Switch to libsecp256k1-based validation for ECDSA
This commit is contained in:
parent
b632145ede
commit
6e18268616
13 changed files with 291 additions and 398 deletions
|
@ -190,6 +190,21 @@ calculating the target.
|
|||
A more detailed documentation about keeping traffic low can be found in
|
||||
[/doc/reducetraffic.md](/doc/reducetraffic.md).
|
||||
|
||||
Signature validation using libsecp256k1
|
||||
---------------------------------------
|
||||
|
||||
ECDSA signatures inside Bitcoin transactions now use validation using
|
||||
[https://github.com/bitcoin/secp256k1](libsecp256k1) instead of OpenSSL.
|
||||
|
||||
Depending on the platform, this means a significant speedup for raw signature
|
||||
validation speed. The advantage is largest on x86_64, where validation is over
|
||||
five times faster. In practice, this translates to a raw reindexing and new
|
||||
block validation times that are less than half of what it was before.
|
||||
|
||||
Libsecp256k1 has undergone very extensive testing and validation.
|
||||
|
||||
A side effect of this change is that libconsensus no longer depends on OpenSSL.
|
||||
|
||||
0.12.0 Change log
|
||||
=================
|
||||
|
||||
|
|
|
@ -104,8 +104,6 @@ BITCOIN_CORE_H = \
|
|||
consensus/validation.h \
|
||||
core_io.h \
|
||||
core_memusage.h \
|
||||
eccryptoverify.h \
|
||||
ecwrapper.h \
|
||||
hash.h \
|
||||
httprpc.h \
|
||||
httpserver.h \
|
||||
|
@ -272,8 +270,6 @@ libbitcoin_common_a_SOURCES = \
|
|||
compressor.cpp \
|
||||
core_read.cpp \
|
||||
core_write.cpp \
|
||||
eccryptoverify.cpp \
|
||||
ecwrapper.cpp \
|
||||
hash.cpp \
|
||||
key.cpp \
|
||||
keystore.cpp \
|
||||
|
@ -404,8 +400,6 @@ libbitcoinconsensus_la_SOURCES = \
|
|||
crypto/sha1.cpp \
|
||||
crypto/sha256.cpp \
|
||||
crypto/sha512.cpp \
|
||||
eccryptoverify.cpp \
|
||||
ecwrapper.cpp \
|
||||
hash.cpp \
|
||||
primitives/transaction.cpp \
|
||||
pubkey.cpp \
|
||||
|
@ -420,8 +414,8 @@ if GLIBC_BACK_COMPAT
|
|||
endif
|
||||
|
||||
libbitcoinconsensus_la_LDFLAGS = $(AM_LDFLAGS) -no-undefined $(RELDFLAGS)
|
||||
libbitcoinconsensus_la_LIBADD = $(CRYPTO_LIBS)
|
||||
libbitcoinconsensus_la_CPPFLAGS = $(AM_CPPFLAGS) $(CRYPTO_CFLAGS) -I$(builddir)/obj -DBUILD_BITCOIN_INTERNAL
|
||||
libbitcoinconsensus_la_LIBADD = $(LIBSECP256K1)
|
||||
libbitcoinconsensus_la_CPPFLAGS = $(AM_CPPFLAGS) -I$(builddir)/obj -I$(srcdir)/secp256k1/include -DBUILD_BITCOIN_INTERNAL
|
||||
libbitcoinconsensus_la_CXXFLAGS = $(AM_CXXFLAGS) $(PIE_FLAGS)
|
||||
|
||||
endif
|
||||
|
|
|
@ -477,9 +477,15 @@ static void MutateTxSign(CMutableTransaction& tx, const string& flagStr)
|
|||
|
||||
class Secp256k1Init
|
||||
{
|
||||
ECCVerifyHandle globalVerifyHandle;
|
||||
|
||||
public:
|
||||
Secp256k1Init() { ECC_Start(); }
|
||||
~Secp256k1Init() { ECC_Stop(); }
|
||||
Secp256k1Init() {
|
||||
ECC_Start();
|
||||
}
|
||||
~Secp256k1Init() {
|
||||
ECC_Stop();
|
||||
}
|
||||
};
|
||||
|
||||
static void MutateTx(CMutableTransaction& tx, const string& command,
|
||||
|
|
|
@ -1,68 +0,0 @@
|
|||
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
||||
// Copyright (c) 2009-2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include "eccryptoverify.h"
|
||||
|
||||
namespace {
|
||||
|
||||
int CompareBigEndian(const unsigned char *c1, size_t c1len, const unsigned char *c2, size_t c2len) {
|
||||
while (c1len > c2len) {
|
||||
if (*c1)
|
||||
return 1;
|
||||
c1++;
|
||||
c1len--;
|
||||
}
|
||||
while (c2len > c1len) {
|
||||
if (*c2)
|
||||
return -1;
|
||||
c2++;
|
||||
c2len--;
|
||||
}
|
||||
while (c1len > 0) {
|
||||
if (*c1 > *c2)
|
||||
return 1;
|
||||
if (*c2 > *c1)
|
||||
return -1;
|
||||
c1++;
|
||||
c2++;
|
||||
c1len--;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/** Order of secp256k1's generator minus 1. */
|
||||
const unsigned char vchMaxModOrder[32] = {
|
||||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
|
||||
0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
|
||||
0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x40
|
||||
};
|
||||
|
||||
/** Half of the order of secp256k1's generator minus 1. */
|
||||
const unsigned char vchMaxModHalfOrder[32] = {
|
||||
0x7F,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0x5D,0x57,0x6E,0x73,0x57,0xA4,0x50,0x1D,
|
||||
0xDF,0xE9,0x2F,0x46,0x68,0x1B,0x20,0xA0
|
||||
};
|
||||
|
||||
const unsigned char vchZero[1] = {0};
|
||||
} // anon namespace
|
||||
|
||||
namespace eccrypto {
|
||||
|
||||
bool Check(const unsigned char *vch) {
|
||||
return vch &&
|
||||
CompareBigEndian(vch, 32, vchZero, 0) > 0 &&
|
||||
CompareBigEndian(vch, 32, vchMaxModOrder, 32) <= 0;
|
||||
}
|
||||
|
||||
bool CheckSignatureElement(const unsigned char *vch, int len, bool half) {
|
||||
return vch &&
|
||||
CompareBigEndian(vch, len, vchZero, 0) > 0 &&
|
||||
CompareBigEndian(vch, len, half ? vchMaxModHalfOrder : vchMaxModOrder, 32) <= 0;
|
||||
}
|
||||
|
||||
} // namespace eccrypto
|
|
@ -1,21 +0,0 @@
|
|||
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
||||
// Copyright (c) 2009-2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_ECCRYPTOVERIFY_H
|
||||
#define BITCOIN_ECCRYPTOVERIFY_H
|
||||
|
||||
#include <vector>
|
||||
#include <cstdlib>
|
||||
|
||||
class uint256;
|
||||
|
||||
namespace eccrypto {
|
||||
|
||||
bool Check(const unsigned char *vch);
|
||||
bool CheckSignatureElement(const unsigned char *vch, int len, bool half);
|
||||
|
||||
} // eccrypto namespace
|
||||
|
||||
#endif // BITCOIN_ECCRYPTOVERIFY_H
|
|
@ -1,218 +0,0 @@
|
|||
// Copyright (c) 2009-2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#include "ecwrapper.h"
|
||||
|
||||
#include "serialize.h"
|
||||
#include "uint256.h"
|
||||
|
||||
#include <openssl/bn.h>
|
||||
#include <openssl/ecdsa.h>
|
||||
#include <openssl/obj_mac.h>
|
||||
|
||||
namespace {
|
||||
|
||||
class ecgroup_order
|
||||
{
|
||||
public:
|
||||
static const EC_GROUP* get()
|
||||
{
|
||||
static const ecgroup_order wrapper;
|
||||
return wrapper.pgroup;
|
||||
}
|
||||
|
||||
private:
|
||||
ecgroup_order()
|
||||
: pgroup(EC_GROUP_new_by_curve_name(NID_secp256k1))
|
||||
{
|
||||
}
|
||||
|
||||
~ecgroup_order()
|
||||
{
|
||||
EC_GROUP_free(pgroup);
|
||||
}
|
||||
|
||||
EC_GROUP* pgroup;
|
||||
};
|
||||
|
||||
/**
|
||||
* Perform ECDSA key recovery (see SEC1 4.1.6) for curves over (mod p)-fields
|
||||
* recid selects which key is recovered
|
||||
* if check is non-zero, additional checks are performed
|
||||
*/
|
||||
int ECDSA_SIG_recover_key_GFp(EC_KEY *eckey, ECDSA_SIG *ecsig, const unsigned char *msg, int msglen, int recid, int check)
|
||||
{
|
||||
if (!eckey) return 0;
|
||||
|
||||
int ret = 0;
|
||||
BN_CTX *ctx = NULL;
|
||||
|
||||
BIGNUM *x = NULL;
|
||||
BIGNUM *e = NULL;
|
||||
BIGNUM *order = NULL;
|
||||
BIGNUM *sor = NULL;
|
||||
BIGNUM *eor = NULL;
|
||||
BIGNUM *field = NULL;
|
||||
EC_POINT *R = NULL;
|
||||
EC_POINT *O = NULL;
|
||||
EC_POINT *Q = NULL;
|
||||
BIGNUM *rr = NULL;
|
||||
BIGNUM *zero = NULL;
|
||||
int n = 0;
|
||||
int i = recid / 2;
|
||||
|
||||
const EC_GROUP *group = EC_KEY_get0_group(eckey);
|
||||
if ((ctx = BN_CTX_new()) == NULL) { ret = -1; goto err; }
|
||||
BN_CTX_start(ctx);
|
||||
order = BN_CTX_get(ctx);
|
||||
if (!EC_GROUP_get_order(group, order, ctx)) { ret = -2; goto err; }
|
||||
x = BN_CTX_get(ctx);
|
||||
if (!BN_copy(x, order)) { ret=-1; goto err; }
|
||||
if (!BN_mul_word(x, i)) { ret=-1; goto err; }
|
||||
if (!BN_add(x, x, ecsig->r)) { ret=-1; goto err; }
|
||||
field = BN_CTX_get(ctx);
|
||||
if (!EC_GROUP_get_curve_GFp(group, field, NULL, NULL, ctx)) { ret=-2; goto err; }
|
||||
if (BN_cmp(x, field) >= 0) { ret=0; goto err; }
|
||||
if ((R = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
|
||||
if (!EC_POINT_set_compressed_coordinates_GFp(group, R, x, recid % 2, ctx)) { ret=0; goto err; }
|
||||
if (check)
|
||||
{
|
||||
if ((O = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
|
||||
if (!EC_POINT_mul(group, O, NULL, R, order, ctx)) { ret=-2; goto err; }
|
||||
if (!EC_POINT_is_at_infinity(group, O)) { ret = 0; goto err; }
|
||||
}
|
||||
if ((Q = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
|
||||
n = EC_GROUP_get_degree(group);
|
||||
e = BN_CTX_get(ctx);
|
||||
if (!BN_bin2bn(msg, msglen, e)) { ret=-1; goto err; }
|
||||
if (8*msglen > n) BN_rshift(e, e, 8-(n & 7));
|
||||
zero = BN_CTX_get(ctx);
|
||||
if (!BN_zero(zero)) { ret=-1; goto err; }
|
||||
if (!BN_mod_sub(e, zero, e, order, ctx)) { ret=-1; goto err; }
|
||||
rr = BN_CTX_get(ctx);
|
||||
if (!BN_mod_inverse(rr, ecsig->r, order, ctx)) { ret=-1; goto err; }
|
||||
sor = BN_CTX_get(ctx);
|
||||
if (!BN_mod_mul(sor, ecsig->s, rr, order, ctx)) { ret=-1; goto err; }
|
||||
eor = BN_CTX_get(ctx);
|
||||
if (!BN_mod_mul(eor, e, rr, order, ctx)) { ret=-1; goto err; }
|
||||
if (!EC_POINT_mul(group, Q, eor, R, sor, ctx)) { ret=-2; goto err; }
|
||||
if (!EC_KEY_set_public_key(eckey, Q)) { ret=-2; goto err; }
|
||||
|
||||
ret = 1;
|
||||
|
||||
err:
|
||||
if (ctx) {
|
||||
BN_CTX_end(ctx);
|
||||
BN_CTX_free(ctx);
|
||||
}
|
||||
if (R != NULL) EC_POINT_free(R);
|
||||
if (O != NULL) EC_POINT_free(O);
|
||||
if (Q != NULL) EC_POINT_free(Q);
|
||||
return ret;
|
||||
}
|
||||
|
||||
} // anon namespace
|
||||
|
||||
CECKey::CECKey() {
|
||||
pkey = EC_KEY_new();
|
||||
assert(pkey != NULL);
|
||||
int result = EC_KEY_set_group(pkey, ecgroup_order::get());
|
||||
assert(result);
|
||||
}
|
||||
|
||||
CECKey::~CECKey() {
|
||||
EC_KEY_free(pkey);
|
||||
}
|
||||
|
||||
void CECKey::GetPubKey(std::vector<unsigned char> &pubkey, bool fCompressed) {
|
||||
EC_KEY_set_conv_form(pkey, fCompressed ? POINT_CONVERSION_COMPRESSED : POINT_CONVERSION_UNCOMPRESSED);
|
||||
int nSize = i2o_ECPublicKey(pkey, NULL);
|
||||
assert(nSize);
|
||||
assert(nSize <= 65);
|
||||
pubkey.clear();
|
||||
pubkey.resize(nSize);
|
||||
unsigned char *pbegin(begin_ptr(pubkey));
|
||||
int nSize2 = i2o_ECPublicKey(pkey, &pbegin);
|
||||
assert(nSize == nSize2);
|
||||
}
|
||||
|
||||
bool CECKey::SetPubKey(const unsigned char* pubkey, size_t size) {
|
||||
return o2i_ECPublicKey(&pkey, &pubkey, size) != NULL;
|
||||
}
|
||||
|
||||
bool CECKey::Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig) {
|
||||
if (vchSig.empty())
|
||||
return false;
|
||||
|
||||
// New versions of OpenSSL will reject non-canonical DER signatures. de/re-serialize first.
|
||||
unsigned char *norm_der = NULL;
|
||||
ECDSA_SIG *norm_sig = ECDSA_SIG_new();
|
||||
const unsigned char* sigptr = &vchSig[0];
|
||||
assert(norm_sig);
|
||||
if (d2i_ECDSA_SIG(&norm_sig, &sigptr, vchSig.size()) == NULL)
|
||||
{
|
||||
/* As of OpenSSL 1.0.0p d2i_ECDSA_SIG frees and nulls the pointer on
|
||||
* error. But OpenSSL's own use of this function redundantly frees the
|
||||
* result. As ECDSA_SIG_free(NULL) is a no-op, and in the absence of a
|
||||
* clear contract for the function behaving the same way is more
|
||||
* conservative.
|
||||
*/
|
||||
ECDSA_SIG_free(norm_sig);
|
||||
return false;
|
||||
}
|
||||
int derlen = i2d_ECDSA_SIG(norm_sig, &norm_der);
|
||||
ECDSA_SIG_free(norm_sig);
|
||||
if (derlen <= 0)
|
||||
return false;
|
||||
|
||||
// -1 = error, 0 = bad sig, 1 = good
|
||||
bool ret = ECDSA_verify(0, (unsigned char*)&hash, sizeof(hash), norm_der, derlen, pkey) == 1;
|
||||
OPENSSL_free(norm_der);
|
||||
return ret;
|
||||
}
|
||||
|
||||
bool CECKey::Recover(const uint256 &hash, const unsigned char *p64, int rec)
|
||||
{
|
||||
if (rec<0 || rec>=3)
|
||||
return false;
|
||||
ECDSA_SIG *sig = ECDSA_SIG_new();
|
||||
BN_bin2bn(&p64[0], 32, sig->r);
|
||||
BN_bin2bn(&p64[32], 32, sig->s);
|
||||
bool ret = ECDSA_SIG_recover_key_GFp(pkey, sig, (unsigned char*)&hash, sizeof(hash), rec, 0) == 1;
|
||||
ECDSA_SIG_free(sig);
|
||||
return ret;
|
||||
}
|
||||
|
||||
bool CECKey::TweakPublic(const unsigned char vchTweak[32]) {
|
||||
bool ret = true;
|
||||
BN_CTX *ctx = BN_CTX_new();
|
||||
BN_CTX_start(ctx);
|
||||
BIGNUM *bnTweak = BN_CTX_get(ctx);
|
||||
BIGNUM *bnOrder = BN_CTX_get(ctx);
|
||||
BIGNUM *bnOne = BN_CTX_get(ctx);
|
||||
const EC_GROUP *group = EC_KEY_get0_group(pkey);
|
||||
EC_GROUP_get_order(group, bnOrder, ctx); // what a grossly inefficient way to get the (constant) group order...
|
||||
BN_bin2bn(vchTweak, 32, bnTweak);
|
||||
if (BN_cmp(bnTweak, bnOrder) >= 0)
|
||||
ret = false; // extremely unlikely
|
||||
EC_POINT *point = EC_POINT_dup(EC_KEY_get0_public_key(pkey), group);
|
||||
BN_one(bnOne);
|
||||
EC_POINT_mul(group, point, bnTweak, point, bnOne, ctx);
|
||||
if (EC_POINT_is_at_infinity(group, point))
|
||||
ret = false; // ridiculously unlikely
|
||||
EC_KEY_set_public_key(pkey, point);
|
||||
EC_POINT_free(point);
|
||||
BN_CTX_end(ctx);
|
||||
BN_CTX_free(ctx);
|
||||
return ret;
|
||||
}
|
||||
|
||||
bool CECKey::SanityCheck()
|
||||
{
|
||||
const EC_GROUP *pgroup = ecgroup_order::get();
|
||||
if(pgroup == NULL)
|
||||
return false;
|
||||
// TODO Is there more EC functionality that could be missing?
|
||||
return true;
|
||||
}
|
|
@ -1,40 +0,0 @@
|
|||
// Copyright (c) 2009-2014 The Bitcoin Core developers
|
||||
// Distributed under the MIT software license, see the accompanying
|
||||
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
||||
|
||||
#ifndef BITCOIN_ECWRAPPER_H
|
||||
#define BITCOIN_ECWRAPPER_H
|
||||
|
||||
#include <cstddef>
|
||||
#include <vector>
|
||||
|
||||
#include <openssl/ec.h>
|
||||
|
||||
class uint256;
|
||||
|
||||
/** RAII Wrapper around OpenSSL's EC_KEY */
|
||||
class CECKey {
|
||||
private:
|
||||
EC_KEY *pkey;
|
||||
|
||||
public:
|
||||
CECKey();
|
||||
~CECKey();
|
||||
|
||||
void GetPubKey(std::vector<unsigned char>& pubkey, bool fCompressed);
|
||||
bool SetPubKey(const unsigned char* pubkey, size_t size);
|
||||
bool Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig);
|
||||
|
||||
/**
|
||||
* reconstruct public key from a compact signature
|
||||
* This is only slightly more CPU intensive than just verifying it.
|
||||
* If this function succeeds, the recovered public key is guaranteed to be valid
|
||||
* (the signature is a valid signature of the given data for that key)
|
||||
*/
|
||||
bool Recover(const uint256 &hash, const unsigned char *p64, int rec);
|
||||
|
||||
bool TweakPublic(const unsigned char vchTweak[32]);
|
||||
static bool SanityCheck();
|
||||
};
|
||||
|
||||
#endif // BITCOIN_ECWRAPPER_H
|
|
@ -154,6 +154,7 @@ public:
|
|||
|
||||
static CCoinsViewDB *pcoinsdbview = NULL;
|
||||
static CCoinsViewErrorCatcher *pcoinscatcher = NULL;
|
||||
static boost::scoped_ptr<ECCVerifyHandle> globalVerifyHandle;
|
||||
|
||||
void Interrupt(boost::thread_group& threadGroup)
|
||||
{
|
||||
|
@ -243,6 +244,7 @@ void Shutdown()
|
|||
delete pwalletMain;
|
||||
pwalletMain = NULL;
|
||||
#endif
|
||||
globalVerifyHandle.reset();
|
||||
ECC_Stop();
|
||||
LogPrintf("%s: done\n", __func__);
|
||||
}
|
||||
|
@ -649,8 +651,7 @@ void ThreadImport(std::vector<boost::filesystem::path> vImportFiles)
|
|||
bool InitSanityCheck(void)
|
||||
{
|
||||
if(!ECC_InitSanityCheck()) {
|
||||
InitError("OpenSSL appears to lack support for elliptic curve cryptography. For more "
|
||||
"information, visit https://en.bitcoin.it/wiki/OpenSSL_and_EC_Libraries");
|
||||
InitError("Elliptic curve cryptography sanity check failure. Aborting.");
|
||||
return false;
|
||||
}
|
||||
if (!glibc_sanity_test() || !glibcxx_sanity_test())
|
||||
|
@ -991,6 +992,7 @@ bool AppInit2(boost::thread_group& threadGroup, CScheduler& scheduler)
|
|||
|
||||
// Initialize elliptic curve code
|
||||
ECC_Start();
|
||||
globalVerifyHandle.reset(new ECCVerifyHandle());
|
||||
|
||||
// Sanity check
|
||||
if (!InitSanityCheck())
|
||||
|
|
260
src/pubkey.cpp
260
src/pubkey.cpp
|
@ -4,19 +4,184 @@
|
|||
|
||||
#include "pubkey.h"
|
||||
|
||||
#include "eccryptoverify.h"
|
||||
#include <secp256k1.h>
|
||||
#include <secp256k1_recovery.h>
|
||||
|
||||
#include "ecwrapper.h"
|
||||
namespace
|
||||
{
|
||||
/* Global secp256k1_context object used for verification. */
|
||||
secp256k1_context* secp256k1_context_verify = NULL;
|
||||
}
|
||||
|
||||
/** This function is taken from the libsecp256k1 distribution and implements
|
||||
* DER parsing for ECDSA signatures, while supporting an arbitrary subset of
|
||||
* format violations.
|
||||
*
|
||||
* Supported violations include negative integers, excessive padding, garbage
|
||||
* at the end, and overly long length descriptors. This is safe to use in
|
||||
* Bitcoin because since the activation of BIP66, signatures are verified to be
|
||||
* strict DER before being passed to this module, and we know it supports all
|
||||
* violations present in the blockchain before that point.
|
||||
*/
|
||||
static int ecdsa_signature_parse_der_lax(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const unsigned char *input, size_t inputlen) {
|
||||
size_t rpos, rlen, spos, slen;
|
||||
size_t pos = 0;
|
||||
size_t lenbyte;
|
||||
unsigned char tmpsig[64] = {0};
|
||||
int overflow = 0;
|
||||
|
||||
/* Hack to initialize sig with a correctly-parsed but invalid signature. */
|
||||
secp256k1_ecdsa_signature_parse_compact(ctx, sig, tmpsig);
|
||||
|
||||
/* Sequence tag byte */
|
||||
if (pos == inputlen || input[pos] != 0x30) {
|
||||
return 0;
|
||||
}
|
||||
pos++;
|
||||
|
||||
/* Sequence length bytes */
|
||||
if (pos == inputlen) {
|
||||
return 0;
|
||||
}
|
||||
lenbyte = input[pos++];
|
||||
if (lenbyte & 0x80) {
|
||||
lenbyte -= 0x80;
|
||||
if (pos + lenbyte > inputlen) {
|
||||
return 0;
|
||||
}
|
||||
pos += lenbyte;
|
||||
}
|
||||
|
||||
/* Integer tag byte for R */
|
||||
if (pos == inputlen || input[pos] != 0x02) {
|
||||
return 0;
|
||||
}
|
||||
pos++;
|
||||
|
||||
/* Integer length for R */
|
||||
if (pos == inputlen) {
|
||||
return 0;
|
||||
}
|
||||
lenbyte = input[pos++];
|
||||
if (lenbyte & 0x80) {
|
||||
lenbyte -= 0x80;
|
||||
if (pos + lenbyte > inputlen) {
|
||||
return 0;
|
||||
}
|
||||
while (lenbyte > 0 && input[pos] == 0) {
|
||||
pos++;
|
||||
lenbyte--;
|
||||
}
|
||||
if (lenbyte >= sizeof(size_t)) {
|
||||
return 0;
|
||||
}
|
||||
rlen = 0;
|
||||
while (lenbyte > 0) {
|
||||
rlen = (rlen << 8) + input[pos];
|
||||
pos++;
|
||||
lenbyte--;
|
||||
}
|
||||
} else {
|
||||
rlen = lenbyte;
|
||||
}
|
||||
if (rlen > inputlen - pos) {
|
||||
return 0;
|
||||
}
|
||||
rpos = pos;
|
||||
pos += rlen;
|
||||
|
||||
/* Integer tag byte for S */
|
||||
if (pos == inputlen || input[pos] != 0x02) {
|
||||
return 0;
|
||||
}
|
||||
pos++;
|
||||
|
||||
/* Integer length for S */
|
||||
if (pos == inputlen) {
|
||||
return 0;
|
||||
}
|
||||
lenbyte = input[pos++];
|
||||
if (lenbyte & 0x80) {
|
||||
lenbyte -= 0x80;
|
||||
if (pos + lenbyte > inputlen) {
|
||||
return 0;
|
||||
}
|
||||
while (lenbyte > 0 && input[pos] == 0) {
|
||||
pos++;
|
||||
lenbyte--;
|
||||
}
|
||||
if (lenbyte >= sizeof(size_t)) {
|
||||
return 0;
|
||||
}
|
||||
slen = 0;
|
||||
while (lenbyte > 0) {
|
||||
slen = (slen << 8) + input[pos];
|
||||
pos++;
|
||||
lenbyte--;
|
||||
}
|
||||
} else {
|
||||
slen = lenbyte;
|
||||
}
|
||||
if (slen > inputlen - pos) {
|
||||
return 0;
|
||||
}
|
||||
spos = pos;
|
||||
pos += slen;
|
||||
|
||||
/* Ignore leading zeroes in R */
|
||||
while (rlen > 0 && input[rpos] == 0) {
|
||||
rlen--;
|
||||
rpos++;
|
||||
}
|
||||
/* Copy R value */
|
||||
if (rlen > 32) {
|
||||
overflow = 1;
|
||||
} else {
|
||||
memcpy(tmpsig + 32 - rlen, input + rpos, rlen);
|
||||
}
|
||||
|
||||
/* Ignore leading zeroes in S */
|
||||
while (slen > 0 && input[spos] == 0) {
|
||||
slen--;
|
||||
spos++;
|
||||
}
|
||||
/* Copy S value */
|
||||
if (slen > 32) {
|
||||
overflow = 1;
|
||||
} else {
|
||||
memcpy(tmpsig + 64 - slen, input + spos, slen);
|
||||
}
|
||||
|
||||
if (!overflow) {
|
||||
overflow = !secp256k1_ecdsa_signature_parse_compact(ctx, sig, tmpsig);
|
||||
}
|
||||
if (overflow) {
|
||||
/* Overwrite the result again with a correctly-parsed but invalid
|
||||
signature if parsing failed. */
|
||||
memset(tmpsig, 0, 64);
|
||||
secp256k1_ecdsa_signature_parse_compact(ctx, sig, tmpsig);
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
bool CPubKey::Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig) const {
|
||||
if (!IsValid())
|
||||
return false;
|
||||
CECKey key;
|
||||
if (!key.SetPubKey(begin(), size()))
|
||||
secp256k1_pubkey pubkey;
|
||||
secp256k1_ecdsa_signature sig;
|
||||
if (!secp256k1_ec_pubkey_parse(secp256k1_context_verify, &pubkey, &(*this)[0], size())) {
|
||||
return false;
|
||||
if (!key.Verify(hash, vchSig))
|
||||
}
|
||||
if (vchSig.size() == 0) {
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
if (!ecdsa_signature_parse_der_lax(secp256k1_context_verify, &sig, &vchSig[0], vchSig.size())) {
|
||||
return false;
|
||||
}
|
||||
/* libsecp256k1's ECDSA verification requires lower-S signatures, which have
|
||||
* not historically been enforced in Bitcoin, so normalize them first. */
|
||||
secp256k1_ecdsa_signature_normalize(secp256k1_context_verify, &sig, &sig);
|
||||
return secp256k1_ecdsa_verify(secp256k1_context_verify, &sig, hash.begin(), &pubkey);
|
||||
}
|
||||
|
||||
bool CPubKey::RecoverCompact(const uint256 &hash, const std::vector<unsigned char>& vchSig) {
|
||||
|
@ -24,33 +189,39 @@ bool CPubKey::RecoverCompact(const uint256 &hash, const std::vector<unsigned cha
|
|||
return false;
|
||||
int recid = (vchSig[0] - 27) & 3;
|
||||
bool fComp = ((vchSig[0] - 27) & 4) != 0;
|
||||
CECKey key;
|
||||
if (!key.Recover(hash, &vchSig[1], recid))
|
||||
secp256k1_pubkey pubkey;
|
||||
secp256k1_ecdsa_recoverable_signature sig;
|
||||
if (!secp256k1_ecdsa_recoverable_signature_parse_compact(secp256k1_context_verify, &sig, &vchSig[1], recid)) {
|
||||
return false;
|
||||
std::vector<unsigned char> pubkey;
|
||||
key.GetPubKey(pubkey, fComp);
|
||||
Set(pubkey.begin(), pubkey.end());
|
||||
}
|
||||
if (!secp256k1_ecdsa_recover(secp256k1_context_verify, &pubkey, &sig, hash.begin())) {
|
||||
return false;
|
||||
}
|
||||
unsigned char pub[65];
|
||||
size_t publen = 65;
|
||||
secp256k1_ec_pubkey_serialize(secp256k1_context_verify, pub, &publen, &pubkey, fComp ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED);
|
||||
Set(pub, pub + publen);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool CPubKey::IsFullyValid() const {
|
||||
if (!IsValid())
|
||||
return false;
|
||||
CECKey key;
|
||||
if (!key.SetPubKey(begin(), size()))
|
||||
return false;
|
||||
return true;
|
||||
secp256k1_pubkey pubkey;
|
||||
return secp256k1_ec_pubkey_parse(secp256k1_context_verify, &pubkey, &(*this)[0], size());
|
||||
}
|
||||
|
||||
bool CPubKey::Decompress() {
|
||||
if (!IsValid())
|
||||
return false;
|
||||
CECKey key;
|
||||
if (!key.SetPubKey(begin(), size()))
|
||||
secp256k1_pubkey pubkey;
|
||||
if (!secp256k1_ec_pubkey_parse(secp256k1_context_verify, &pubkey, &(*this)[0], size())) {
|
||||
return false;
|
||||
std::vector<unsigned char> pubkey;
|
||||
key.GetPubKey(pubkey, false);
|
||||
Set(pubkey.begin(), pubkey.end());
|
||||
}
|
||||
unsigned char pub[65];
|
||||
size_t publen = 65;
|
||||
secp256k1_ec_pubkey_serialize(secp256k1_context_verify, pub, &publen, &pubkey, SECP256K1_EC_UNCOMPRESSED);
|
||||
Set(pub, pub + publen);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -61,13 +232,18 @@ bool CPubKey::Derive(CPubKey& pubkeyChild, ChainCode &ccChild, unsigned int nChi
|
|||
unsigned char out[64];
|
||||
BIP32Hash(cc, nChild, *begin(), begin()+1, out);
|
||||
memcpy(ccChild.begin(), out+32, 32);
|
||||
CECKey key;
|
||||
bool ret = key.SetPubKey(begin(), size());
|
||||
ret &= key.TweakPublic(out);
|
||||
std::vector<unsigned char> pubkey;
|
||||
key.GetPubKey(pubkey, true);
|
||||
pubkeyChild.Set(pubkey.begin(), pubkey.end());
|
||||
return ret;
|
||||
secp256k1_pubkey pubkey;
|
||||
if (!secp256k1_ec_pubkey_parse(secp256k1_context_verify, &pubkey, &(*this)[0], size())) {
|
||||
return false;
|
||||
}
|
||||
if (!secp256k1_ec_pubkey_tweak_add(secp256k1_context_verify, &pubkey, out)) {
|
||||
return false;
|
||||
}
|
||||
unsigned char pub[33];
|
||||
size_t publen = 33;
|
||||
secp256k1_ec_pubkey_serialize(secp256k1_context_verify, pub, &publen, &pubkey, SECP256K1_EC_COMPRESSED);
|
||||
pubkeyChild.Set(pub, pub + publen);
|
||||
return true;
|
||||
}
|
||||
|
||||
void CExtPubKey::Encode(unsigned char code[74]) const {
|
||||
|
@ -95,3 +271,33 @@ bool CExtPubKey::Derive(CExtPubKey &out, unsigned int nChild) const {
|
|||
out.nChild = nChild;
|
||||
return pubkey.Derive(out.pubkey, out.chaincode, nChild, chaincode);
|
||||
}
|
||||
|
||||
/* static */ bool CPubKey::CheckLowS(const std::vector<unsigned char>& vchSig) {
|
||||
secp256k1_ecdsa_signature sig;
|
||||
if (!ecdsa_signature_parse_der_lax(secp256k1_context_verify, &sig, &vchSig[0], vchSig.size())) {
|
||||
return false;
|
||||
}
|
||||
return (!secp256k1_ecdsa_signature_normalize(secp256k1_context_verify, NULL, &sig));
|
||||
}
|
||||
|
||||
/* static */ int ECCVerifyHandle::refcount = 0;
|
||||
|
||||
ECCVerifyHandle::ECCVerifyHandle()
|
||||
{
|
||||
if (refcount == 0) {
|
||||
assert(secp256k1_context_verify == NULL);
|
||||
secp256k1_context_verify = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY);
|
||||
assert(secp256k1_context_verify != NULL);
|
||||
}
|
||||
refcount++;
|
||||
}
|
||||
|
||||
ECCVerifyHandle::~ECCVerifyHandle()
|
||||
{
|
||||
refcount--;
|
||||
if (refcount == 0) {
|
||||
assert(secp256k1_context_verify != NULL);
|
||||
secp256k1_context_destroy(secp256k1_context_verify);
|
||||
secp256k1_context_verify = NULL;
|
||||
}
|
||||
}
|
||||
|
|
16
src/pubkey.h
16
src/pubkey.h
|
@ -177,6 +177,11 @@ public:
|
|||
*/
|
||||
bool Verify(const uint256& hash, const std::vector<unsigned char>& vchSig) const;
|
||||
|
||||
/**
|
||||
* Check whether a signature is normalized (lower-S).
|
||||
*/
|
||||
static bool CheckLowS(const std::vector<unsigned char>& vchSig);
|
||||
|
||||
//! Recover a public key from a compact signature.
|
||||
bool RecoverCompact(const uint256& hash, const std::vector<unsigned char>& vchSig);
|
||||
|
||||
|
@ -205,4 +210,15 @@ struct CExtPubKey {
|
|||
bool Derive(CExtPubKey& out, unsigned int nChild) const;
|
||||
};
|
||||
|
||||
/** Users of this module must hold an ECCVerifyHandle. The constructor and
|
||||
* destructor of these are not allowed to run in parallel, though. */
|
||||
class ECCVerifyHandle
|
||||
{
|
||||
static int refcount;
|
||||
|
||||
public:
|
||||
ECCVerifyHandle();
|
||||
~ECCVerifyHandle();
|
||||
};
|
||||
|
||||
#endif // BITCOIN_PUBKEY_H
|
||||
|
|
|
@ -6,6 +6,7 @@
|
|||
#include "bitcoinconsensus.h"
|
||||
|
||||
#include "primitives/transaction.h"
|
||||
#include "pubkey.h"
|
||||
#include "script/interpreter.h"
|
||||
#include "version.h"
|
||||
|
||||
|
@ -60,7 +61,13 @@ inline int set_error(bitcoinconsensus_error* ret, bitcoinconsensus_error serror)
|
|||
return 0;
|
||||
}
|
||||
|
||||
} // anon namespace
|
||||
struct ECCryptoClosure
|
||||
{
|
||||
ECCVerifyHandle handle;
|
||||
};
|
||||
|
||||
ECCryptoClosure instance_of_eccryptoclosure;
|
||||
}
|
||||
|
||||
int bitcoinconsensus_verify_script(const unsigned char *scriptPubKey, unsigned int scriptPubKeyLen,
|
||||
const unsigned char *txTo , unsigned int txToLen,
|
||||
|
|
|
@ -9,7 +9,6 @@
|
|||
#include "crypto/ripemd160.h"
|
||||
#include "crypto/sha1.h"
|
||||
#include "crypto/sha256.h"
|
||||
#include "eccryptoverify.h"
|
||||
#include "pubkey.h"
|
||||
#include "script/script.h"
|
||||
#include "uint256.h"
|
||||
|
@ -165,16 +164,8 @@ bool static IsLowDERSignature(const valtype &vchSig, ScriptError* serror) {
|
|||
if (!IsValidSignatureEncoding(vchSig)) {
|
||||
return set_error(serror, SCRIPT_ERR_SIG_DER);
|
||||
}
|
||||
unsigned int nLenR = vchSig[3];
|
||||
unsigned int nLenS = vchSig[5+nLenR];
|
||||
const unsigned char *S = &vchSig[6+nLenR];
|
||||
// If the S value is above the order of the curve divided by two, its
|
||||
// complement modulo the order could have been used instead, which is
|
||||
// one byte shorter when encoded correctly.
|
||||
if (!eccrypto::CheckSignatureElement(S, nLenS, true))
|
||||
return set_error(serror, SCRIPT_ERR_SIG_HIGH_S);
|
||||
|
||||
return true;
|
||||
std::vector<unsigned char> vchSigCopy(vchSig.begin(), vchSig.begin() + vchSig.size() - 1);
|
||||
return CPubKey::CheckLowS(vchSigCopy);
|
||||
}
|
||||
|
||||
bool static IsDefinedHashtypeSignature(const valtype &vchSig) {
|
||||
|
|
|
@ -3,6 +3,7 @@
|
|||
|
||||
#include "chainparamsbase.h"
|
||||
#include "key.h"
|
||||
#include "pubkey.h"
|
||||
#include "txdb.h"
|
||||
|
||||
#include <boost/filesystem.hpp>
|
||||
|
@ -12,6 +13,8 @@
|
|||
* This just configures logging and chain parameters.
|
||||
*/
|
||||
struct BasicTestingSetup {
|
||||
ECCVerifyHandle globalVerifyHandle;
|
||||
|
||||
BasicTestingSetup(const std::string& chainName = CBaseChainParams::MAIN);
|
||||
~BasicTestingSetup();
|
||||
};
|
||||
|
|
Loading…
Reference in a new issue