Move SocketHandler logic to private method.

This commit is contained in:
Patrick Strateman 2018-09-24 17:03:17 -04:00
parent 2af9cff11a
commit 032488e6e7
2 changed files with 202 additions and 197 deletions

View file

@ -1262,209 +1262,213 @@ void CConnman::InactivityCheck(CNode *pnode)
}
}
void CConnman::SocketHandler()
{
//
// Find which sockets have data to receive
//
struct timeval timeout;
timeout.tv_sec = 0;
timeout.tv_usec = 50000; // frequency to poll pnode->vSend
fd_set fdsetRecv;
fd_set fdsetSend;
fd_set fdsetError;
FD_ZERO(&fdsetRecv);
FD_ZERO(&fdsetSend);
FD_ZERO(&fdsetError);
SOCKET hSocketMax = 0;
bool have_fds = false;
for (const ListenSocket& hListenSocket : vhListenSocket) {
FD_SET(hListenSocket.socket, &fdsetRecv);
hSocketMax = std::max(hSocketMax, hListenSocket.socket);
have_fds = true;
}
{
LOCK(cs_vNodes);
for (CNode* pnode : vNodes)
{
// Implement the following logic:
// * If there is data to send, select() for sending data. As this only
// happens when optimistic write failed, we choose to first drain the
// write buffer in this case before receiving more. This avoids
// needlessly queueing received data, if the remote peer is not themselves
// receiving data. This means properly utilizing TCP flow control signalling.
// * Otherwise, if there is space left in the receive buffer, select() for
// receiving data.
// * Hand off all complete messages to the processor, to be handled without
// blocking here.
bool select_recv = !pnode->fPauseRecv;
bool select_send;
{
LOCK(pnode->cs_vSend);
select_send = !pnode->vSendMsg.empty();
}
LOCK(pnode->cs_hSocket);
if (pnode->hSocket == INVALID_SOCKET)
continue;
FD_SET(pnode->hSocket, &fdsetError);
hSocketMax = std::max(hSocketMax, pnode->hSocket);
have_fds = true;
if (select_send) {
FD_SET(pnode->hSocket, &fdsetSend);
continue;
}
if (select_recv) {
FD_SET(pnode->hSocket, &fdsetRecv);
}
}
}
int nSelect = select(have_fds ? hSocketMax + 1 : 0,
&fdsetRecv, &fdsetSend, &fdsetError, &timeout);
if (interruptNet)
return;
if (nSelect == SOCKET_ERROR)
{
if (have_fds)
{
int nErr = WSAGetLastError();
LogPrintf("socket select error %s\n", NetworkErrorString(nErr));
for (unsigned int i = 0; i <= hSocketMax; i++)
FD_SET(i, &fdsetRecv);
}
FD_ZERO(&fdsetSend);
FD_ZERO(&fdsetError);
if (!interruptNet.sleep_for(std::chrono::milliseconds(timeout.tv_usec/1000)))
return;
}
//
// Accept new connections
//
for (const ListenSocket& hListenSocket : vhListenSocket)
{
if (hListenSocket.socket != INVALID_SOCKET && FD_ISSET(hListenSocket.socket, &fdsetRecv))
{
AcceptConnection(hListenSocket);
}
}
//
// Service each socket
//
std::vector<CNode*> vNodesCopy;
{
LOCK(cs_vNodes);
vNodesCopy = vNodes;
for (CNode* pnode : vNodesCopy)
pnode->AddRef();
}
for (CNode* pnode : vNodesCopy)
{
if (interruptNet)
return;
//
// Receive
//
bool recvSet = false;
bool sendSet = false;
bool errorSet = false;
{
LOCK(pnode->cs_hSocket);
if (pnode->hSocket == INVALID_SOCKET)
continue;
recvSet = FD_ISSET(pnode->hSocket, &fdsetRecv);
sendSet = FD_ISSET(pnode->hSocket, &fdsetSend);
errorSet = FD_ISSET(pnode->hSocket, &fdsetError);
}
if (recvSet || errorSet)
{
// typical socket buffer is 8K-64K
char pchBuf[0x10000];
int nBytes = 0;
{
LOCK(pnode->cs_hSocket);
if (pnode->hSocket == INVALID_SOCKET)
continue;
nBytes = recv(pnode->hSocket, pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
}
if (nBytes > 0)
{
bool notify = false;
if (!pnode->ReceiveMsgBytes(pchBuf, nBytes, notify))
pnode->CloseSocketDisconnect();
RecordBytesRecv(nBytes);
if (notify) {
size_t nSizeAdded = 0;
auto it(pnode->vRecvMsg.begin());
for (; it != pnode->vRecvMsg.end(); ++it) {
if (!it->complete())
break;
nSizeAdded += it->vRecv.size() + CMessageHeader::HEADER_SIZE;
}
{
LOCK(pnode->cs_vProcessMsg);
pnode->vProcessMsg.splice(pnode->vProcessMsg.end(), pnode->vRecvMsg, pnode->vRecvMsg.begin(), it);
pnode->nProcessQueueSize += nSizeAdded;
pnode->fPauseRecv = pnode->nProcessQueueSize > nReceiveFloodSize;
}
WakeMessageHandler();
}
}
else if (nBytes == 0)
{
// socket closed gracefully
if (!pnode->fDisconnect) {
LogPrint(BCLog::NET, "socket closed\n");
}
pnode->CloseSocketDisconnect();
}
else if (nBytes < 0)
{
// error
int nErr = WSAGetLastError();
if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
{
if (!pnode->fDisconnect)
LogPrintf("socket recv error %s\n", NetworkErrorString(nErr));
pnode->CloseSocketDisconnect();
}
}
}
//
// Send
//
if (sendSet)
{
LOCK(pnode->cs_vSend);
size_t nBytes = SocketSendData(pnode);
if (nBytes) {
RecordBytesSent(nBytes);
}
}
InactivityCheck(pnode);
}
{
LOCK(cs_vNodes);
for (CNode* pnode : vNodesCopy)
pnode->Release();
}
}
void CConnman::ThreadSocketHandler()
{
while (!interruptNet)
{
DisconnectNodes();
NotifyNumConnectionsChanged();
//
// Find which sockets have data to receive
//
struct timeval timeout;
timeout.tv_sec = 0;
timeout.tv_usec = 50000; // frequency to poll pnode->vSend
fd_set fdsetRecv;
fd_set fdsetSend;
fd_set fdsetError;
FD_ZERO(&fdsetRecv);
FD_ZERO(&fdsetSend);
FD_ZERO(&fdsetError);
SOCKET hSocketMax = 0;
bool have_fds = false;
for (const ListenSocket& hListenSocket : vhListenSocket) {
FD_SET(hListenSocket.socket, &fdsetRecv);
hSocketMax = std::max(hSocketMax, hListenSocket.socket);
have_fds = true;
}
{
LOCK(cs_vNodes);
for (CNode* pnode : vNodes)
{
// Implement the following logic:
// * If there is data to send, select() for sending data. As this only
// happens when optimistic write failed, we choose to first drain the
// write buffer in this case before receiving more. This avoids
// needlessly queueing received data, if the remote peer is not themselves
// receiving data. This means properly utilizing TCP flow control signalling.
// * Otherwise, if there is space left in the receive buffer, select() for
// receiving data.
// * Hand off all complete messages to the processor, to be handled without
// blocking here.
bool select_recv = !pnode->fPauseRecv;
bool select_send;
{
LOCK(pnode->cs_vSend);
select_send = !pnode->vSendMsg.empty();
}
LOCK(pnode->cs_hSocket);
if (pnode->hSocket == INVALID_SOCKET)
continue;
FD_SET(pnode->hSocket, &fdsetError);
hSocketMax = std::max(hSocketMax, pnode->hSocket);
have_fds = true;
if (select_send) {
FD_SET(pnode->hSocket, &fdsetSend);
continue;
}
if (select_recv) {
FD_SET(pnode->hSocket, &fdsetRecv);
}
}
}
int nSelect = select(have_fds ? hSocketMax + 1 : 0,
&fdsetRecv, &fdsetSend, &fdsetError, &timeout);
if (interruptNet)
return;
if (nSelect == SOCKET_ERROR)
{
if (have_fds)
{
int nErr = WSAGetLastError();
LogPrintf("socket select error %s\n", NetworkErrorString(nErr));
for (unsigned int i = 0; i <= hSocketMax; i++)
FD_SET(i, &fdsetRecv);
}
FD_ZERO(&fdsetSend);
FD_ZERO(&fdsetError);
if (!interruptNet.sleep_for(std::chrono::milliseconds(timeout.tv_usec/1000)))
return;
}
//
// Accept new connections
//
for (const ListenSocket& hListenSocket : vhListenSocket)
{
if (hListenSocket.socket != INVALID_SOCKET && FD_ISSET(hListenSocket.socket, &fdsetRecv))
{
AcceptConnection(hListenSocket);
}
}
//
// Service each socket
//
std::vector<CNode*> vNodesCopy;
{
LOCK(cs_vNodes);
vNodesCopy = vNodes;
for (CNode* pnode : vNodesCopy)
pnode->AddRef();
}
for (CNode* pnode : vNodesCopy)
{
if (interruptNet)
return;
//
// Receive
//
bool recvSet = false;
bool sendSet = false;
bool errorSet = false;
{
LOCK(pnode->cs_hSocket);
if (pnode->hSocket == INVALID_SOCKET)
continue;
recvSet = FD_ISSET(pnode->hSocket, &fdsetRecv);
sendSet = FD_ISSET(pnode->hSocket, &fdsetSend);
errorSet = FD_ISSET(pnode->hSocket, &fdsetError);
}
if (recvSet || errorSet)
{
// typical socket buffer is 8K-64K
char pchBuf[0x10000];
int nBytes = 0;
{
LOCK(pnode->cs_hSocket);
if (pnode->hSocket == INVALID_SOCKET)
continue;
nBytes = recv(pnode->hSocket, pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
}
if (nBytes > 0)
{
bool notify = false;
if (!pnode->ReceiveMsgBytes(pchBuf, nBytes, notify))
pnode->CloseSocketDisconnect();
RecordBytesRecv(nBytes);
if (notify) {
size_t nSizeAdded = 0;
auto it(pnode->vRecvMsg.begin());
for (; it != pnode->vRecvMsg.end(); ++it) {
if (!it->complete())
break;
nSizeAdded += it->vRecv.size() + CMessageHeader::HEADER_SIZE;
}
{
LOCK(pnode->cs_vProcessMsg);
pnode->vProcessMsg.splice(pnode->vProcessMsg.end(), pnode->vRecvMsg, pnode->vRecvMsg.begin(), it);
pnode->nProcessQueueSize += nSizeAdded;
pnode->fPauseRecv = pnode->nProcessQueueSize > nReceiveFloodSize;
}
WakeMessageHandler();
}
}
else if (nBytes == 0)
{
// socket closed gracefully
if (!pnode->fDisconnect) {
LogPrint(BCLog::NET, "socket closed\n");
}
pnode->CloseSocketDisconnect();
}
else if (nBytes < 0)
{
// error
int nErr = WSAGetLastError();
if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
{
if (!pnode->fDisconnect)
LogPrintf("socket recv error %s\n", NetworkErrorString(nErr));
pnode->CloseSocketDisconnect();
}
}
}
//
// Send
//
if (sendSet)
{
LOCK(pnode->cs_vSend);
size_t nBytes = SocketSendData(pnode);
if (nBytes) {
RecordBytesSent(nBytes);
}
}
InactivityCheck(pnode);
}
{
LOCK(cs_vNodes);
for (CNode* pnode : vNodesCopy)
pnode->Release();
}
SocketHandler();
}
}

View file

@ -339,6 +339,7 @@ private:
void DisconnectNodes();
void NotifyNumConnectionsChanged();
void InactivityCheck(CNode *pnode);
void SocketHandler();
void ThreadSocketHandler();
void ThreadDNSAddressSeed();