lbrycrd/src/wallet/coinselection.cpp

301 lines
13 KiB
C++
Raw Normal View History

// Copyright (c) 2017 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <wallet/coinselection.h>
#include <util.h>
#include <utilmoneystr.h>
// Descending order comparator
struct {
bool operator()(const CInputCoin& a, const CInputCoin& b) const
{
return a.effective_value > b.effective_value;
}
} descending;
/*
* This is the Branch and Bound Coin Selection algorithm designed by Murch. It searches for an input
* set that can pay for the spending target and does not exceed the spending target by more than the
* cost of creating and spending a change output. The algorithm uses a depth-first search on a binary
* tree. In the binary tree, each node corresponds to the inclusion or the omission of a UTXO. UTXOs
* are sorted by their effective values and the trees is explored deterministically per the inclusion
* branch first. At each node, the algorithm checks whether the selection is within the target range.
* While the selection has not reached the target range, more UTXOs are included. When a selection's
* value exceeds the target range, the complete subtree deriving from this selection can be omitted.
* At that point, the last included UTXO is deselected and the corresponding omission branch explored
* instead. The search ends after the complete tree has been searched or after a limited number of tries.
*
* The search continues to search for better solutions after one solution has been found. The best
* solution is chosen by minimizing the waste metric. The waste metric is defined as the cost to
* spend the current inputs at the given fee rate minus the long term expected cost to spend the
* inputs, plus the amount the selection exceeds the spending target:
*
* waste = selectionTotal - target + inputs × (currentFeeRate - longTermFeeRate)
*
* The algorithm uses two additional optimizations. A lookahead keeps track of the total value of
* the unexplored UTXOs. A subtree is not explored if the lookahead indicates that the target range
* cannot be reached. Further, it is unnecessary to test equivalent combinations. This allows us
* to skip testing the inclusion of UTXOs that match the effective value and waste of an omitted
* predecessor.
*
* The Branch and Bound algorithm is described in detail in Murch's Master Thesis:
* https://murch.one/wp-content/uploads/2016/11/erhardt2016coinselection.pdf
*
* @param const std::vector<CInputCoin>& utxo_pool The set of UTXOs that we are choosing from.
* These UTXOs will be sorted in descending order by effective value and the CInputCoins'
* values are their effective values.
* @param const CAmount& target_value This is the value that we want to select. It is the lower
* bound of the range.
* @param const CAmount& cost_of_change This is the cost of creating and spending a change output.
* This plus target_value is the upper bound of the range.
* @param std::set<CInputCoin>& out_set -> This is an output parameter for the set of CInputCoins
* that have been selected.
* @param CAmount& value_ret -> This is an output parameter for the total value of the CInputCoins
* that were selected.
* @param CAmount not_input_fees -> The fees that need to be paid for the outputs and fixed size
* overhead (version, locktime, marker and flag)
*/
static const size_t TOTAL_TRIES = 100000;
bool SelectCoinsBnB(std::vector<CInputCoin>& utxo_pool, const CAmount& target_value, const CAmount& cost_of_change, std::set<CInputCoin>& out_set, CAmount& value_ret, CAmount not_input_fees)
{
out_set.clear();
CAmount curr_value = 0;
std::vector<bool> curr_selection; // select the utxo at this index
curr_selection.reserve(utxo_pool.size());
CAmount actual_target = not_input_fees + target_value;
// Calculate curr_available_value
CAmount curr_available_value = 0;
for (const CInputCoin& utxo : utxo_pool) {
// Assert that this utxo is not negative. It should never be negative, effective value calculation should have removed it
assert(utxo.effective_value > 0);
curr_available_value += utxo.effective_value;
}
if (curr_available_value < actual_target) {
return false;
}
// Sort the utxo_pool
std::sort(utxo_pool.begin(), utxo_pool.end(), descending);
CAmount curr_waste = 0;
std::vector<bool> best_selection;
CAmount best_waste = MAX_MONEY;
// Depth First search loop for choosing the UTXOs
for (size_t i = 0; i < TOTAL_TRIES; ++i) {
// Conditions for starting a backtrack
bool backtrack = false;
if (curr_value + curr_available_value < actual_target || // Cannot possibly reach target with the amount remaining in the curr_available_value.
curr_value > actual_target + cost_of_change || // Selected value is out of range, go back and try other branch
(curr_waste > best_waste && (utxo_pool.at(0).fee - utxo_pool.at(0).long_term_fee) > 0)) { // Don't select things which we know will be more wasteful if the waste is increasing
backtrack = true;
} else if (curr_value >= actual_target) { // Selected value is within range
curr_waste += (curr_value - actual_target); // This is the excess value which is added to the waste for the below comparison
// Adding another UTXO after this check could bring the waste down if the long term fee is higher than the current fee.
// However we are not going to explore that because this optimization for the waste is only done when we have hit our target
// value. Adding any more UTXOs will be just burning the UTXO; it will go entirely to fees. Thus we aren't going to
// explore any more UTXOs to avoid burning money like that.
if (curr_waste <= best_waste) {
best_selection = curr_selection;
best_selection.resize(utxo_pool.size());
best_waste = curr_waste;
}
curr_waste -= (curr_value - actual_target); // Remove the excess value as we will be selecting different coins now
backtrack = true;
}
// Backtracking, moving backwards
if (backtrack) {
// Walk backwards to find the last included UTXO that still needs to have its omission branch traversed.
while (!curr_selection.empty() && !curr_selection.back()) {
curr_selection.pop_back();
curr_available_value += utxo_pool.at(curr_selection.size()).effective_value;
};
if (curr_selection.empty()) { // We have walked back to the first utxo and no branch is untraversed. All solutions searched
break;
}
// Output was included on previous iterations, try excluding now.
curr_selection.back() = false;
CInputCoin& utxo = utxo_pool.at(curr_selection.size() - 1);
curr_value -= utxo.effective_value;
curr_waste -= utxo.fee - utxo.long_term_fee;
} else { // Moving forwards, continuing down this branch
CInputCoin& utxo = utxo_pool.at(curr_selection.size());
// Remove this utxo from the curr_available_value utxo amount
curr_available_value -= utxo.effective_value;
// Avoid searching a branch if the previous UTXO has the same value and same waste and was excluded. Since the ratio of fee to
// long term fee is the same, we only need to check if one of those values match in order to know that the waste is the same.
if (!curr_selection.empty() && !curr_selection.back() &&
utxo.effective_value == utxo_pool.at(curr_selection.size() - 1).effective_value &&
utxo.fee == utxo_pool.at(curr_selection.size() - 1).fee) {
curr_selection.push_back(false);
} else {
// Inclusion branch first (Largest First Exploration)
curr_selection.push_back(true);
curr_value += utxo.effective_value;
curr_waste += utxo.fee - utxo.long_term_fee;
}
}
}
// Check for solution
if (best_selection.empty()) {
return false;
}
// Set output set
value_ret = 0;
for (size_t i = 0; i < best_selection.size(); ++i) {
if (best_selection.at(i)) {
out_set.insert(utxo_pool.at(i));
value_ret += utxo_pool.at(i).txout.nValue;
}
}
return true;
}
static void ApproximateBestSubset(const std::vector<CInputCoin>& vValue, const CAmount& nTotalLower, const CAmount& nTargetValue,
std::vector<char>& vfBest, CAmount& nBest, int iterations = 1000)
{
std::vector<char> vfIncluded;
vfBest.assign(vValue.size(), true);
nBest = nTotalLower;
FastRandomContext insecure_rand;
for (int nRep = 0; nRep < iterations && nBest != nTargetValue; nRep++)
{
vfIncluded.assign(vValue.size(), false);
CAmount nTotal = 0;
bool fReachedTarget = false;
for (int nPass = 0; nPass < 2 && !fReachedTarget; nPass++)
{
for (unsigned int i = 0; i < vValue.size(); i++)
{
//The solver here uses a randomized algorithm,
//the randomness serves no real security purpose but is just
//needed to prevent degenerate behavior and it is important
//that the rng is fast. We do not use a constant random sequence,
//because there may be some privacy improvement by making
//the selection random.
if (nPass == 0 ? insecure_rand.randbool() : !vfIncluded[i])
{
nTotal += vValue[i].txout.nValue;
vfIncluded[i] = true;
if (nTotal >= nTargetValue)
{
fReachedTarget = true;
if (nTotal < nBest)
{
nBest = nTotal;
vfBest = vfIncluded;
}
nTotal -= vValue[i].txout.nValue;
vfIncluded[i] = false;
}
}
}
}
}
}
bool KnapsackSolver(const CAmount& nTargetValue, std::vector<CInputCoin>& vCoins, std::set<CInputCoin>& setCoinsRet, CAmount& nValueRet)
{
setCoinsRet.clear();
nValueRet = 0;
// List of values less than target
boost::optional<CInputCoin> coinLowestLarger;
std::vector<CInputCoin> vValue;
CAmount nTotalLower = 0;
random_shuffle(vCoins.begin(), vCoins.end(), GetRandInt);
for (const CInputCoin &coin : vCoins)
{
if (coin.txout.nValue == nTargetValue)
{
setCoinsRet.insert(coin);
nValueRet += coin.txout.nValue;
return true;
}
else if (coin.txout.nValue < nTargetValue + MIN_CHANGE)
{
vValue.push_back(coin);
nTotalLower += coin.txout.nValue;
}
else if (!coinLowestLarger || coin.txout.nValue < coinLowestLarger->txout.nValue)
{
coinLowestLarger = coin;
}
}
if (nTotalLower == nTargetValue)
{
for (const auto& input : vValue)
{
setCoinsRet.insert(input);
nValueRet += input.txout.nValue;
}
return true;
}
if (nTotalLower < nTargetValue)
{
if (!coinLowestLarger)
return false;
setCoinsRet.insert(coinLowestLarger.get());
nValueRet += coinLowestLarger->txout.nValue;
return true;
}
// Solve subset sum by stochastic approximation
std::sort(vValue.begin(), vValue.end(), descending);
std::vector<char> vfBest;
CAmount nBest;
ApproximateBestSubset(vValue, nTotalLower, nTargetValue, vfBest, nBest);
if (nBest != nTargetValue && nTotalLower >= nTargetValue + MIN_CHANGE)
ApproximateBestSubset(vValue, nTotalLower, nTargetValue + MIN_CHANGE, vfBest, nBest);
// If we have a bigger coin and (either the stochastic approximation didn't find a good solution,
// or the next bigger coin is closer), return the bigger coin
if (coinLowestLarger &&
((nBest != nTargetValue && nBest < nTargetValue + MIN_CHANGE) || coinLowestLarger->txout.nValue <= nBest))
{
setCoinsRet.insert(coinLowestLarger.get());
nValueRet += coinLowestLarger->txout.nValue;
}
else {
for (unsigned int i = 0; i < vValue.size(); i++)
if (vfBest[i])
{
setCoinsRet.insert(vValue[i]);
nValueRet += vValue[i].txout.nValue;
}
if (LogAcceptCategory(BCLog::SELECTCOINS)) {
LogPrint(BCLog::SELECTCOINS, "SelectCoins() best subset: ");
for (unsigned int i = 0; i < vValue.size(); i++) {
if (vfBest[i]) {
LogPrint(BCLog::SELECTCOINS, "%s ", FormatMoney(vValue[i].txout.nValue));
}
}
LogPrint(BCLog::SELECTCOINS, "total %s\n", FormatMoney(nBest));
}
}
return true;
}