Add SHA256 implementation using using Intel SHA intrinsics

This commit is contained in:
Pieter Wuille 2018-06-24 10:50:40 -07:00
parent 268400d318
commit 4c935e2eee
5 changed files with 438 additions and 0 deletions

View file

@ -319,6 +319,7 @@ fi
AX_CHECK_COMPILE_FLAG([-msse4.2],[[SSE42_CXXFLAGS="-msse4.2"]],,[[$CXXFLAG_WERROR]])
AX_CHECK_COMPILE_FLAG([-msse4.1],[[SSE41_CXXFLAGS="-msse4.1"]],,[[$CXXFLAG_WERROR]])
AX_CHECK_COMPILE_FLAG([-mavx -mavx2],[[AVX2_CXXFLAGS="-mavx -mavx2"]],,[[$CXXFLAG_WERROR]])
AX_CHECK_COMPILE_FLAG([-msse4 -msha],[[SHANI_CXXFLAGS="-msse4 -msha"]],,[[$CXXFLAG_WERROR]])
TEMP_CXXFLAGS="$CXXFLAGS"
CXXFLAGS="$CXXFLAGS $SSE42_CXXFLAGS"
@ -380,6 +381,27 @@ AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[
)
CXXFLAGS="$TEMP_CXXFLAGS"
TEMP_CXXFLAGS="$CXXFLAGS"
CXXFLAGS="$CXXFLAGS $SHANI_CXXFLAGS"
AC_MSG_CHECKING(for SHA-NI intrinsics)
AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[
#include <stdint.h>
#if defined(_MSC_VER)
#include <immintrin.h>
#elif defined(__GNUC__)
#include <x86intrin.h>
#endif
]],[[
__m128i i = _mm_set1_epi32(0);
__m128i j = _mm_set1_epi32(1);
__m128i k = _mm_set1_epi32(2);
return _mm_extract_epi32(_mm_sha256rnds2_epu32(i, i, k), 0);
]])],
[ AC_MSG_RESULT(yes); enable_shani=yes; AC_DEFINE(ENABLE_SHANI, 1, [Define this symbol to build code that uses SHA-NI intrinsics]) ],
[ AC_MSG_RESULT(no)]
)
CXXFLAGS="$TEMP_CXXFLAGS"
CPPFLAGS="$CPPFLAGS -DHAVE_BUILD_INFO -D__STDC_FORMAT_MACROS"
AC_ARG_WITH([utils],
@ -1300,6 +1322,7 @@ AM_CONDITIONAL([HARDEN],[test x$use_hardening = xyes])
AM_CONDITIONAL([ENABLE_HWCRC32],[test x$enable_hwcrc32 = xyes])
AM_CONDITIONAL([ENABLE_SSE41],[test x$enable_sse41 = xyes])
AM_CONDITIONAL([ENABLE_AVX2],[test x$enable_avx2 = xyes])
AM_CONDITIONAL([ENABLE_SHANI],[test x$enable_shani = xyes])
AM_CONDITIONAL([USE_ASM],[test x$use_asm = xyes])
AC_DEFINE(CLIENT_VERSION_MAJOR, _CLIENT_VERSION_MAJOR, [Major version])
@ -1344,6 +1367,7 @@ AC_SUBST(SANITIZER_LDFLAGS)
AC_SUBST(SSE42_CXXFLAGS)
AC_SUBST(SSE41_CXXFLAGS)
AC_SUBST(AVX2_CXXFLAGS)
AC_SUBST(SHANI_CXXFLAGS)
AC_SUBST(LIBTOOL_APP_LDFLAGS)
AC_SUBST(USE_UPNP)
AC_SUBST(USE_QRCODE)

View file

@ -52,6 +52,10 @@ if ENABLE_AVX2
LIBBITCOIN_CRYPTO_AVX2 = crypto/libbitcoin_crypto_avx2.a
LIBBITCOIN_CRYPTO += $(LIBBITCOIN_CRYPTO_AVX2)
endif
if ENABLE_SHANI
LIBBITCOIN_CRYPTO_SHANI = crypto/libbitcoin_crypto_shani.a
LIBBITCOIN_CRYPTO += $(LIBBITCOIN_CRYPTO_SHANI)
endif
$(LIBSECP256K1): $(wildcard secp256k1/src/*) $(wildcard secp256k1/include/*)
$(AM_V_at)$(MAKE) $(AM_MAKEFLAGS) -C $(@D) $(@F)
@ -314,6 +318,12 @@ crypto_libbitcoin_crypto_avx2_a_CXXFLAGS += $(AVX2_CXXFLAGS)
crypto_libbitcoin_crypto_avx2_a_CPPFLAGS += -DENABLE_AVX2
crypto_libbitcoin_crypto_avx2_a_SOURCES = crypto/sha256_avx2.cpp
crypto_libbitcoin_crypto_shani_a_CXXFLAGS = $(AM_CXXFLAGS) $(PIE_FLAGS)
crypto_libbitcoin_crypto_shani_a_CPPFLAGS = $(AM_CPPFLAGS)
crypto_libbitcoin_crypto_shani_a_CXXFLAGS += $(SHANI_CXXFLAGS)
crypto_libbitcoin_crypto_shani_a_CPPFLAGS += -DENABLE_SHANI
crypto_libbitcoin_crypto_shani_a_SOURCES = crypto/sha256_shani.cpp
# consensus: shared between all executables that validate any consensus rules.
libbitcoin_consensus_a_CPPFLAGS = $(AM_CPPFLAGS) $(BITCOIN_INCLUDES)
libbitcoin_consensus_a_CXXFLAGS = $(AM_CXXFLAGS) $(PIE_FLAGS)

View file

@ -137,6 +137,7 @@ test_test_bitcoin_fuzzy_LDADD = \
$(LIBBITCOIN_CRYPTO) \
$(LIBBITCOIN_CRYPTO_SSE41) \
$(LIBBITCOIN_CRYPTO_AVX2) \
$(LIBBITCOIN_CRYPTO_SHANI) \
$(LIBSECP256K1)
test_test_bitcoin_fuzzy_LDADD += $(BOOST_LIBS) $(CRYPTO_LIBS)

View file

@ -29,6 +29,16 @@ namespace sha256d64_avx2
void Transform_8way(unsigned char* out, const unsigned char* in);
}
namespace sha256d64_shani
{
void Transform_2way(unsigned char* out, const unsigned char* in);
}
namespace sha256_shani
{
void Transform(uint32_t* s, const unsigned char* chunk, size_t blocks);
}
// Internal implementation code.
namespace
{
@ -448,6 +458,7 @@ void TransformD64Wrapper(unsigned char* out, const unsigned char* in)
TransformType Transform = sha256::Transform;
TransformD64Type TransformD64 = sha256::TransformD64;
TransformD64Type TransformD64_2way = nullptr;
TransformD64Type TransformD64_4way = nullptr;
TransformD64Type TransformD64_8way = nullptr;
@ -512,6 +523,13 @@ bool SelfTest() {
TransformD64(out, data + 1);
if (!std::equal(out, out + 32, result_d64)) return false;
// Test TransformD64_2way, if available.
if (TransformD64_2way) {
unsigned char out[64];
TransformD64_2way(out, data + 1);
if (!std::equal(out, out + 64, result_d64)) return false;
}
// Test TransformD64_4way, if available.
if (TransformD64_4way) {
unsigned char out[128];
@ -556,6 +574,7 @@ std::string SHA256AutoDetect()
bool have_xsave = false;
bool have_avx = false;
bool have_avx2 = false;
bool have_shani = false;
bool enabled_avx = false;
(void)AVXEnabled;
@ -563,6 +582,7 @@ std::string SHA256AutoDetect()
(void)have_avx;
(void)have_xsave;
(void)have_avx2;
(void)have_shani;
(void)enabled_avx;
uint32_t eax, ebx, ecx, edx;
@ -576,8 +596,20 @@ std::string SHA256AutoDetect()
if (have_sse4) {
cpuid(7, 0, eax, ebx, ecx, edx);
have_avx2 = (ebx >> 5) & 1;
have_shani = (ebx >> 29) & 1;
}
#if defined(ENABLE_SHANI) && !defined(BUILD_BITCOIN_INTERNAL)
if (have_shani) {
Transform = sha256_shani::Transform;
TransformD64 = TransformD64Wrapper<sha256_shani::Transform>;
TransformD64_2way = sha256d64_shani::Transform_2way;
ret = "shani(1way,2way)";
have_sse4 = false; // Disable SSE4/AVX2;
have_avx2 = false;
}
#endif
if (have_sse4) {
#if defined(__x86_64__) || defined(__amd64__)
Transform = sha256_sse4::Transform;
@ -677,6 +709,14 @@ void SHA256D64(unsigned char* out, const unsigned char* in, size_t blocks)
blocks -= 4;
}
}
if (TransformD64_2way) {
while (blocks >= 2) {
TransformD64_2way(out, in);
out += 64;
in += 128;
blocks -= 2;
}
}
while (blocks) {
TransformD64(out, in);
out += 32;

363
src/crypto/sha256_shani.cpp Normal file
View file

@ -0,0 +1,363 @@
// Copyright (c) 2018 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
//
// Based on https://github.com/noloader/SHA-Intrinsics/blob/master/sha256-x86.c,
// Written and placed in public domain by Jeffrey Walton.
// Based on code from Intel, and by Sean Gulley for the miTLS project.
#ifdef ENABLE_SHANI
#include <stdint.h>
#if defined(_MSC_VER)
#include <immintrin.h>
#elif defined(__GNUC__)
#include <x86intrin.h>
#endif
#include <crypto/common.h>
namespace {
const __m128i MASK = _mm_set_epi64x(0x0c0d0e0f08090a0bULL, 0x0405060700010203ULL);
const __m128i INIT0 = _mm_set_epi64x(0x6a09e667bb67ae85ull, 0x510e527f9b05688cull);
const __m128i INIT1 = _mm_set_epi64x(0x3c6ef372a54ff53aull, 0x1f83d9ab5be0cd19ull);
void inline __attribute__((always_inline)) QuadRound(__m128i& state0, __m128i& state1, uint64_t k1, uint64_t k0)
{
const __m128i msg = _mm_set_epi64x(k1, k0);
state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
state0 = _mm_sha256rnds2_epu32(state0, state1, _mm_shuffle_epi32(msg, 0x0e));
}
void inline __attribute__((always_inline)) QuadRound(__m128i& state0, __m128i& state1, __m128i m, uint64_t k1, uint64_t k0)
{
const __m128i msg = _mm_add_epi32(m, _mm_set_epi64x(k1, k0));
state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
state0 = _mm_sha256rnds2_epu32(state0, state1, _mm_shuffle_epi32(msg, 0x0e));
}
void inline __attribute__((always_inline)) ShiftMessageA(__m128i& m0, __m128i m1)
{
m0 = _mm_sha256msg1_epu32(m0, m1);
}
void inline __attribute__((always_inline)) ShiftMessageC(__m128i& m0, __m128i m1, __m128i& m2)
{
m2 = _mm_sha256msg2_epu32(_mm_add_epi32(m2, _mm_alignr_epi8(m1, m0, 4)), m1);
}
void inline __attribute__((always_inline)) ShiftMessageB(__m128i& m0, __m128i m1, __m128i& m2)
{
ShiftMessageC(m0, m1, m2);
ShiftMessageA(m0, m1);
}
void inline __attribute__((always_inline)) Shuffle(__m128i& s0, __m128i& s1)
{
const __m128i t1 = _mm_shuffle_epi32(s0, 0xB1);
const __m128i t2 = _mm_shuffle_epi32(s1, 0x1B);
s0 = _mm_alignr_epi8(t1, t2, 0x08);
s1 = _mm_blend_epi16(t2, t1, 0xF0);
}
void inline __attribute__((always_inline)) Unshuffle(__m128i& s0, __m128i& s1)
{
const __m128i t1 = _mm_shuffle_epi32(s0, 0x1B);
const __m128i t2 = _mm_shuffle_epi32(s1, 0xB1);
s0 = _mm_blend_epi16(t1, t2, 0xF0);
s1 = _mm_alignr_epi8(t2, t1, 0x08);
}
__m128i inline __attribute__((always_inline)) Load(const unsigned char* in)
{
return _mm_shuffle_epi8(_mm_loadu_si128((const __m128i*)in), MASK);
}
void inline __attribute__((always_inline)) Save(unsigned char* out, __m128i s)
{
_mm_storeu_si128((__m128i*)out, _mm_shuffle_epi8(s, MASK));
}
}
namespace sha256_shani {
void Transform(uint32_t* s, const unsigned char* chunk, size_t blocks)
{
__m128i m0, m1, m2, m3, s0, s1, so0, so1;
/* Load state */
s0 = _mm_loadu_si128((const __m128i*)s);
s1 = _mm_loadu_si128((const __m128i*)(s + 4));
Shuffle(s0, s1);
while (blocks--) {
/* Remember old state */
so0 = s0;
so1 = s1;
/* Load data and transform */
m0 = Load(chunk);
QuadRound(s0, s1, m0, 0xe9b5dba5b5c0fbcfull, 0x71374491428a2f98ull);
m1 = Load(chunk + 16);
QuadRound(s0, s1, m1, 0xab1c5ed5923f82a4ull, 0x59f111f13956c25bull);
ShiftMessageA(m0, m1);
m2 = Load(chunk + 32);
QuadRound(s0, s1, m2, 0x550c7dc3243185beull, 0x12835b01d807aa98ull);
ShiftMessageA(m1, m2);
m3 = Load(chunk + 48);
QuadRound(s0, s1, m3, 0xc19bf1749bdc06a7ull, 0x80deb1fe72be5d74ull);
ShiftMessageB(m2, m3, m0);
QuadRound(s0, s1, m0, 0x240ca1cc0fc19dc6ull, 0xefbe4786E49b69c1ull);
ShiftMessageB(m3, m0, m1);
QuadRound(s0, s1, m1, 0x76f988da5cb0a9dcull, 0x4a7484aa2de92c6full);
ShiftMessageB(m0, m1, m2);
QuadRound(s0, s1, m2, 0xbf597fc7b00327c8ull, 0xa831c66d983e5152ull);
ShiftMessageB(m1, m2, m3);
QuadRound(s0, s1, m3, 0x1429296706ca6351ull, 0xd5a79147c6e00bf3ull);
ShiftMessageB(m2, m3, m0);
QuadRound(s0, s1, m0, 0x53380d134d2c6dfcull, 0x2e1b213827b70a85ull);
ShiftMessageB(m3, m0, m1);
QuadRound(s0, s1, m1, 0x92722c8581c2c92eull, 0x766a0abb650a7354ull);
ShiftMessageB(m0, m1, m2);
QuadRound(s0, s1, m2, 0xc76c51A3c24b8b70ull, 0xa81a664ba2bfe8a1ull);
ShiftMessageB(m1, m2, m3);
QuadRound(s0, s1, m3, 0x106aa070f40e3585ull, 0xd6990624d192e819ull);
ShiftMessageB(m2, m3, m0);
QuadRound(s0, s1, m0, 0x34b0bcb52748774cull, 0x1e376c0819a4c116ull);
ShiftMessageB(m3, m0, m1);
QuadRound(s0, s1, m1, 0x682e6ff35b9cca4full, 0x4ed8aa4a391c0cb3ull);
ShiftMessageC(m0, m1, m2);
QuadRound(s0, s1, m2, 0x8cc7020884c87814ull, 0x78a5636f748f82eeull);
ShiftMessageC(m1, m2, m3);
QuadRound(s0, s1, m3, 0xc67178f2bef9A3f7ull, 0xa4506ceb90befffaull);
/* Combine with old state */
s0 = _mm_add_epi32(s0, so0);
s1 = _mm_add_epi32(s1, so1);
/* Advance */
chunk += 64;
}
Unshuffle(s0, s1);
_mm_storeu_si128((__m128i*)s, s0);
_mm_storeu_si128((__m128i*)(s + 4), s1);
}
}
namespace sha256d64_shani {
void Transform_2way(unsigned char* out, const unsigned char* in)
{
__m128i am0, am1, am2, am3, as0, as1, aso0, aso1;
__m128i bm0, bm1, bm2, bm3, bs0, bs1, bso0, bso1;
/* Transform 1 */
bs0 = as0 = INIT0;
bs1 = as1 = INIT1;
am0 = Load(in);
bm0 = Load(in + 64);
QuadRound(as0, as1, am0, 0xe9b5dba5b5c0fbcfull, 0x71374491428a2f98ull);
QuadRound(bs0, bs1, bm0, 0xe9b5dba5b5c0fbcfull, 0x71374491428a2f98ull);
am1 = Load(in + 16);
bm1 = Load(in + 80);
QuadRound(as0, as1, am1, 0xab1c5ed5923f82a4ull, 0x59f111f13956c25bull);
QuadRound(bs0, bs1, bm1, 0xab1c5ed5923f82a4ull, 0x59f111f13956c25bull);
ShiftMessageA(am0, am1);
ShiftMessageA(bm0, bm1);
am2 = Load(in + 32);
bm2 = Load(in + 96);
QuadRound(as0, as1, am2, 0x550c7dc3243185beull, 0x12835b01d807aa98ull);
QuadRound(bs0, bs1, bm2, 0x550c7dc3243185beull, 0x12835b01d807aa98ull);
ShiftMessageA(am1, am2);
ShiftMessageA(bm1, bm2);
am3 = Load(in + 48);
bm3 = Load(in + 112);
QuadRound(as0, as1, am3, 0xc19bf1749bdc06a7ull, 0x80deb1fe72be5d74ull);
QuadRound(bs0, bs1, bm3, 0xc19bf1749bdc06a7ull, 0x80deb1fe72be5d74ull);
ShiftMessageB(am2, am3, am0);
ShiftMessageB(bm2, bm3, bm0);
QuadRound(as0, as1, am0, 0x240ca1cc0fc19dc6ull, 0xefbe4786E49b69c1ull);
QuadRound(bs0, bs1, bm0, 0x240ca1cc0fc19dc6ull, 0xefbe4786E49b69c1ull);
ShiftMessageB(am3, am0, am1);
ShiftMessageB(bm3, bm0, bm1);
QuadRound(as0, as1, am1, 0x76f988da5cb0a9dcull, 0x4a7484aa2de92c6full);
QuadRound(bs0, bs1, bm1, 0x76f988da5cb0a9dcull, 0x4a7484aa2de92c6full);
ShiftMessageB(am0, am1, am2);
ShiftMessageB(bm0, bm1, bm2);
QuadRound(as0, as1, am2, 0xbf597fc7b00327c8ull, 0xa831c66d983e5152ull);
QuadRound(bs0, bs1, bm2, 0xbf597fc7b00327c8ull, 0xa831c66d983e5152ull);
ShiftMessageB(am1, am2, am3);
ShiftMessageB(bm1, bm2, bm3);
QuadRound(as0, as1, am3, 0x1429296706ca6351ull, 0xd5a79147c6e00bf3ull);
QuadRound(bs0, bs1, bm3, 0x1429296706ca6351ull, 0xd5a79147c6e00bf3ull);
ShiftMessageB(am2, am3, am0);
ShiftMessageB(bm2, bm3, bm0);
QuadRound(as0, as1, am0, 0x53380d134d2c6dfcull, 0x2e1b213827b70a85ull);
QuadRound(bs0, bs1, bm0, 0x53380d134d2c6dfcull, 0x2e1b213827b70a85ull);
ShiftMessageB(am3, am0, am1);
ShiftMessageB(bm3, bm0, bm1);
QuadRound(as0, as1, am1, 0x92722c8581c2c92eull, 0x766a0abb650a7354ull);
QuadRound(bs0, bs1, bm1, 0x92722c8581c2c92eull, 0x766a0abb650a7354ull);
ShiftMessageB(am0, am1, am2);
ShiftMessageB(bm0, bm1, bm2);
QuadRound(as0, as1, am2, 0xc76c51A3c24b8b70ull, 0xa81a664ba2bfe8a1ull);
QuadRound(bs0, bs1, bm2, 0xc76c51A3c24b8b70ull, 0xa81a664ba2bfe8a1ull);
ShiftMessageB(am1, am2, am3);
ShiftMessageB(bm1, bm2, bm3);
QuadRound(as0, as1, am3, 0x106aa070f40e3585ull, 0xd6990624d192e819ull);
QuadRound(bs0, bs1, bm3, 0x106aa070f40e3585ull, 0xd6990624d192e819ull);
ShiftMessageB(am2, am3, am0);
ShiftMessageB(bm2, bm3, bm0);
QuadRound(as0, as1, am0, 0x34b0bcb52748774cull, 0x1e376c0819a4c116ull);
QuadRound(bs0, bs1, bm0, 0x34b0bcb52748774cull, 0x1e376c0819a4c116ull);
ShiftMessageB(am3, am0, am1);
ShiftMessageB(bm3, bm0, bm1);
QuadRound(as0, as1, am1, 0x682e6ff35b9cca4full, 0x4ed8aa4a391c0cb3ull);
QuadRound(bs0, bs1, bm1, 0x682e6ff35b9cca4full, 0x4ed8aa4a391c0cb3ull);
ShiftMessageC(am0, am1, am2);
ShiftMessageC(bm0, bm1, bm2);
QuadRound(as0, as1, am2, 0x8cc7020884c87814ull, 0x78a5636f748f82eeull);
QuadRound(bs0, bs1, bm2, 0x8cc7020884c87814ull, 0x78a5636f748f82eeull);
ShiftMessageC(am1, am2, am3);
ShiftMessageC(bm1, bm2, bm3);
QuadRound(as0, as1, am3, 0xc67178f2bef9A3f7ull, 0xa4506ceb90befffaull);
QuadRound(bs0, bs1, bm3, 0xc67178f2bef9A3f7ull, 0xa4506ceb90befffaull);
as0 = _mm_add_epi32(as0, INIT0);
bs0 = _mm_add_epi32(bs0, INIT0);
as1 = _mm_add_epi32(as1, INIT1);
bs1 = _mm_add_epi32(bs1, INIT1);
/* Transform 2 */
aso0 = as0;
bso0 = bs0;
aso1 = as1;
bso1 = bs1;
QuadRound(as0, as1, 0xe9b5dba5b5c0fbcfull, 0x71374491c28a2f98ull);
QuadRound(bs0, bs1, 0xe9b5dba5b5c0fbcfull, 0x71374491c28a2f98ull);
QuadRound(as0, as1, 0xab1c5ed5923f82a4ull, 0x59f111f13956c25bull);
QuadRound(bs0, bs1, 0xab1c5ed5923f82a4ull, 0x59f111f13956c25bull);
QuadRound(as0, as1, 0x550c7dc3243185beull, 0x12835b01d807aa98ull);
QuadRound(bs0, bs1, 0x550c7dc3243185beull, 0x12835b01d807aa98ull);
QuadRound(as0, as1, 0xc19bf3749bdc06a7ull, 0x80deb1fe72be5d74ull);
QuadRound(bs0, bs1, 0xc19bf3749bdc06a7ull, 0x80deb1fe72be5d74ull);
QuadRound(as0, as1, 0x240cf2540fe1edc6ull, 0xf0fe4786649b69c1ull);
QuadRound(bs0, bs1, 0x240cf2540fe1edc6ull, 0xf0fe4786649b69c1ull);
QuadRound(as0, as1, 0x16f988fa61b9411eull, 0x6cc984be4fe9346full);
QuadRound(bs0, bs1, 0x16f988fa61b9411eull, 0x6cc984be4fe9346full);
QuadRound(as0, as1, 0xb9d99ec7b019fc65ull, 0xa88e5a6df2c65152ull);
QuadRound(bs0, bs1, 0xb9d99ec7b019fc65ull, 0xa88e5a6df2c65152ull);
QuadRound(as0, as1, 0xc7353eb0fdb1232bull, 0xe70eeaa09a1231c3ull);
QuadRound(bs0, bs1, 0xc7353eb0fdb1232bull, 0xe70eeaa09a1231c3ull);
QuadRound(as0, as1, 0xdc1eeefd5a0f118full, 0xcb976d5f3069bad5ull);
QuadRound(bs0, bs1, 0xdc1eeefd5a0f118full, 0xcb976d5f3069bad5ull);
QuadRound(as0, as1, 0xe15d5b1658f4ca9dull, 0xde0b7a040a35b689ull);
QuadRound(bs0, bs1, 0xe15d5b1658f4ca9dull, 0xde0b7a040a35b689ull);
QuadRound(as0, as1, 0x6fab9537a507ea32ull, 0x37088980007f3e86ull);
QuadRound(bs0, bs1, 0x6fab9537a507ea32ull, 0x37088980007f3e86ull);
QuadRound(as0, as1, 0xc0bbbe37cdaa3b6dull, 0x0d8cd6f117406110ull);
QuadRound(bs0, bs1, 0xc0bbbe37cdaa3b6dull, 0x0d8cd6f117406110ull);
QuadRound(as0, as1, 0x6fd15ca70b02e931ull, 0xdb48a36383613bdaull);
QuadRound(bs0, bs1, 0x6fd15ca70b02e931ull, 0xdb48a36383613bdaull);
QuadRound(as0, as1, 0x6d4378906ed41a95ull, 0x31338431521afacaull);
QuadRound(bs0, bs1, 0x6d4378906ed41a95ull, 0x31338431521afacaull);
QuadRound(as0, as1, 0x532fb63cb5c9a0e6ull, 0x9eccabbdc39c91f2ull);
QuadRound(bs0, bs1, 0x532fb63cb5c9a0e6ull, 0x9eccabbdc39c91f2ull);
QuadRound(as0, as1, 0x4c191d76a4954b68ull, 0x07237ea3d2c741c6ull);
QuadRound(bs0, bs1, 0x4c191d76a4954b68ull, 0x07237ea3d2c741c6ull);
as0 = _mm_add_epi32(as0, aso0);
bs0 = _mm_add_epi32(bs0, bso0);
as1 = _mm_add_epi32(as1, aso1);
bs1 = _mm_add_epi32(bs1, bso1);
/* Extract hash */
Unshuffle(as0, as1);
Unshuffle(bs0, bs1);
am0 = as0;
bm0 = bs0;
am1 = as1;
bm1 = bs1;
/* Transform 3 */
bs0 = as0 = INIT0;
bs1 = as1 = INIT1;
QuadRound(as0, as1, am0, 0xe9b5dba5B5c0fbcfull, 0x71374491428a2f98ull);
QuadRound(bs0, bs1, bm0, 0xe9b5dba5B5c0fbcfull, 0x71374491428a2f98ull);
QuadRound(as0, as1, am1, 0xab1c5ed5923f82a4ull, 0x59f111f13956c25bull);
QuadRound(bs0, bs1, bm1, 0xab1c5ed5923f82a4ull, 0x59f111f13956c25bull);
ShiftMessageA(am0, am1);
ShiftMessageA(bm0, bm1);
bm2 = am2 = _mm_set_epi64x(0x0ull, 0x80000000ull);
QuadRound(as0, as1, 0x550c7dc3243185beull, 0x12835b015807aa98ull);
QuadRound(bs0, bs1, 0x550c7dc3243185beull, 0x12835b015807aa98ull);
ShiftMessageA(am1, am2);
ShiftMessageA(bm1, bm2);
bm3 = am3 = _mm_set_epi64x(0x10000000000ull, 0x0ull);
QuadRound(as0, as1, 0xc19bf2749bdc06a7ull, 0x80deb1fe72be5d74ull);
QuadRound(bs0, bs1, 0xc19bf2749bdc06a7ull, 0x80deb1fe72be5d74ull);
ShiftMessageB(am2, am3, am0);
ShiftMessageB(bm2, bm3, bm0);
QuadRound(as0, as1, am0, 0x240ca1cc0fc19dc6ull, 0xefbe4786e49b69c1ull);
QuadRound(bs0, bs1, bm0, 0x240ca1cc0fc19dc6ull, 0xefbe4786e49b69c1ull);
ShiftMessageB(am3, am0, am1);
ShiftMessageB(bm3, bm0, bm1);
QuadRound(as0, as1, am1, 0x76f988da5cb0a9dcull, 0x4a7484aa2de92c6full);
QuadRound(bs0, bs1, bm1, 0x76f988da5cb0a9dcull, 0x4a7484aa2de92c6full);
ShiftMessageB(am0, am1, am2);
ShiftMessageB(bm0, bm1, bm2);
QuadRound(as0, as1, am2, 0xbf597fc7b00327c8ull, 0xa831c66d983e5152ull);
QuadRound(bs0, bs1, bm2, 0xbf597fc7b00327c8ull, 0xa831c66d983e5152ull);
ShiftMessageB(am1, am2, am3);
ShiftMessageB(bm1, bm2, bm3);
QuadRound(as0, as1, am3, 0x1429296706ca6351ull, 0xd5a79147c6e00bf3ull);
QuadRound(bs0, bs1, bm3, 0x1429296706ca6351ull, 0xd5a79147c6e00bf3ull);
ShiftMessageB(am2, am3, am0);
ShiftMessageB(bm2, bm3, bm0);
QuadRound(as0, as1, am0, 0x53380d134d2c6dfcull, 0x2e1b213827b70a85ull);
QuadRound(bs0, bs1, bm0, 0x53380d134d2c6dfcull, 0x2e1b213827b70a85ull);
ShiftMessageB(am3, am0, am1);
ShiftMessageB(bm3, bm0, bm1);
QuadRound(as0, as1, am1, 0x92722c8581c2c92eull, 0x766a0abb650a7354ull);
QuadRound(bs0, bs1, bm1, 0x92722c8581c2c92eull, 0x766a0abb650a7354ull);
ShiftMessageB(am0, am1, am2);
ShiftMessageB(bm0, bm1, bm2);
QuadRound(as0, as1, am2, 0xc76c51a3c24b8b70ull, 0xa81a664ba2bfe8A1ull);
QuadRound(bs0, bs1, bm2, 0xc76c51a3c24b8b70ull, 0xa81a664ba2bfe8A1ull);
ShiftMessageB(am1, am2, am3);
ShiftMessageB(bm1, bm2, bm3);
QuadRound(as0, as1, am3, 0x106aa070f40e3585ull, 0xd6990624d192e819ull);
QuadRound(bs0, bs1, bm3, 0x106aa070f40e3585ull, 0xd6990624d192e819ull);
ShiftMessageB(am2, am3, am0);
ShiftMessageB(bm2, bm3, bm0);
QuadRound(as0, as1, am0, 0x34b0bcb52748774cull, 0x1e376c0819a4c116ull);
QuadRound(bs0, bs1, bm0, 0x34b0bcb52748774cull, 0x1e376c0819a4c116ull);
ShiftMessageB(am3, am0, am1);
ShiftMessageB(bm3, bm0, bm1);
QuadRound(as0, as1, am1, 0x682e6ff35b9cca4full, 0x4ed8aa4a391c0cb3ull);
QuadRound(bs0, bs1, bm1, 0x682e6ff35b9cca4full, 0x4ed8aa4a391c0cb3ull);
ShiftMessageC(am0, am1, am2);
ShiftMessageC(bm0, bm1, bm2);
QuadRound(as0, as1, am2, 0x8cc7020884c87814ull, 0x78a5636f748f82eeull);
QuadRound(bs0, bs1, bm2, 0x8cc7020884c87814ull, 0x78a5636f748f82eeull);
ShiftMessageC(am1, am2, am3);
ShiftMessageC(bm1, bm2, bm3);
QuadRound(as0, as1, am3, 0xc67178f2bef9a3f7ull, 0xa4506ceb90befffaull);
QuadRound(bs0, bs1, bm3, 0xc67178f2bef9a3f7ull, 0xa4506ceb90befffaull);
as0 = _mm_add_epi32(as0, INIT0);
bs0 = _mm_add_epi32(bs0, INIT0);
as1 = _mm_add_epi32(as1, INIT1);
bs1 = _mm_add_epi32(bs1, INIT1);
/* Extract hash into out */
Unshuffle(as0, as1);
Unshuffle(bs0, bs1);
Save(out, as0);
Save(out + 16, as1);
Save(out + 32, bs0);
Save(out + 48, bs1);
}
}
#endif