvailableCreditCached;
mutable int64_t nChangeCached;
CWalletTx()
{
Init(NULL);
}
CWalletTx(const CWallet* pwalletIn)
{
Init(pwalletIn);
}
CWalletTx(const CWallet* pwalletIn, const CMerkleTx& txIn) : CMerkleTx(txIn)
{
Init(pwalletIn);
}
CWalletTx(const CWallet* pwalletIn, const CTransaction& txIn) : CMerkleTx(txIn)
{
Init(pwalletIn);
}
void Init(const CWallet* pwalletIn)
{
pwallet = pwalletIn;
vtxPrev.clear();
mapValue.clear();
vOrderForm.clear();
fTimeReceivedIsTxTime = false;
nTimeReceived = 0;
nTimeSmart = 0;
fFromMe = false;
strFromAccount.clear();
vfSpent.clear();
fDebitCached = false;
fCreditCached = false;
fImmatureCreditCached = false;
fAvailableCreditCached = false;
fChangeCached = false;
nDebitCached = 0;
nCreditCached = 0;
nImmatureCreditCached = 0;
nAvailableCreditCached = 0;
nChangeCached = 0;
nOrderPos = -1;
}
IMPLEMENT_SERIALIZE
(
CWalletTx* pthis = const_cast<CWalletTx*>(this);
if (fRead)
pthis->Init(NULL);
char fSpent = false;
if (!fRead)
{
pthis->mapValue["fromaccount"] = pthis->strFromAccount;
std::string str;
BOOST_FOREACH(char f, vfSpent)
{
str += (f ? '1' : '0');
if (f)
fSpent = true;
}
pthis->mapValue["spent"] = str;
WriteOrderPos(pthis->nOrderPos, pthis->mapValue);
if (nTimeSmart)
pthis->mapValue["timesmart"] = strprintf("%u", nTimeSmart);
}
nSerSize += SerReadWrite(s, *(CMerkleTx*)this, nType, nVersion,ser_action);
READWRITE(vtxPrev);
READWRITE(mapValue);
READWRITE(vOrderForm);
READWRITE(fTimeReceivedIsTxTime);
READWRITE(nTimeReceived);
READWRITE(fFromMe);
READWRITE(fSpent);
if (fRead)
{
pthis->strFromAccount = pthis->mapValue["fromaccount"];
if (mapValue.count("spent"))
BOOST_FOREACH(char c, pthis->mapValue["spent"])
pthis->vfSpent.push_back(c != '0');
else
pthis->vfSpent.assign(vout.size(), fSpent);
ReadOrderPos(pthis->nOrderPos, pthis->mapValue);
pthis->nTimeSmart = mapValue.count("timesmart") ? (unsigned int)atoi64(pthis->mapValue["timesmart"]) : 0;
}
pthis->mapValue.erase("fromaccount");
pthis->mapValue.erase("version");
pthis->mapValue.erase("spent");
pthis->mapValue.erase("n");
pthis->mapValue.erase("timesmart");
)
// marks certain txout's as spent
// returns true if any update took place
bool UpdateSpent(const std::vector<char>& vfNewSpent)
{
bool fReturn = false;
for (unsigned int i = 0; i < vfNewSpent.size(); i++)
{
if (i == vfSpent.size())
break;
if (vfNewSpent[i] && !vfSpent[i])
{
vfSpent[i] = true;
fReturn = true;
fAvailableCreditCached = false;
}
}
return fReturn;
}
2011-11-07 00:05:42 +01:00
// make sure balances are recalculated
void MarkDirty()
{
fCreditCached = false;
fAvailableCreditCached = false;
fDebitCached = false;
fChangeCached = false;
}
2011-06-28 23:45:22 +02:00
void BindWallet(CWallet *pwalletIn)
{
pwallet = pwalletIn;
MarkDirty();
}
void MarkSpent(unsigned int nOut)
{
if (nOut >= vout.size())
throw std::runtime_error("CWalletTx::MarkSpent() : nOut out of range");
vfSpent.resize(vout.size());
if (!vfSpent[nOut])
{
vfSpent[nOut] = true;
fAvailableCreditCached = false;
}
}
bool IsSpent(unsigned int nOut) const
{
if (nOut >= vout.size())
throw std::runtime_error("CWalletTx::IsSpent() : nOut out of range");
if (nOut >= vfSpent.size())
return false;
return (!!vfSpent[nOut]);
}
int64_t GetDebit() const
{
if (vin.empty())
return 0;
if (fDebitCached)
return nDebitCached;
nDebitCached = pwallet->GetDebit(*this);
fDebitCached = true;
return nDebitCached;
}
int64_t GetCredit(bool fUseCache=true) const
{
// Must wait until coinbase is safely deep enough in the chain before valuing it
if (IsCoinBase() && GetBlocksToMaturity() > 0)
return 0;
// GetBalance can assume transactions in mapWallet won't change
if (fUseCache && fCreditCached)
return nCreditCached;
nCreditCached = pwallet->GetCredit(*this);
fCreditCached = true;
return nCreditCached;
}
int64_t GetImmatureCredit(bool fUseCache=true) const
{
if (IsCoinBase() && GetBlocksToMaturity() > 0 && IsInMainChain())
{
if (fUseCache && fImmatureCreditCached)
return nImmatureCreditCached;
nImmatureCreditCached = pwallet->GetCredit(*this);
fImmatureCreditCached = true;
return nImmatureCreditCached;
}
return 0;
}
int64_t GetAvailableCredit(bool fUseCache=true) const
{
// Must wait until coinbase is safely deep enough in the chain before valuing it
if (IsCoinBase() && GetBlocksToMaturity() > 0)
return 0;
if (fUseCache && fAvailableCreditCached)
return nAvailableCreditCached;
int64_t nCredit = 0;
for (unsigned int i = 0; i < vout.size(); i++)
{
if (!IsSpent(i))
{
const CTxOut &txout = vout[i];
nCredit += pwallet->GetCredit(txout);
if (!MoneyRange(nCredit))
throw std::runtime_error("CWalletTx::GetAvailableCredit() : value out of range");
}
}
nAvailableCreditCached = nCredit;
fAvailableCreditCached = true;
return nCredit;
}
int64_t GetChange() const
{
if (fChangeCached)
return nChangeCached;
nChangeCached = pwallet->GetChange(*this);
fChangeCached = true;
return nChangeCached;
}
void GetAmounts(std::list<std::pair<CTxDestination, int64_t> >& listReceived,
std::list<std::pair<CTxDestination, int64_t> >& listSent, int64_t& nFee, std::string& strSentAccount) const;
void GetAccountAmounts(const std::string& strAccount, int64_t& nReceived,
int64_t& nSent, int64_t& nFee) const;
bool IsFromMe() const
{
return (GetDebit() > 0);
}
bool IsConfirmed() const
{
// Quick answer in most cases
if (!IsFinalTx(*this))
return false;
if (GetDepthInMainChain() >= 1)
return true;
if (!IsFromMe()) // using wtx's cached debit
return false;
// If no confirmations but it's from us, we can still
// consider it confirmed if all dependencies are confirmed
std::map<uint256, const CMerkleTx*> mapPrev;
std::vector<const CMerkleTx*> vWorkQueue;
vWorkQueue.reserve(vtxPrev.size()+1);
vWorkQueue.push_back(this);
for (unsigned int i = 0; i < vWorkQueue.size(); i++)
{
const CMerkleTx* ptx = vWorkQueue[i];
if (!IsFinalTx(*ptx))
return false;
if (ptx->GetDepthInMainChain() >= 1)
continue;
if (!pwallet->IsFromMe(*ptx))
return false;
if (mapPrev.empty())
{
BOOST_FOREACH(const CMerkleTx& tx, vtxPrev)
mapPrev[tx.GetHash()] = &tx;
}
BOOST_FOREACH(const CTxIn& txin, ptx->vin)
{
if (!mapPrev.count(txin.prevout.hash))
return false;
vWorkQueue.push_back(mapPrev[txin.prevout.hash]);
}
}
return true;
}
bool WriteToDisk();
int64_t GetTxTime() const;
int GetRequestCount() const;
Ultraprune This switches bitcoin's transaction/block verification logic to use a "coin database", which contains all unredeemed transaction output scripts, amounts and heights. The name ultraprune comes from the fact that instead of a full transaction index, we only (need to) keep an index with unspent outputs. For now, the blocks themselves are kept as usual, although they are only necessary for serving, rescanning and reorganizing. The basic datastructures are CCoins (representing the coins of a single transaction), and CCoinsView (representing a state of the coins database). There are several implementations for CCoinsView. A dummy, one backed by the coins database (coins.dat), one backed by the memory pool, and one that adds a cache on top of it. FetchInputs, ConnectInputs, ConnectBlock, DisconnectBlock, ... now operate on a generic CCoinsView. The block switching logic now builds a single cached CCoinsView with changes to be committed to the database before any changes are made. This means no uncommitted changes are ever read from the database, and should ease the transition to another database layer which does not support transactions (but does support atomic writes), like LevelDB. For the getrawtransaction() RPC call, access to a txid-to-disk index would be preferable. As this index is not necessary or even useful for any other part of the implementation, it is not provided. Instead, getrawtransaction() uses the coin database to find the block height, and then scans that block to find the requested transaction. This is slow, but should suffice for debug purposes.
2012-07-01 18:54:00 +02:00
void AddSupportingTransactions();
bool AcceptWalletTransaction();
void RelayWalletTransaction();
};
class COutput
{
public:
const CWalletTx *tx;
int i;
int nDepth;
COutput(const CWalletTx *txIn, int iIn, int nDepthIn)
{
tx = txIn; i = iIn; nDepth = nDepthIn;
}
std::string ToString() const
{
return strprintf("COutput(%s, %d, %d) [%s]", tx->GetHash().ToString().c_str(), i, nDepth, FormatMoney(tx->vout[i].nValue).c_str());
}
void print() const
{
LogPrintf("%s\n", ToString().c_str());
}
};
2012-03-26 16:48:23 +02:00
/** Private key that includes an expiration date in case it never gets used. */
class CWalletKey
{
public:
CPrivKey vchPrivKey;
int64_t nTimeCreated;
int64_t nTimeExpires;
std::string strComment;
//// todo: add something to note what created it (user, getnewaddress, change)
//// maybe should have a map<string, string> property map
CWalletKey(int64_t nExpires=0)
{
nTimeCreated = (nExpires ? GetTime() : 0);
nTimeExpires = nExpires;
}
IMPLEMENT_SERIALIZE
(
if (!(nType & SER_GETHASH))
READWRITE(nVersion);
READWRITE(vchPrivKey);
READWRITE(nTimeCreated);
READWRITE(nTimeExpires);
READWRITE(strComment);
)
};
2012-03-26 16:48:23 +02:00
/** Account information.
* Stored in wallet with key "acc"+string account name.
*/
class CAccount
{
public:
2012-05-14 19:07:52 +02:00
CPubKey vchPubKey;
CAccount()
{
SetNull();
}
void SetNull()
{
2012-05-14 19:07:52 +02:00
vchPubKey = CPubKey();
}
IMPLEMENT_SERIALIZE
(
if (!(nType & SER_GETHASH))
READWRITE(nVersion);
READWRITE(vchPubKey);
)
};
2012-03-26 16:48:23 +02:00
/** Internal transfers.
* Database key is acentry<account><counter>.
*/
class CAccountingEntry
{
public:
std::string strAccount;
int64_t nCreditDebit;
int64_t nTime;
std::string strOtherAccount;
std::string strComment;
mapValue_t mapValue;
int64_t nOrderPos; // position in ordered transaction list
uint64_t nEntryNo;
CAccountingEntry()
{
SetNull();
}
void SetNull()
{
nCreditDebit = 0;
nTime = 0;
strAccount.clear();
strOtherAccount.clear();
strComment.clear();
nOrderPos = -1;
}
IMPLEMENT_SERIALIZE
(
CAccountingEntry& me = *const_cast<CAccountingEntry*>(this);
if (!(nType & SER_GETHASH))
READWRITE(nVersion);
// Note: strAccount is serialized as part of the key, not here.
READWRITE(nCreditDebit);
READWRITE(nTime);
READWRITE(strOtherAccount);
if (!fRead)
{
WriteOrderPos(nOrderPos, me.mapValue);
if (!(mapValue.empty() && _ssExtra.empty()))
{
CDataStream ss(nType, nVersion);
ss.insert(ss.begin(), '\0');
ss << mapValue;
ss.insert(ss.end(), _ssExtra.begin(), _ssExtra.end());
me.strComment.append(ss.str());
}
}
READWRITE(strComment);
size_t nSepPos = strComment.find("\0", 0, 1);
if (fRead)
{
me.mapValue.clear();
if (std::string::npos != nSepPos)
{
CDataStream ss(std::vector<char>(strComment.begin() + nSepPos + 1, strComment.end()), nType, nVersion);
ss >> me.mapValue;
me._ssExtra = std::vector<char>(ss.begin(), ss.end());
}
ReadOrderPos(me.nOrderPos, me.mapValue);
}
if (std::string::npos != nSepPos)
me.strComment.erase(nSepPos);
me.mapValue.erase("n");
)
private:
std::vector<char> _ssExtra;
};
#endif