Improved microbenchmarking with multiple features.

* inline performance critical code
* Average runtime is specified and used to calculate iterations.
* Console: show median of multiple runs
* plot: show box plot
* filter benchmarks
* specify scaling factor
* ignore src/test and src/bench in command line check script
* number of iterations instead of time
* Replaced runtime in BENCHMARK makro number of iterations.
* Added -? to bench_bitcoin
* Benchmark plotly.js URL, width, height can be customized
* Fixed incorrect precision warning
This commit is contained in:
Martin Ankerl 2017-10-17 16:48:02 +02:00
parent 604e08c83c
commit 00721e69f8
15 changed files with 286 additions and 171 deletions

View file

@ -15,7 +15,7 @@ static void Sleep100ms(benchmark::State& state)
} }
} }
BENCHMARK(Sleep100ms); BENCHMARK(Sleep100ms, 10);
// Extremely fast-running benchmark: // Extremely fast-running benchmark:
#include <math.h> #include <math.h>
@ -31,4 +31,4 @@ static void Trig(benchmark::State& state)
} }
} }
BENCHMARK(Trig); BENCHMARK(Trig, 12 * 1000 * 1000);

View file

@ -54,6 +54,6 @@ static void Base58Decode(benchmark::State& state)
} }
BENCHMARK(Base58Encode); BENCHMARK(Base58Encode, 470 * 1000);
BENCHMARK(Base58CheckEncode); BENCHMARK(Base58CheckEncode, 320 * 1000);
BENCHMARK(Base58Decode); BENCHMARK(Base58Decode, 800 * 1000);

View file

@ -8,98 +8,136 @@
#include <assert.h> #include <assert.h>
#include <iostream> #include <iostream>
#include <iomanip> #include <iomanip>
#include <algorithm>
#include <regex>
#include <numeric>
benchmark::BenchRunner::BenchmarkMap &benchmark::BenchRunner::benchmarks() { void benchmark::ConsolePrinter::header()
static std::map<std::string, benchmark::BenchFunction> benchmarks_map; {
std::cout << "# Benchmark, evals, iterations, total, min, max, median" << std::endl;
}
void benchmark::ConsolePrinter::result(const State& state)
{
auto results = state.m_elapsed_results;
std::sort(results.begin(), results.end());
double total = state.m_num_iters * std::accumulate(results.begin(), results.end(), 0.0);
double front = 0;
double back = 0;
double median = 0;
if (!results.empty()) {
front = results.front();
back = results.back();
size_t mid = results.size() / 2;
median = results[mid];
if (0 == results.size() % 2) {
median = (results[mid] + results[mid + 1]) / 2;
}
}
std::cout << std::setprecision(6);
std::cout << state.m_name << ", " << state.m_num_evals << ", " << state.m_num_iters << ", " << total << ", " << front << ", " << back << ", " << median << std::endl;
}
void benchmark::ConsolePrinter::footer() {}
benchmark::PlotlyPrinter::PlotlyPrinter(std::string plotly_url, int64_t width, int64_t height)
: m_plotly_url(plotly_url), m_width(width), m_height(height)
{
}
void benchmark::PlotlyPrinter::header()
{
std::cout << "<html><head>"
<< "<script src=\"" << m_plotly_url << "\"></script>"
<< "</head><body><div id=\"myDiv\" style=\"width:" << m_width << "px; height:" << m_height << "px\"></div>"
<< "<script> var data = ["
<< std::endl;
}
void benchmark::PlotlyPrinter::result(const State& state)
{
std::cout << "{ " << std::endl
<< " name: '" << state.m_name << "', " << std::endl
<< " y: [";
const char* prefix = "";
for (const auto& e : state.m_elapsed_results) {
std::cout << prefix << std::setprecision(6) << e;
prefix = ", ";
}
std::cout << "]," << std::endl
<< " boxpoints: 'all', jitter: 0.3, pointpos: 0, type: 'box',"
<< std::endl
<< "}," << std::endl;
}
void benchmark::PlotlyPrinter::footer()
{
std::cout << "]; var layout = { showlegend: false, yaxis: { rangemode: 'tozero', autorange: true } };"
<< "Plotly.newPlot('myDiv', data, layout);"
<< "</script></body></html>";
}
benchmark::BenchRunner::BenchmarkMap& benchmark::BenchRunner::benchmarks()
{
static std::map<std::string, Bench> benchmarks_map;
return benchmarks_map; return benchmarks_map;
} }
benchmark::BenchRunner::BenchRunner(std::string name, benchmark::BenchFunction func) benchmark::BenchRunner::BenchRunner(std::string name, benchmark::BenchFunction func, uint64_t num_iters_for_one_second)
{ {
benchmarks().insert(std::make_pair(name, func)); benchmarks().insert(std::make_pair(name, Bench{func, num_iters_for_one_second}));
} }
void void benchmark::BenchRunner::RunAll(Printer& printer, uint64_t num_evals, double scaling, const std::string& filter, bool is_list_only)
benchmark::BenchRunner::RunAll(benchmark::duration elapsedTimeForOne)
{ {
perf_init(); perf_init();
if (std::ratio_less_equal<benchmark::clock::period, std::micro>::value) { if (!std::ratio_less_equal<benchmark::clock::period, std::micro>::value) {
std::cerr << "WARNING: Clock precision is worse than microsecond - benchmarks may be less accurate!\n"; std::cerr << "WARNING: Clock precision is worse than microsecond - benchmarks may be less accurate!\n";
} }
std::cout << "#Benchmark" << "," << "count" << "," << "min(ns)" << "," << "max(ns)" << "," << "average(ns)" << ","
<< "min_cycles" << "," << "max_cycles" << "," << "average_cycles" << "\n"; std::regex reFilter(filter);
std::smatch baseMatch;
printer.header();
for (const auto& p : benchmarks()) { for (const auto& p : benchmarks()) {
State state(p.first, elapsedTimeForOne); if (!std::regex_match(p.first, baseMatch, reFilter)) {
p.second(state); continue;
} }
uint64_t num_iters = static_cast<uint64_t>(p.second.num_iters_for_one_second * scaling);
if (0 == num_iters) {
num_iters = 1;
}
State state(p.first, num_evals, num_iters, printer);
if (!is_list_only) {
p.second.func(state);
}
printer.result(state);
}
printer.footer();
perf_fini(); perf_fini();
} }
bool benchmark::State::KeepRunning() bool benchmark::State::UpdateTimer(const benchmark::time_point current_time)
{ {
if (count & countMask) { if (m_start_time != time_point()) {
++count; std::chrono::duration<double> diff = current_time - m_start_time;
return true; m_elapsed_results.push_back(diff.count() / m_num_iters);
}
time_point now;
uint64_t nowCycles;
if (count == 0) {
lastTime = beginTime = now = clock::now();
lastCycles = beginCycles = nowCycles = perf_cpucycles();
}
else {
now = clock::now();
auto elapsed = now - lastTime;
auto elapsedOne = elapsed / (countMask + 1);
if (elapsedOne < minTime) minTime = elapsedOne;
if (elapsedOne > maxTime) maxTime = elapsedOne;
// We only use relative values, so don't have to handle 64-bit wrap-around specially
nowCycles = perf_cpucycles();
uint64_t elapsedOneCycles = (nowCycles - lastCycles) / (countMask + 1);
if (elapsedOneCycles < minCycles) minCycles = elapsedOneCycles;
if (elapsedOneCycles > maxCycles) maxCycles = elapsedOneCycles;
if (elapsed*128 < maxElapsed) {
// If the execution was much too fast (1/128th of maxElapsed), increase the count mask by 8x and restart timing.
// The restart avoids including the overhead of this code in the measurement.
countMask = ((countMask<<3)|7) & ((1LL<<60)-1);
count = 0;
minTime = duration::max();
maxTime = duration::zero();
minCycles = std::numeric_limits<uint64_t>::max();
maxCycles = std::numeric_limits<uint64_t>::min();
return true;
}
if (elapsed*16 < maxElapsed) {
uint64_t newCountMask = ((countMask<<1)|1) & ((1LL<<60)-1);
if ((count & newCountMask)==0) {
countMask = newCountMask;
}
}
}
lastTime = now;
lastCycles = nowCycles;
++count;
if (now - beginTime < maxElapsed) return true; // Keep going
--count;
assert(count != 0 && "count == 0 => (now == 0 && beginTime == 0) => return above");
// Output results
// Duration casts are only necessary here because hardware with sub-nanosecond clocks
// will lose precision.
int64_t min_elapsed = std::chrono::duration_cast<std::chrono::nanoseconds>(minTime).count();
int64_t max_elapsed = std::chrono::duration_cast<std::chrono::nanoseconds>(maxTime).count();
int64_t avg_elapsed = std::chrono::duration_cast<std::chrono::nanoseconds>((now-beginTime)/count).count();
int64_t averageCycles = (nowCycles-beginCycles)/count;
std::cout << std::fixed << std::setprecision(15) << name << "," << count << "," << min_elapsed << "," << max_elapsed << "," << avg_elapsed << ","
<< minCycles << "," << maxCycles << "," << averageCycles << "\n";
std::cout.copyfmt(std::ios(nullptr));
if (m_elapsed_results.size() == m_num_evals) {
return false; return false;
} }
}
m_num_iters_left = m_num_iters - 1;
return true;
}

View file

@ -9,6 +9,7 @@
#include <limits> #include <limits>
#include <map> #include <map>
#include <string> #include <string>
#include <vector>
#include <chrono> #include <chrono>
#include <boost/preprocessor/cat.hpp> #include <boost/preprocessor/cat.hpp>
@ -32,7 +33,8 @@ static void CODE_TO_TIME(benchmark::State& state)
... do any cleanup needed... ... do any cleanup needed...
} }
BENCHMARK(CODE_TO_TIME); // default to running benchmark for 5000 iterations
BENCHMARK(CODE_TO_TIME, 5000);
*/ */
@ -47,49 +49,94 @@ namespace benchmark {
using time_point = clock::time_point; using time_point = clock::time_point;
using duration = clock::duration; using duration = clock::duration;
class State { class Printer;
std::string name;
duration maxElapsed; class State
time_point beginTime, lastTime; {
duration minTime, maxTime;
uint64_t count;
uint64_t countMask;
uint64_t beginCycles;
uint64_t lastCycles;
uint64_t minCycles;
uint64_t maxCycles;
public: public:
State(std::string _name, duration _maxElapsed) : std::string m_name;
name(_name), uint64_t m_num_iters_left;
maxElapsed(_maxElapsed), const uint64_t m_num_iters;
minTime(duration::max()), const uint64_t m_num_evals;
maxTime(duration::zero()), std::vector<double> m_elapsed_results;
count(0), time_point m_start_time;
countMask(1),
beginCycles(0), bool UpdateTimer(time_point finish_time);
lastCycles(0),
minCycles(std::numeric_limits<uint64_t>::max()), State(std::string name, uint64_t num_evals, double num_iters, Printer& printer) : m_name(name), m_num_iters_left(0), m_num_iters(num_iters), m_num_evals(num_evals)
maxCycles(std::numeric_limits<uint64_t>::min()) { {
}
inline bool KeepRunning()
{
if (m_num_iters_left--) {
return true;
}
bool result = UpdateTimer(clock::now());
// measure again so runtime of UpdateTimer is not included
m_start_time = clock::now();
return result;
} }
bool KeepRunning();
}; };
typedef std::function<void(State&)> BenchFunction; typedef std::function<void(State&)> BenchFunction;
class BenchRunner class BenchRunner
{ {
typedef std::map<std::string, BenchFunction> BenchmarkMap; struct Bench {
BenchFunction func;
uint64_t num_iters_for_one_second;
};
typedef std::map<std::string, Bench> BenchmarkMap;
static BenchmarkMap& benchmarks(); static BenchmarkMap& benchmarks();
public: public:
BenchRunner(std::string name, BenchFunction func); BenchRunner(std::string name, BenchFunction func, uint64_t num_iters_for_one_second);
static void RunAll(duration elapsedTimeForOne = std::chrono::seconds(1)); static void RunAll(Printer& printer, uint64_t num_evals, double scaling, const std::string& filter, bool is_list_only);
};
// interface to output benchmark results.
class Printer
{
public:
virtual ~Printer() {}
virtual void header() = 0;
virtual void result(const State& state) = 0;
virtual void footer() = 0;
};
// default printer to console, shows min, max, median.
class ConsolePrinter : public Printer
{
public:
void header();
void result(const State& state);
void footer();
};
// creates box plot with plotly.js
class PlotlyPrinter : public Printer
{
public:
PlotlyPrinter(std::string plotly_url, int64_t width, int64_t height);
void header();
void result(const State& state);
void footer();
private:
std::string m_plotly_url;
int64_t m_width;
int64_t m_height;
}; };
} }
// BENCHMARK(foo) expands to: benchmark::BenchRunner bench_11foo("foo", foo);
#define BENCHMARK(n) \ // BENCHMARK(foo, num_iters_for_one_second) expands to: benchmark::BenchRunner bench_11foo("foo", num_iterations);
benchmark::BenchRunner BOOST_PP_CAT(bench_, BOOST_PP_CAT(__LINE__, n))(BOOST_PP_STRINGIZE(n), n); // Choose a num_iters_for_one_second that takes roughly 1 second. The goal is that all benchmarks should take approximately
// the same time, and scaling factor can be used that the total time is appropriate for your system.
#define BENCHMARK(n, num_iters_for_one_second) \
benchmark::BenchRunner BOOST_PP_CAT(bench_, BOOST_PP_CAT(__LINE__, n))(BOOST_PP_STRINGIZE(n), n, (num_iters_for_one_second));
#endif // BITCOIN_BENCH_BENCH_H #endif // BITCOIN_BENCH_BENCH_H

View file

@ -10,16 +10,62 @@
#include <util.h> #include <util.h>
#include <random.h> #include <random.h>
#include <boost/lexical_cast.hpp>
#include <memory>
static const int64_t DEFAULT_BENCH_EVALUATIONS = 5;
static const char* DEFAULT_BENCH_FILTER = ".*";
static const char* DEFAULT_BENCH_SCALING = "1.0";
static const char* DEFAULT_BENCH_PRINTER = "console";
static const char* DEFAULT_PLOT_PLOTLYURL = "https://cdn.plot.ly/plotly-latest.min.js";
static const int64_t DEFAULT_PLOT_WIDTH = 1024;
static const int64_t DEFAULT_PLOT_HEIGHT = 768;
int int
main(int argc, char** argv) main(int argc, char** argv)
{ {
gArgs.ParseParameters(argc, argv);
if (gArgs.IsArgSet("-?") || gArgs.IsArgSet("-h") || gArgs.IsArgSet("-help")) {
std::cout << HelpMessageGroup(_("Options:"))
<< HelpMessageOpt("-?", _("Print this help message and exit"))
<< HelpMessageOpt("-list", _("List benchmarks without executing them. Can be combined with -scaling and -filter"))
<< HelpMessageOpt("-evals=<n>", strprintf(_("Number of measurement evaluations to perform. (default: %u)"), DEFAULT_BENCH_EVALUATIONS))
<< HelpMessageOpt("-filter=<regex>", strprintf(_("Regular expression filter to select benchmark by name (default: %s)"), DEFAULT_BENCH_FILTER))
<< HelpMessageOpt("-scaling=<n>", strprintf(_("Scaling factor for benchmark's runtime (default: %u)"), DEFAULT_BENCH_SCALING))
<< HelpMessageOpt("-printer=(console|plot)", strprintf(_("Choose printer format. console: print data to console. plot: Print results as HTML graph (default: %s)"), DEFAULT_BENCH_PRINTER))
<< HelpMessageOpt("-plot-plotlyurl=<uri>", strprintf(_("URL to use for plotly.js (default: %s)"), DEFAULT_PLOT_PLOTLYURL))
<< HelpMessageOpt("-plot-width=<x>", strprintf(_("Plot width in pixel (default: %u)"), DEFAULT_PLOT_WIDTH))
<< HelpMessageOpt("-plot-height=<x>", strprintf(_("Plot height in pixel (default: %u)"), DEFAULT_PLOT_HEIGHT));
return 0;
}
SHA256AutoDetect(); SHA256AutoDetect();
RandomInit(); RandomInit();
ECC_Start(); ECC_Start();
SetupEnvironment(); SetupEnvironment();
fPrintToDebugLog = false; // don't want to write to debug.log file fPrintToDebugLog = false; // don't want to write to debug.log file
benchmark::BenchRunner::RunAll(); int64_t evaluations = gArgs.GetArg("-evals", DEFAULT_BENCH_EVALUATIONS);
std::string regex_filter = gArgs.GetArg("-filter", DEFAULT_BENCH_FILTER);
std::string scaling_str = gArgs.GetArg("-scaling", DEFAULT_BENCH_SCALING);
bool is_list_only = gArgs.GetBoolArg("-list", false);
double scaling_factor = boost::lexical_cast<double>(scaling_str);
std::unique_ptr<benchmark::Printer> printer(new benchmark::ConsolePrinter());
std::string printer_arg = gArgs.GetArg("-printer", DEFAULT_BENCH_PRINTER);
if ("plot" == printer_arg) {
printer.reset(new benchmark::PlotlyPrinter(
gArgs.GetArg("-plot-plotlyurl", DEFAULT_PLOT_PLOTLYURL),
gArgs.GetArg("-plot-width", DEFAULT_PLOT_WIDTH),
gArgs.GetArg("-plot-height", DEFAULT_PLOT_HEIGHT)));
}
benchmark::BenchRunner::RunAll(*printer, evaluations, scaling_factor, regex_filter, is_list_only);
ECC_Stop(); ECC_Stop();
} }

View file

@ -84,4 +84,4 @@ static void CCoinsCaching(benchmark::State& state)
} }
} }
BENCHMARK(CCoinsCaching); BENCHMARK(CCoinsCaching, 170 * 1000);

View file

@ -52,5 +52,5 @@ static void DeserializeAndCheckBlockTest(benchmark::State& state)
} }
} }
BENCHMARK(DeserializeBlockTest); BENCHMARK(DeserializeBlockTest, 130);
BENCHMARK(DeserializeAndCheckBlockTest); BENCHMARK(DeserializeAndCheckBlockTest, 160);

View file

@ -99,5 +99,5 @@ static void CCheckQueueSpeedPrevectorJob(benchmark::State& state)
tg.interrupt_all(); tg.interrupt_all();
tg.join_all(); tg.join_all();
} }
BENCHMARK(CCheckQueueSpeed); BENCHMARK(CCheckQueueSpeed, 29000);
BENCHMARK(CCheckQueueSpeedPrevectorJob); BENCHMARK(CCheckQueueSpeedPrevectorJob, 1400);

View file

@ -56,4 +56,4 @@ static void CoinSelection(benchmark::State& state)
} }
} }
BENCHMARK(CoinSelection); BENCHMARK(CoinSelection, 650);

View file

@ -46,9 +46,9 @@ static void SHA256_32b(benchmark::State& state)
{ {
std::vector<uint8_t> in(32,0); std::vector<uint8_t> in(32,0);
while (state.KeepRunning()) { while (state.KeepRunning()) {
for (int i = 0; i < 1000000; i++) { CSHA256()
CSHA256().Write(in.data(), in.size()).Finalize(in.data()); .Write(in.data(), in.size())
} .Finalize(in.data());
} }
} }
@ -63,10 +63,9 @@ static void SHA512(benchmark::State& state)
static void SipHash_32b(benchmark::State& state) static void SipHash_32b(benchmark::State& state)
{ {
uint256 x; uint256 x;
uint64_t k1 = 0;
while (state.KeepRunning()) { while (state.KeepRunning()) {
for (int i = 0; i < 1000000; i++) { *((uint64_t*)x.begin()) = SipHashUint256(0, ++k1, x);
*((uint64_t*)x.begin()) = SipHashUint256(0, i, x);
}
} }
} }
@ -75,29 +74,25 @@ static void FastRandom_32bit(benchmark::State& state)
FastRandomContext rng(true); FastRandomContext rng(true);
uint32_t x = 0; uint32_t x = 0;
while (state.KeepRunning()) { while (state.KeepRunning()) {
for (int i = 0; i < 1000000; i++) {
x += rng.rand32(); x += rng.rand32();
} }
} }
}
static void FastRandom_1bit(benchmark::State& state) static void FastRandom_1bit(benchmark::State& state)
{ {
FastRandomContext rng(true); FastRandomContext rng(true);
uint32_t x = 0; uint32_t x = 0;
while (state.KeepRunning()) { while (state.KeepRunning()) {
for (int i = 0; i < 1000000; i++) {
x += rng.randbool(); x += rng.randbool();
} }
} }
}
BENCHMARK(RIPEMD160); BENCHMARK(RIPEMD160, 440);
BENCHMARK(SHA1); BENCHMARK(SHA1, 570);
BENCHMARK(SHA256); BENCHMARK(SHA256, 340);
BENCHMARK(SHA512); BENCHMARK(SHA512, 330);
BENCHMARK(SHA256_32b); BENCHMARK(SHA256_32b, 4700 * 1000);
BENCHMARK(SipHash_32b); BENCHMARK(SipHash_32b, 40 * 1000 * 1000);
BENCHMARK(FastRandom_32bit); BENCHMARK(FastRandom_32bit, 110 * 1000 * 1000);
BENCHMARK(FastRandom_1bit); BENCHMARK(FastRandom_1bit, 440 * 1000 * 1000);

View file

@ -43,5 +43,4 @@ static void BenchLockedPool(benchmark::State& state)
addr.clear(); addr.clear();
} }
BENCHMARK(BenchLockedPool); BENCHMARK(BenchLockedPool, 530);

View file

@ -111,4 +111,4 @@ static void MempoolEviction(benchmark::State& state)
} }
} }
BENCHMARK(MempoolEviction); BENCHMARK(MempoolEviction, 41000);

View file

@ -32,5 +32,5 @@ static void PrevectorClear(benchmark::State& state)
} }
} }
BENCHMARK(PrevectorDestructor); BENCHMARK(PrevectorDestructor, 5700);
BENCHMARK(PrevectorClear); BENCHMARK(PrevectorClear, 5600);

View file

@ -12,8 +12,6 @@ static void RollingBloom(benchmark::State& state)
CRollingBloomFilter filter(120000, 0.000001); CRollingBloomFilter filter(120000, 0.000001);
std::vector<unsigned char> data(32); std::vector<unsigned char> data(32);
uint32_t count = 0; uint32_t count = 0;
uint32_t nEntriesPerGeneration = (120000 + 1) / 2;
uint32_t countnow = 0;
uint64_t match = 0; uint64_t match = 0;
while (state.KeepRunning()) { while (state.KeepRunning()) {
count++; count++;
@ -21,16 +19,8 @@ static void RollingBloom(benchmark::State& state)
data[1] = count >> 8; data[1] = count >> 8;
data[2] = count >> 16; data[2] = count >> 16;
data[3] = count >> 24; data[3] = count >> 24;
if (countnow == nEntriesPerGeneration) {
auto b = benchmark::clock::now();
filter.insert(data); filter.insert(data);
auto total = std::chrono::duration_cast<std::chrono::nanoseconds>(benchmark::clock::now() - b).count();
std::cout << "RollingBloom-refresh,1," << total << "," << total << "," << total << "\n";
countnow = 0;
} else {
filter.insert(data);
}
countnow++;
data[0] = count >> 24; data[0] = count >> 24;
data[1] = count >> 16; data[1] = count >> 16;
data[2] = count >> 8; data[2] = count >> 8;
@ -39,4 +29,4 @@ static void RollingBloom(benchmark::State& state)
} }
} }
BENCHMARK(RollingBloom); BENCHMARK(RollingBloom, 1500 * 1000);

View file

@ -105,4 +105,4 @@ static void VerifyScriptBench(benchmark::State& state)
} }
} }
BENCHMARK(VerifyScriptBench); BENCHMARK(VerifyScriptBench, 6300);