Pure python EC

This removes the dependency on OpenSSL for the interaction tests, by providing a pure-Python
toy implementation of secp256k1.
This commit is contained in:
Pieter Wuille 2019-04-15 16:49:18 -07:00
parent 598323911e
commit 8c7b9324ca
5 changed files with 332 additions and 213 deletions

View file

@ -32,7 +32,7 @@ Start three nodes:
import time
from test_framework.blocktools import (create_block, create_coinbase)
from test_framework.key import CECKey
from test_framework.key import ECKey
from test_framework.messages import (
CBlockHeader,
COutPoint,
@ -104,9 +104,9 @@ class AssumeValidTest(BitcoinTestFramework):
self.blocks = []
# Get a pubkey for the coinbase TXO
coinbase_key = CECKey()
coinbase_key.set_secretbytes(b"horsebattery")
coinbase_pubkey = coinbase_key.get_pubkey()
coinbase_key = ECKey()
coinbase_key.generate()
coinbase_pubkey = coinbase_key.get_pubkey().get_bytes()
# Create the first block with a coinbase output to our key
height = 1

View file

@ -14,7 +14,7 @@ from test_framework.blocktools import (
get_legacy_sigopcount_block,
MAX_BLOCK_SIGOPS,
)
from test_framework.key import CECKey
from test_framework.key import ECKey
from test_framework.messages import (
CBlock,
COIN,
@ -86,9 +86,9 @@ class FullBlockTest(BitcoinTestFramework):
self.bootstrap_p2p() # Add one p2p connection to the node
self.block_heights = {}
self.coinbase_key = CECKey()
self.coinbase_key.set_secretbytes(b"horsebattery")
self.coinbase_pubkey = self.coinbase_key.get_pubkey()
self.coinbase_key = ECKey()
self.coinbase_key.generate()
self.coinbase_pubkey = self.coinbase_key.get_pubkey().get_bytes()
self.tip = None
self.blocks = {}
self.genesis_hash = int(self.nodes[0].getbestblockhash(), 16)
@ -528,7 +528,7 @@ class FullBlockTest(BitcoinTestFramework):
tx.vin.append(CTxIn(COutPoint(b39.vtx[i].sha256, 0), b''))
# Note: must pass the redeem_script (not p2sh_script) to the signature hash function
(sighash, err) = SignatureHash(redeem_script, tx, 1, SIGHASH_ALL)
sig = self.coinbase_key.sign(sighash) + bytes(bytearray([SIGHASH_ALL]))
sig = self.coinbase_key.sign_ecdsa(sighash) + bytes(bytearray([SIGHASH_ALL]))
scriptSig = CScript([sig, redeem_script])
tx.vin[1].scriptSig = scriptSig
@ -1284,7 +1284,7 @@ class FullBlockTest(BitcoinTestFramework):
tx.vin[0].scriptSig = CScript()
return
(sighash, err) = SignatureHash(spend_tx.vout[0].scriptPubKey, tx, 0, SIGHASH_ALL)
tx.vin[0].scriptSig = CScript([self.coinbase_key.sign(sighash) + bytes(bytearray([SIGHASH_ALL]))])
tx.vin[0].scriptSig = CScript([self.coinbase_key.sign_ecdsa(sighash) + bytes(bytearray([SIGHASH_ALL]))])
def create_and_sign_transaction(self, spend_tx, value, script=CScript([OP_TRUE])):
tx = self.create_tx(spend_tx, 0, value, script)

View file

@ -9,7 +9,7 @@ import struct
import time
from test_framework.blocktools import create_block, create_coinbase, add_witness_commitment, get_witness_script, WITNESS_COMMITMENT_HEADER
from test_framework.key import CECKey, CPubKey
from test_framework.key import ECKey
from test_framework.messages import (
BIP125_SEQUENCE_NUMBER,
CBlock,
@ -100,7 +100,7 @@ def get_p2pkh_script(pubkeyhash):
def sign_p2pk_witness_input(script, tx_to, in_idx, hashtype, value, key):
"""Add signature for a P2PK witness program."""
tx_hash = SegwitVersion1SignatureHash(script, tx_to, in_idx, hashtype, value)
signature = key.sign(tx_hash) + chr(hashtype).encode('latin-1')
signature = key.sign_ecdsa(tx_hash) + chr(hashtype).encode('latin-1')
tx_to.wit.vtxinwit[in_idx].scriptWitness.stack = [signature, script]
tx_to.rehash()
@ -1479,10 +1479,9 @@ class SegWitTest(BitcoinTestFramework):
# Segwit transactions using uncompressed pubkeys are not accepted
# under default policy, but should still pass consensus.
key = CECKey()
key.set_secretbytes(b"9")
key.set_compressed(False)
pubkey = CPubKey(key.get_pubkey())
key = ECKey()
key.generate(False)
pubkey = key.get_pubkey().get_bytes()
assert_equal(len(pubkey), 65) # This should be an uncompressed pubkey
utxo = self.utxo.pop(0)
@ -1512,7 +1511,7 @@ class SegWitTest(BitcoinTestFramework):
tx2.vout.append(CTxOut(tx.vout[0].nValue - 1000, script_wsh))
script = get_p2pkh_script(pubkeyhash)
sig_hash = SegwitVersion1SignatureHash(script, tx2, 0, SIGHASH_ALL, tx.vout[0].nValue)
signature = key.sign(sig_hash) + b'\x01' # 0x1 is SIGHASH_ALL
signature = key.sign_ecdsa(sig_hash) + b'\x01' # 0x1 is SIGHASH_ALL
tx2.wit.vtxinwit.append(CTxInWitness())
tx2.wit.vtxinwit[0].scriptWitness.stack = [signature, pubkey]
tx2.rehash()
@ -1566,7 +1565,7 @@ class SegWitTest(BitcoinTestFramework):
tx5.vin.append(CTxIn(COutPoint(tx4.sha256, 0), b""))
tx5.vout.append(CTxOut(tx4.vout[0].nValue - 1000, CScript([OP_TRUE])))
(sig_hash, err) = SignatureHash(script_pubkey, tx5, 0, SIGHASH_ALL)
signature = key.sign(sig_hash) + b'\x01' # 0x1 is SIGHASH_ALL
signature = key.sign_ecdsa(sig_hash) + b'\x01' # 0x1 is SIGHASH_ALL
tx5.vin[0].scriptSig = CScript([signature, pubkey])
tx5.rehash()
# Should pass policy and consensus.
@ -1579,9 +1578,9 @@ class SegWitTest(BitcoinTestFramework):
@subtest
def test_signature_version_1(self):
key = CECKey()
key.set_secretbytes(b"9")
pubkey = CPubKey(key.get_pubkey())
key = ECKey()
key.generate()
pubkey = key.get_pubkey().get_bytes()
witness_program = CScript([pubkey, CScriptOp(OP_CHECKSIG)])
witness_hash = sha256(witness_program)
@ -1716,7 +1715,7 @@ class SegWitTest(BitcoinTestFramework):
script = get_p2pkh_script(pubkeyhash)
sig_hash = SegwitVersion1SignatureHash(script, tx2, 0, SIGHASH_ALL, tx.vout[0].nValue)
signature = key.sign(sig_hash) + b'\x01' # 0x1 is SIGHASH_ALL
signature = key.sign_ecdsa(sig_hash) + b'\x01' # 0x1 is SIGHASH_ALL
# Check that we can't have a scriptSig
tx2.vin[0].scriptSig = CScript([signature, pubkey])

View file

@ -1,226 +1,346 @@
# Copyright (c) 2011 Sam Rushing
"""ECC secp256k1 OpenSSL wrapper.
# Copyright (c) 2019 Pieter Wuille
WARNING: This module does not mlock() secrets; your private keys may end up on
disk in swap! Use with caution!
"""Test-only secp256k1 elliptic curve implementation
This file is modified from python-bitcoinlib.
WARNING: This code is slow, uses bad randomness, does not properly protect
keys, and is trivially vulnerable to side channel attacks. Do not use for
anything but tests.
"""
import ctypes
import ctypes.util
import hashlib
import random
ssl = ctypes.cdll.LoadLibrary(ctypes.util.find_library ('ssl') or 'libeay32')
def modinv(a, n):
"""Compute the modular inverse of a modulo n
ssl.BN_new.restype = ctypes.c_void_p
ssl.BN_new.argtypes = []
See https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Modular_integers
"""
t1, t2 = 0, 1
r1, r2 = n, a
while r2 != 0:
q = r1 // r2
t1, t2 = t2, t1 - q * t2
r1, r2 = r2, r1 - q * r2
if r1 > 1:
return None
if t1 < 0:
t1 += n
return t1
ssl.BN_bin2bn.restype = ctypes.c_void_p
ssl.BN_bin2bn.argtypes = [ctypes.c_char_p, ctypes.c_int, ctypes.c_void_p]
def jacobi_symbol(n, k):
"""Compute the Jacobi symbol of n modulo k
ssl.BN_CTX_free.restype = None
ssl.BN_CTX_free.argtypes = [ctypes.c_void_p]
See http://en.wikipedia.org/wiki/Jacobi_symbol
"""
assert k > 0 and k & 1
n %= k
t = 0
while n != 0:
while n & 1 == 0:
n >>= 1
r = k & 7
t ^= (r == 3 or r == 5)
n, k = k, n
t ^= (n & k & 3 == 3)
n = n % k
if k == 1:
return -1 if t else 1
return 0
ssl.BN_CTX_new.restype = ctypes.c_void_p
ssl.BN_CTX_new.argtypes = []
def modsqrt(a, p):
"""Compute the square root of a modulo p
ssl.ECDH_compute_key.restype = ctypes.c_int
ssl.ECDH_compute_key.argtypes = [ctypes.c_void_p, ctypes.c_int, ctypes.c_void_p, ctypes.c_void_p]
For p = 3 mod 4, if a square root exists, it is equal to a**((p+1)/4) mod p.
"""
assert(p % 4 == 3) # Only p = 3 mod 4 is implemented
sqrt = pow(a, (p + 1)//4, p)
if pow(sqrt, 2, p) == a % p:
return sqrt
return None
ssl.ECDSA_sign.restype = ctypes.c_int
ssl.ECDSA_sign.argtypes = [ctypes.c_int, ctypes.c_void_p, ctypes.c_int, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p]
class EllipticCurve:
def __init__(self, p, a, b):
"""Initialize elliptic curve y^2 = x^3 + a*x + b over GF(p)."""
self.p = p
self.a = a % p
self.b = b % p
ssl.ECDSA_verify.restype = ctypes.c_int
ssl.ECDSA_verify.argtypes = [ctypes.c_int, ctypes.c_void_p, ctypes.c_int, ctypes.c_void_p, ctypes.c_int, ctypes.c_void_p]
def affine(self, p1):
"""Convert a Jacobian point tuple p1 to affine form, or None if at infinity."""
x1, y1, z1 = p1
if z1 == 0:
return None
inv = modinv(z1, self.p)
inv_2 = (inv**2) % self.p
inv_3 = (inv_2 * inv) % self.p
return ((inv_2 * x1) % self.p, (inv_3 * y1) % self.p, 1)
ssl.EC_KEY_free.restype = None
ssl.EC_KEY_free.argtypes = [ctypes.c_void_p]
def negate(self, p1):
"""Negate a Jacobian point tuple p1."""
x1, y1, z1 = p1
return (x1, (self.p - y1) % self.p, z1)
ssl.EC_KEY_new_by_curve_name.restype = ctypes.c_void_p
ssl.EC_KEY_new_by_curve_name.argtypes = [ctypes.c_int]
def on_curve(self, p1):
"""Determine whether a Jacobian tuple p is on the curve (and not infinity)"""
x1, y1, z1 = p1
z2 = pow(z1, 2, self.p)
z4 = pow(z2, 2, self.p)
return z1 != 0 and (pow(x1, 3, self.p) + self.a * x1 * z4 + self.b * z2 * z4 - pow(y1, 2, self.p)) % self.p == 0
ssl.EC_KEY_get0_group.restype = ctypes.c_void_p
ssl.EC_KEY_get0_group.argtypes = [ctypes.c_void_p]
def is_x_coord(self, x):
"""Test whether x is a valid X coordinate on the curve."""
x_3 = pow(x, 3, self.p)
return jacobi_symbol(x_3 + self.a * x + self.b, self.p) != -1
ssl.EC_KEY_get0_public_key.restype = ctypes.c_void_p
ssl.EC_KEY_get0_public_key.argtypes = [ctypes.c_void_p]
def lift_x(self, x):
"""Given an X coordinate on the curve, return a corresponding affine point."""
x_3 = pow(x, 3, self.p)
v = x_3 + self.a * x + self.b
y = modsqrt(v, self.p)
if y is None:
return None
return (x, y, 1)
ssl.EC_KEY_set_private_key.restype = ctypes.c_int
ssl.EC_KEY_set_private_key.argtypes = [ctypes.c_void_p, ctypes.c_void_p]
def double(self, p1):
"""Double a Jacobian tuple p1"""
x1, y1, z1 = p1
if z1 == 0:
return (0, 1, 0)
y1_2 = (y1**2) % self.p
y1_4 = (y1_2**2) % self.p
x1_2 = (x1**2) % self.p
s = (4*x1*y1_2) % self.p
m = 3*x1_2
if self.a:
m += self.a * pow(z1, 4, self.p)
m = m % self.p
x2 = (m**2 - 2*s) % self.p
y2 = (m*(s - x2) - 8*y1_4) % self.p
z2 = (2*y1*z1) % self.p
return (x2, y2, z2)
ssl.EC_KEY_set_conv_form.restype = None
ssl.EC_KEY_set_conv_form.argtypes = [ctypes.c_void_p, ctypes.c_int]
def add_mixed(self, p1, p2):
"""Add a Jacobian tuple p1 and an affine tuple p2"""
x1, y1, z1 = p1
x2, y2, z2 = p2
assert(z2 == 1)
if z1 == 0:
return p2
z1_2 = (z1**2) % self.p
z1_3 = (z1_2 * z1) % self.p
u2 = (x2 * z1_2) % self.p
s2 = (y2 * z1_3) % self.p
if x1 == u2:
if (y1 != s2):
return (0, 1, 0)
return self.double(p1)
h = u2 - x1
r = s2 - y1
h_2 = (h**2) % self.p
h_3 = (h_2 * h) % self.p
u1_h_2 = (x1 * h_2) % self.p
x3 = (r**2 - h_3 - 2*u1_h_2) % self.p
y3 = (r*(u1_h_2 - x3) - y1*h_3) % self.p
z3 = (h*z1) % self.p
return (x3, y3, z3)
ssl.EC_KEY_set_public_key.restype = ctypes.c_int
ssl.EC_KEY_set_public_key.argtypes = [ctypes.c_void_p, ctypes.c_void_p]
def add(self, p1, p2):
"""Add two Jacobian tuples p1 and p2"""
x1, y1, z1 = p1
x2, y2, z2 = p2
if z1 == 0:
return p2
if z2 == 0:
return p1
if z1 == 1:
return self.add_mixed(p2, p1)
if z2 == 1:
return self.add_mixed(p1, p2)
z1_2 = (z1**2) % self.p
z1_3 = (z1_2 * z1) % self.p
z2_2 = (z2**2) % self.p
z2_3 = (z2_2 * z2) % self.p
u1 = (x1 * z2_2) % self.p
u2 = (x2 * z1_2) % self.p
s1 = (y1 * z2_3) % self.p
s2 = (y2 * z1_3) % self.p
if u1 == u2:
if (s1 != s2):
return (0, 1, 0)
return self.double(p1)
h = u2 - u1
r = s2 - s1
h_2 = (h**2) % self.p
h_3 = (h_2 * h) % self.p
u1_h_2 = (u1 * h_2) % self.p
x3 = (r**2 - h_3 - 2*u1_h_2) % self.p
y3 = (r*(u1_h_2 - x3) - s1*h_3) % self.p
z3 = (h*z1*z2) % self.p
return (x3, y3, z3)
ssl.i2o_ECPublicKey.restype = ctypes.c_void_p
ssl.i2o_ECPublicKey.argtypes = [ctypes.c_void_p, ctypes.c_void_p]
def mul(self, ps):
"""Compute a (multi) point multiplication
ssl.EC_POINT_new.restype = ctypes.c_void_p
ssl.EC_POINT_new.argtypes = [ctypes.c_void_p]
ssl.EC_POINT_free.restype = None
ssl.EC_POINT_free.argtypes = [ctypes.c_void_p]
ssl.EC_POINT_mul.restype = ctypes.c_int
ssl.EC_POINT_mul.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p]
# this specifies the curve used with ECDSA.
NID_secp256k1 = 714 # from openssl/obj_mac.h
ps is a list of (Jacobian tuple, scalar) pairs.
"""
r = (0, 1, 0)
for i in range(255, -1, -1):
r = self.double(r)
for (p, n) in ps:
if ((n >> i) & 1):
r = self.add(r, p)
return r
SECP256K1 = EllipticCurve(2**256 - 2**32 - 977, 0, 7)
SECP256K1_G = (0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798, 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8, 1)
SECP256K1_ORDER = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
SECP256K1_ORDER_HALF = SECP256K1_ORDER // 2
# Thx to Sam Devlin for the ctypes magic 64-bit fix.
def _check_result(val, func, args):
if val == 0:
raise ValueError
else:
return ctypes.c_void_p (val)
ssl.EC_KEY_new_by_curve_name.restype = ctypes.c_void_p
ssl.EC_KEY_new_by_curve_name.errcheck = _check_result
class CECKey():
"""Wrapper around OpenSSL's EC_KEY"""
POINT_CONVERSION_COMPRESSED = 2
POINT_CONVERSION_UNCOMPRESSED = 4
class ECPubKey():
"""A secp256k1 public key"""
def __init__(self):
self.k = ssl.EC_KEY_new_by_curve_name(NID_secp256k1)
"""Construct an uninitialized public key"""
self.valid = False
def __del__(self):
if ssl:
ssl.EC_KEY_free(self.k)
self.k = None
def set_secretbytes(self, secret):
priv_key = ssl.BN_bin2bn(secret, 32, ssl.BN_new())
group = ssl.EC_KEY_get0_group(self.k)
pub_key = ssl.EC_POINT_new(group)
ctx = ssl.BN_CTX_new()
if not ssl.EC_POINT_mul(group, pub_key, priv_key, None, None, ctx):
raise ValueError("Could not derive public key from the supplied secret.")
ssl.EC_POINT_mul(group, pub_key, priv_key, None, None, ctx)
ssl.EC_KEY_set_private_key(self.k, priv_key)
ssl.EC_KEY_set_public_key(self.k, pub_key)
ssl.EC_POINT_free(pub_key)
ssl.BN_CTX_free(ctx)
return self.k
def set_privkey(self, key):
self.mb = ctypes.create_string_buffer(key)
return ssl.d2i_ECPrivateKey(ctypes.byref(self.k), ctypes.byref(ctypes.pointer(self.mb)), len(key))
def set_pubkey(self, key):
self.mb = ctypes.create_string_buffer(key)
return ssl.o2i_ECPublicKey(ctypes.byref(self.k), ctypes.byref(ctypes.pointer(self.mb)), len(key))
def get_privkey(self):
size = ssl.i2d_ECPrivateKey(self.k, 0)
mb_pri = ctypes.create_string_buffer(size)
ssl.i2d_ECPrivateKey(self.k, ctypes.byref(ctypes.pointer(mb_pri)))
return mb_pri.raw
def get_pubkey(self):
size = ssl.i2o_ECPublicKey(self.k, 0)
mb = ctypes.create_string_buffer(size)
ssl.i2o_ECPublicKey(self.k, ctypes.byref(ctypes.pointer(mb)))
return mb.raw
def get_raw_ecdh_key(self, other_pubkey):
ecdh_keybuffer = ctypes.create_string_buffer(32)
r = ssl.ECDH_compute_key(ctypes.pointer(ecdh_keybuffer), 32,
ssl.EC_KEY_get0_public_key(other_pubkey.k),
self.k, 0)
if r != 32:
raise Exception('CKey.get_ecdh_key(): ECDH_compute_key() failed')
return ecdh_keybuffer.raw
def get_ecdh_key(self, other_pubkey, kdf=lambda k: hashlib.sha256(k).digest()):
# FIXME: be warned it's not clear what the kdf should be as a default
r = self.get_raw_ecdh_key(other_pubkey)
return kdf(r)
def sign(self, hash, low_s = True):
# FIXME: need unit tests for below cases
if not isinstance(hash, bytes):
raise TypeError('Hash must be bytes instance; got %r' % hash.__class__)
if len(hash) != 32:
raise ValueError('Hash must be exactly 32 bytes long')
sig_size0 = ctypes.c_uint32()
sig_size0.value = ssl.ECDSA_size(self.k)
mb_sig = ctypes.create_string_buffer(sig_size0.value)
result = ssl.ECDSA_sign(0, hash, len(hash), mb_sig, ctypes.byref(sig_size0), self.k)
assert 1 == result
assert mb_sig.raw[0] == 0x30
assert mb_sig.raw[1] == sig_size0.value - 2
total_size = mb_sig.raw[1]
assert mb_sig.raw[2] == 2
r_size = mb_sig.raw[3]
assert mb_sig.raw[4 + r_size] == 2
s_size = mb_sig.raw[5 + r_size]
s_value = int.from_bytes(mb_sig.raw[6+r_size:6+r_size+s_size], byteorder='big')
if (not low_s) or s_value <= SECP256K1_ORDER_HALF:
return mb_sig.raw[:sig_size0.value]
def set(self, data):
"""Construct a public key from a serialization in compressed or uncompressed format"""
if (len(data) == 65 and data[0] == 0x04):
p = (int.from_bytes(data[1:33], 'big'), int.from_bytes(data[33:65], 'big'), 1)
self.valid = SECP256K1.on_curve(p)
if self.valid:
self.p = p
self.compressed = False
elif (len(data) == 33 and (data[0] == 0x02 or data[0] == 0x03)):
x = int.from_bytes(data[1:33], 'big')
if SECP256K1.is_x_coord(x):
p = SECP256K1.lift_x(x)
if (p[1] & 1) != (data[0] & 1):
p = SECP256K1.negate(p)
self.p = p
self.valid = True
self.compressed = True
else:
low_s_value = SECP256K1_ORDER - s_value
low_s_bytes = (low_s_value).to_bytes(33, byteorder='big')
while len(low_s_bytes) > 1 and low_s_bytes[0] == 0 and low_s_bytes[1] < 0x80:
low_s_bytes = low_s_bytes[1:]
new_s_size = len(low_s_bytes)
new_total_size_byte = (total_size + new_s_size - s_size).to_bytes(1,byteorder='big')
new_s_size_byte = (new_s_size).to_bytes(1,byteorder='big')
return b'\x30' + new_total_size_byte + mb_sig.raw[2:5+r_size] + new_s_size_byte + low_s_bytes
def verify(self, hash, sig):
"""Verify a DER signature"""
return ssl.ECDSA_verify(0, hash, len(hash), sig, len(sig), self.k) == 1
def set_compressed(self, compressed):
if compressed:
form = self.POINT_CONVERSION_COMPRESSED
self.valid = False
else:
form = self.POINT_CONVERSION_UNCOMPRESSED
ssl.EC_KEY_set_conv_form(self.k, form)
class CPubKey(bytes):
"""An encapsulated public key
Attributes:
is_valid - Corresponds to CPubKey.IsValid()
is_fullyvalid - Corresponds to CPubKey.IsFullyValid()
is_compressed - Corresponds to CPubKey.IsCompressed()
"""
def __new__(cls, buf, _cec_key=None):
self = super(CPubKey, cls).__new__(cls, buf)
if _cec_key is None:
_cec_key = CECKey()
self._cec_key = _cec_key
self.is_fullyvalid = _cec_key.set_pubkey(self) != 0
return self
@property
def is_valid(self):
return len(self) > 0
self.valid = False
@property
def is_compressed(self):
return len(self) == 33
return self.compressed
def verify(self, hash, sig):
return self._cec_key.verify(hash, sig)
@property
def is_valid(self):
return self.valid
def __str__(self):
return repr(self)
def get_bytes(self):
assert(self.valid)
p = SECP256K1.affine(self.p)
if p is None:
return None
if self.compressed:
return bytes([0x02 + (p[1] & 1)]) + p[0].to_bytes(32, 'big')
else:
return bytes([0x04]) + p[0].to_bytes(32, 'big') + p[1].to_bytes(32, 'big')
def __repr__(self):
return '%s(%s)' % (self.__class__.__name__, super(CPubKey, self).__repr__())
def verify_ecdsa(self, sig, msg, low_s=True):
"""Verify a strictly DER-encoded ECDSA signature against this pubkey."""
assert(self.valid)
if (sig[1] + 2 != len(sig)):
return False
if (len(sig) < 4):
return False
if (sig[0] != 0x30):
return False
if (sig[2] != 0x02):
return False
rlen = sig[3]
if (len(sig) < 6 + rlen):
return False
if rlen < 1 or rlen > 33:
return False
if sig[4] >= 0x80:
return False
if (rlen > 1 and (sig[4] == 0) and not (sig[5] & 0x80)):
return False
r = int.from_bytes(sig[4:4+rlen], 'big')
if (sig[4+rlen] != 0x02):
return False
slen = sig[5+rlen]
if slen < 1 or slen > 33:
return False
if (len(sig) != 6 + rlen + slen):
return False
if sig[6+rlen] >= 0x80:
return False
if (slen > 1 and (sig[6+rlen] == 0) and not (sig[7+rlen] & 0x80)):
return False
s = int.from_bytes(sig[6+rlen:6+rlen+slen], 'big')
if r < 1 or s < 1 or r >= SECP256K1_ORDER or s >= SECP256K1_ORDER:
return False
if low_s and s >= SECP256K1_ORDER_HALF:
return False
z = int.from_bytes(msg, 'big')
w = modinv(s, SECP256K1_ORDER)
u1 = z*w % SECP256K1_ORDER
u2 = r*w % SECP256K1_ORDER
R = SECP256K1.affine(SECP256K1.mul([(SECP256K1_G, u1), (self.p, u2)]))
if R is None or R[0] != r:
return False
return True
class ECKey():
"""A secp256k1 private key"""
def __init__(self):
self.valid = False
def set(self, secret, compressed):
"""Construct a private key object with given 32-byte secret and compressed flag."""
assert(len(secret) == 32)
secret = int.from_bytes(secret, 'big')
self.valid = (secret > 0 and secret < SECP256K1_ORDER)
if self.valid:
self.secret = secret
self.compressed = compressed
def generate(self, compressed=True):
"""Generate a random private key (compressed or uncompressed)."""
self.set(random.randrange(1, SECP256K1_ORDER).to_bytes(32, 'big'), compressed)
def get_bytes(self):
"""Retrieve the 32-byte representation of this key."""
assert(self.valid)
return self.secret.to_bytes(32, 'big')
@property
def is_valid(self):
return self.valid
@property
def is_compressed(self):
return self.compressed
def get_pubkey(self):
"""Compute an ECPubKey object for this secret key."""
assert(self.valid)
ret = ECPubKey()
p = SECP256K1.mul([(SECP256K1_G, self.secret)])
ret.p = p
ret.valid = True
ret.compressed = self.compressed
return ret
def sign_ecdsa(self, msg, low_s=True):
"""Construct a DER-encoded ECDSA signature with this key."""
assert(self.valid)
z = int.from_bytes(msg, 'big')
# Note: no RFC6979, but a simple random nonce (some tests rely on distinct transactions for the same operation)
k = random.randrange(1, SECP256K1_ORDER)
R = SECP256K1.affine(SECP256K1.mul([(SECP256K1_G, k)]))
r = R[0] % SECP256K1_ORDER
s = (modinv(k, SECP256K1_ORDER) * (z + self.secret * r)) % SECP256K1_ORDER
if low_s and s > SECP256K1_ORDER_HALF:
s = SECP256K1_ORDER - s
rb = r.to_bytes((r.bit_length() + 8) // 8, 'big')
sb = s.to_bytes((s.bit_length() + 8) // 8, 'big')
return b'\x30' + bytes([4 + len(rb) + len(sb), 2, len(rb)]) + rb + bytes([2, len(sb)]) + sb

View file

@ -15,5 +15,5 @@ fi
vulture \
--min-confidence 60 \
--ignore-names "argtypes,connection_lost,connection_made,converter,data_received,daemon,errcheck,get_ecdh_key,get_privkey,is_compressed,is_fullyvalid,msg_generic,on_*,optionxform,restype,set_privkey,profile_with_perf" \
--ignore-names "argtypes,connection_lost,connection_made,converter,data_received,daemon,errcheck,is_compressed,is_valid,verify_ecdsa,msg_generic,on_*,optionxform,restype,profile_with_perf" \
$(git ls-files -- "*.py" ":(exclude)contrib/" ":(exclude)test/functional/data/invalid_txs.py")