Make CRollingBloomFilter set nTweak for you
While CBloomFilter is usually used with an explicitly set nTweak, CRollingBloomFilter is only used internally. Requiring every caller to set nTweak is error-prone and redundant; better to have the class handle that for you with a high-quality randomness source. Additionally when clearing the filter it makes sense to change nTweak as well to recover from a bad setting, e.g. due to insufficient randomness at initialization, so the clear() method is replaced by a reset() method that sets a new, random, nTweak value.
This commit is contained in:
parent
a3d65fedaa
commit
d2d7ee0e86
5 changed files with 29 additions and 12 deletions
|
@ -8,6 +8,7 @@
|
|||
#include "hash.h"
|
||||
#include "script/script.h"
|
||||
#include "script/standard.h"
|
||||
#include "random.h"
|
||||
#include "streams.h"
|
||||
|
||||
#include <math.h>
|
||||
|
@ -121,6 +122,12 @@ void CBloomFilter::clear()
|
|||
isEmpty = true;
|
||||
}
|
||||
|
||||
void CBloomFilter::reset(unsigned int nNewTweak)
|
||||
{
|
||||
clear();
|
||||
nTweak = nNewTweak;
|
||||
}
|
||||
|
||||
bool CBloomFilter::IsWithinSizeConstraints() const
|
||||
{
|
||||
return vData.size() <= MAX_BLOOM_FILTER_SIZE && nHashFuncs <= MAX_HASH_FUNCS;
|
||||
|
@ -217,7 +224,8 @@ CRollingBloomFilter::CRollingBloomFilter(unsigned int nElements, double fpRate,
|
|||
// inserted, so at least one always contains the last nElements
|
||||
// inserted.
|
||||
nBloomSize = nElements * 2;
|
||||
nInsertions = 0;
|
||||
|
||||
reset(nTweak);
|
||||
}
|
||||
|
||||
void CRollingBloomFilter::insert(const std::vector<unsigned char>& vKey)
|
||||
|
@ -254,9 +262,12 @@ bool CRollingBloomFilter::contains(const uint256& hash) const
|
|||
return contains(data);
|
||||
}
|
||||
|
||||
void CRollingBloomFilter::clear()
|
||||
void CRollingBloomFilter::reset(unsigned int nNewTweak)
|
||||
{
|
||||
b1.clear();
|
||||
b2.clear();
|
||||
if (!nNewTweak)
|
||||
nNewTweak = GetRand(std::numeric_limits<unsigned int>::max());
|
||||
|
||||
b1.reset(nNewTweak);
|
||||
b2.reset(nNewTweak);
|
||||
nInsertions = 0;
|
||||
}
|
||||
|
|
12
src/bloom.h
12
src/bloom.h
|
@ -89,6 +89,7 @@ public:
|
|||
bool contains(const uint256& hash) const;
|
||||
|
||||
void clear();
|
||||
void reset(unsigned int nNewTweak);
|
||||
|
||||
//! True if the size is <= MAX_BLOOM_FILTER_SIZE and the number of hash functions is <= MAX_HASH_FUNCS
|
||||
//! (catch a filter which was just deserialized which was too big)
|
||||
|
@ -103,7 +104,11 @@ public:
|
|||
|
||||
/**
|
||||
* RollingBloomFilter is a probabilistic "keep track of most recently inserted" set.
|
||||
* Construct it with the number of items to keep track of, and a false-positive rate.
|
||||
* Construct it with the number of items to keep track of, and a false-positive
|
||||
* rate. Unlike CBloomFilter, by default nTweak is set to a cryptographically
|
||||
* secure random value for you. Similarly rather than clear() the method
|
||||
* reset() is provided, which also changes nTweak to decrease the impact of
|
||||
* false-positives.
|
||||
*
|
||||
* contains(item) will always return true if item was one of the last N things
|
||||
* insert()'ed ... but may also return true for items that were not inserted.
|
||||
|
@ -111,14 +116,15 @@ public:
|
|||
class CRollingBloomFilter
|
||||
{
|
||||
public:
|
||||
CRollingBloomFilter(unsigned int nElements, double nFPRate, unsigned int nTweak);
|
||||
CRollingBloomFilter(unsigned int nElements, double nFPRate,
|
||||
unsigned int nTweak = 0);
|
||||
|
||||
void insert(const std::vector<unsigned char>& vKey);
|
||||
void insert(const uint256& hash);
|
||||
bool contains(const std::vector<unsigned char>& vKey) const;
|
||||
bool contains(const uint256& hash) const;
|
||||
|
||||
void clear();
|
||||
void reset(unsigned int nNewTweak = 0);
|
||||
|
||||
private:
|
||||
unsigned int nBloomSize;
|
||||
|
|
|
@ -4812,7 +4812,7 @@ bool SendMessages(CNode* pto, bool fSendTrickle)
|
|||
{
|
||||
// Periodically clear addrKnown to allow refresh broadcasts
|
||||
if (nLastRebroadcast)
|
||||
pnode->addrKnown.clear();
|
||||
pnode->addrKnown.reset();
|
||||
|
||||
// Rebroadcast our address
|
||||
AdvertizeLocal(pnode);
|
||||
|
|
|
@ -2060,7 +2060,7 @@ unsigned int SendBufferSize() { return 1000*GetArg("-maxsendbuffer", 1*1000); }
|
|||
|
||||
CNode::CNode(SOCKET hSocketIn, const CAddress& addrIn, const std::string& addrNameIn, bool fInboundIn) :
|
||||
ssSend(SER_NETWORK, INIT_PROTO_VERSION),
|
||||
addrKnown(5000, 0.001, insecure_rand()),
|
||||
addrKnown(5000, 0.001),
|
||||
setInventoryKnown(SendBufferSize() / 1000)
|
||||
{
|
||||
nServices = 0;
|
||||
|
|
|
@ -469,7 +469,7 @@ static std::vector<unsigned char> RandomData()
|
|||
BOOST_AUTO_TEST_CASE(rolling_bloom)
|
||||
{
|
||||
// last-100-entry, 1% false positive:
|
||||
CRollingBloomFilter rb1(100, 0.01, 0);
|
||||
CRollingBloomFilter rb1(100, 0.01, 1);
|
||||
|
||||
// Overfill:
|
||||
static const int DATASIZE=399;
|
||||
|
@ -500,7 +500,7 @@ BOOST_AUTO_TEST_CASE(rolling_bloom)
|
|||
BOOST_CHECK(nHits < 175);
|
||||
|
||||
BOOST_CHECK(rb1.contains(data[DATASIZE-1]));
|
||||
rb1.clear();
|
||||
rb1.reset(1);
|
||||
BOOST_CHECK(!rb1.contains(data[DATASIZE-1]));
|
||||
|
||||
// Now roll through data, make sure last 100 entries
|
||||
|
@ -527,7 +527,7 @@ BOOST_AUTO_TEST_CASE(rolling_bloom)
|
|||
BOOST_CHECK(nHits < 100);
|
||||
|
||||
// last-1000-entry, 0.01% false positive:
|
||||
CRollingBloomFilter rb2(1000, 0.001, 0);
|
||||
CRollingBloomFilter rb2(1000, 0.001, 1);
|
||||
for (int i = 0; i < DATASIZE; i++) {
|
||||
rb2.insert(data[i]);
|
||||
}
|
||||
|
|
Loading…
Add table
Reference in a new issue