lbrycrd/src/serialize.h
Gregory Maxwell 45f09618f2 Prevent integer overflow in ReadVarInt.
We don't normally use ReadVarInt from untrusted inputs, but we might
 see this in the case of corruption.

This is exposed in test_bitcoin_fuzzy.
2017-02-06 02:52:27 +00:00

966 lines
27 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_SERIALIZE_H
#define BITCOIN_SERIALIZE_H
#include "compat/endian.h"
#include <algorithm>
#include <assert.h>
#include <ios>
#include <limits>
#include <map>
#include <memory>
#include <set>
#include <stdint.h>
#include <string>
#include <string.h>
#include <utility>
#include <vector>
#include "prevector.h"
static const unsigned int MAX_SIZE = 0x02000000;
/**
* Dummy data type to identify deserializing constructors.
*
* By convention, a constructor of a type T with signature
*
* template <typename Stream> T::T(deserialize_type, Stream& s)
*
* is a deserializing constructor, which builds the type by
* deserializing it from s. If T contains const fields, this
* is likely the only way to do so.
*/
struct deserialize_type {};
constexpr deserialize_type deserialize {};
/**
* Used to bypass the rule against non-const reference to temporary
* where it makes sense with wrappers such as CFlatData or CTxDB
*/
template<typename T>
inline T& REF(const T& val)
{
return const_cast<T&>(val);
}
/**
* Used to acquire a non-const pointer "this" to generate bodies
* of const serialization operations from a template
*/
template<typename T>
inline T* NCONST_PTR(const T* val)
{
return const_cast<T*>(val);
}
/*
* Lowest-level serialization and conversion.
* @note Sizes of these types are verified in the tests
*/
template<typename Stream> inline void ser_writedata8(Stream &s, uint8_t obj)
{
s.write((char*)&obj, 1);
}
template<typename Stream> inline void ser_writedata16(Stream &s, uint16_t obj)
{
obj = htole16(obj);
s.write((char*)&obj, 2);
}
template<typename Stream> inline void ser_writedata32(Stream &s, uint32_t obj)
{
obj = htole32(obj);
s.write((char*)&obj, 4);
}
template<typename Stream> inline void ser_writedata64(Stream &s, uint64_t obj)
{
obj = htole64(obj);
s.write((char*)&obj, 8);
}
template<typename Stream> inline uint8_t ser_readdata8(Stream &s)
{
uint8_t obj;
s.read((char*)&obj, 1);
return obj;
}
template<typename Stream> inline uint16_t ser_readdata16(Stream &s)
{
uint16_t obj;
s.read((char*)&obj, 2);
return le16toh(obj);
}
template<typename Stream> inline uint32_t ser_readdata32(Stream &s)
{
uint32_t obj;
s.read((char*)&obj, 4);
return le32toh(obj);
}
template<typename Stream> inline uint64_t ser_readdata64(Stream &s)
{
uint64_t obj;
s.read((char*)&obj, 8);
return le64toh(obj);
}
inline uint64_t ser_double_to_uint64(double x)
{
union { double x; uint64_t y; } tmp;
tmp.x = x;
return tmp.y;
}
inline uint32_t ser_float_to_uint32(float x)
{
union { float x; uint32_t y; } tmp;
tmp.x = x;
return tmp.y;
}
inline double ser_uint64_to_double(uint64_t y)
{
union { double x; uint64_t y; } tmp;
tmp.y = y;
return tmp.x;
}
inline float ser_uint32_to_float(uint32_t y)
{
union { float x; uint32_t y; } tmp;
tmp.y = y;
return tmp.x;
}
/////////////////////////////////////////////////////////////////
//
// Templates for serializing to anything that looks like a stream,
// i.e. anything that supports .read(char*, size_t) and .write(char*, size_t)
//
class CSizeComputer;
enum
{
// primary actions
SER_NETWORK = (1 << 0),
SER_DISK = (1 << 1),
SER_GETHASH = (1 << 2),
};
#define READWRITE(obj) (::SerReadWrite(s, (obj), ser_action))
#define READWRITEMANY(...) (::SerReadWriteMany(s, ser_action, __VA_ARGS__))
/**
* Implement three methods for serializable objects. These are actually wrappers over
* "SerializationOp" template, which implements the body of each class' serialization
* code. Adding "ADD_SERIALIZE_METHODS" in the body of the class causes these wrappers to be
* added as members.
*/
#define ADD_SERIALIZE_METHODS \
template<typename Stream> \
void Serialize(Stream& s) const { \
NCONST_PTR(this)->SerializationOp(s, CSerActionSerialize()); \
} \
template<typename Stream> \
void Unserialize(Stream& s) { \
SerializationOp(s, CSerActionUnserialize()); \
}
template<typename Stream> inline void Serialize(Stream& s, char a ) { ser_writedata8(s, a); } // TODO Get rid of bare char
template<typename Stream> inline void Serialize(Stream& s, int8_t a ) { ser_writedata8(s, a); }
template<typename Stream> inline void Serialize(Stream& s, uint8_t a ) { ser_writedata8(s, a); }
template<typename Stream> inline void Serialize(Stream& s, int16_t a ) { ser_writedata16(s, a); }
template<typename Stream> inline void Serialize(Stream& s, uint16_t a) { ser_writedata16(s, a); }
template<typename Stream> inline void Serialize(Stream& s, int32_t a ) { ser_writedata32(s, a); }
template<typename Stream> inline void Serialize(Stream& s, uint32_t a) { ser_writedata32(s, a); }
template<typename Stream> inline void Serialize(Stream& s, int64_t a ) { ser_writedata64(s, a); }
template<typename Stream> inline void Serialize(Stream& s, uint64_t a) { ser_writedata64(s, a); }
template<typename Stream> inline void Serialize(Stream& s, float a ) { ser_writedata32(s, ser_float_to_uint32(a)); }
template<typename Stream> inline void Serialize(Stream& s, double a ) { ser_writedata64(s, ser_double_to_uint64(a)); }
template<typename Stream> inline void Unserialize(Stream& s, char& a ) { a = ser_readdata8(s); } // TODO Get rid of bare char
template<typename Stream> inline void Unserialize(Stream& s, int8_t& a ) { a = ser_readdata8(s); }
template<typename Stream> inline void Unserialize(Stream& s, uint8_t& a ) { a = ser_readdata8(s); }
template<typename Stream> inline void Unserialize(Stream& s, int16_t& a ) { a = ser_readdata16(s); }
template<typename Stream> inline void Unserialize(Stream& s, uint16_t& a) { a = ser_readdata16(s); }
template<typename Stream> inline void Unserialize(Stream& s, int32_t& a ) { a = ser_readdata32(s); }
template<typename Stream> inline void Unserialize(Stream& s, uint32_t& a) { a = ser_readdata32(s); }
template<typename Stream> inline void Unserialize(Stream& s, int64_t& a ) { a = ser_readdata64(s); }
template<typename Stream> inline void Unserialize(Stream& s, uint64_t& a) { a = ser_readdata64(s); }
template<typename Stream> inline void Unserialize(Stream& s, float& a ) { a = ser_uint32_to_float(ser_readdata32(s)); }
template<typename Stream> inline void Unserialize(Stream& s, double& a ) { a = ser_uint64_to_double(ser_readdata64(s)); }
template<typename Stream> inline void Serialize(Stream& s, bool a) { char f=a; ser_writedata8(s, f); }
template<typename Stream> inline void Unserialize(Stream& s, bool& a) { char f=ser_readdata8(s); a=f; }
/**
* Compact Size
* size < 253 -- 1 byte
* size <= USHRT_MAX -- 3 bytes (253 + 2 bytes)
* size <= UINT_MAX -- 5 bytes (254 + 4 bytes)
* size > UINT_MAX -- 9 bytes (255 + 8 bytes)
*/
inline unsigned int GetSizeOfCompactSize(uint64_t nSize)
{
if (nSize < 253) return sizeof(unsigned char);
else if (nSize <= std::numeric_limits<unsigned short>::max()) return sizeof(unsigned char) + sizeof(unsigned short);
else if (nSize <= std::numeric_limits<unsigned int>::max()) return sizeof(unsigned char) + sizeof(unsigned int);
else return sizeof(unsigned char) + sizeof(uint64_t);
}
inline void WriteCompactSize(CSizeComputer& os, uint64_t nSize);
template<typename Stream>
void WriteCompactSize(Stream& os, uint64_t nSize)
{
if (nSize < 253)
{
ser_writedata8(os, nSize);
}
else if (nSize <= std::numeric_limits<unsigned short>::max())
{
ser_writedata8(os, 253);
ser_writedata16(os, nSize);
}
else if (nSize <= std::numeric_limits<unsigned int>::max())
{
ser_writedata8(os, 254);
ser_writedata32(os, nSize);
}
else
{
ser_writedata8(os, 255);
ser_writedata64(os, nSize);
}
return;
}
template<typename Stream>
uint64_t ReadCompactSize(Stream& is)
{
uint8_t chSize = ser_readdata8(is);
uint64_t nSizeRet = 0;
if (chSize < 253)
{
nSizeRet = chSize;
}
else if (chSize == 253)
{
nSizeRet = ser_readdata16(is);
if (nSizeRet < 253)
throw std::ios_base::failure("non-canonical ReadCompactSize()");
}
else if (chSize == 254)
{
nSizeRet = ser_readdata32(is);
if (nSizeRet < 0x10000u)
throw std::ios_base::failure("non-canonical ReadCompactSize()");
}
else
{
nSizeRet = ser_readdata64(is);
if (nSizeRet < 0x100000000ULL)
throw std::ios_base::failure("non-canonical ReadCompactSize()");
}
if (nSizeRet > (uint64_t)MAX_SIZE)
throw std::ios_base::failure("ReadCompactSize(): size too large");
return nSizeRet;
}
/**
* Variable-length integers: bytes are a MSB base-128 encoding of the number.
* The high bit in each byte signifies whether another digit follows. To make
* sure the encoding is one-to-one, one is subtracted from all but the last digit.
* Thus, the byte sequence a[] with length len, where all but the last byte
* has bit 128 set, encodes the number:
*
* (a[len-1] & 0x7F) + sum(i=1..len-1, 128^i*((a[len-i-1] & 0x7F)+1))
*
* Properties:
* * Very small (0-127: 1 byte, 128-16511: 2 bytes, 16512-2113663: 3 bytes)
* * Every integer has exactly one encoding
* * Encoding does not depend on size of original integer type
* * No redundancy: every (infinite) byte sequence corresponds to a list
* of encoded integers.
*
* 0: [0x00] 256: [0x81 0x00]
* 1: [0x01] 16383: [0xFE 0x7F]
* 127: [0x7F] 16384: [0xFF 0x00]
* 128: [0x80 0x00] 16511: [0xFF 0x7F]
* 255: [0x80 0x7F] 65535: [0x82 0xFE 0x7F]
* 2^32: [0x8E 0xFE 0xFE 0xFF 0x00]
*/
template<typename I>
inline unsigned int GetSizeOfVarInt(I n)
{
int nRet = 0;
while(true) {
nRet++;
if (n <= 0x7F)
break;
n = (n >> 7) - 1;
}
return nRet;
}
template<typename I>
inline void WriteVarInt(CSizeComputer& os, I n);
template<typename Stream, typename I>
void WriteVarInt(Stream& os, I n)
{
unsigned char tmp[(sizeof(n)*8+6)/7];
int len=0;
while(true) {
tmp[len] = (n & 0x7F) | (len ? 0x80 : 0x00);
if (n <= 0x7F)
break;
n = (n >> 7) - 1;
len++;
}
do {
ser_writedata8(os, tmp[len]);
} while(len--);
}
template<typename Stream, typename I>
I ReadVarInt(Stream& is)
{
I n = 0;
while(true) {
unsigned char chData = ser_readdata8(is);
if (n > (std::numeric_limits<I>::max() >> 7)) {
throw std::ios_base::failure("ReadVarInt(): size too large");
}
n = (n << 7) | (chData & 0x7F);
if (chData & 0x80) {
if (n == std::numeric_limits<I>::max()) {
throw std::ios_base::failure("ReadVarInt(): size too large");
}
n++;
} else {
return n;
}
}
}
#define FLATDATA(obj) REF(CFlatData((char*)&(obj), (char*)&(obj) + sizeof(obj)))
#define VARINT(obj) REF(WrapVarInt(REF(obj)))
#define COMPACTSIZE(obj) REF(CCompactSize(REF(obj)))
#define LIMITED_STRING(obj,n) REF(LimitedString< n >(REF(obj)))
/**
* Wrapper for serializing arrays and POD.
*/
class CFlatData
{
protected:
char* pbegin;
char* pend;
public:
CFlatData(void* pbeginIn, void* pendIn) : pbegin((char*)pbeginIn), pend((char*)pendIn) { }
template <class T, class TAl>
explicit CFlatData(std::vector<T,TAl> &v)
{
pbegin = (char*)v.data();
pend = (char*)(v.data() + v.size());
}
template <unsigned int N, typename T, typename S, typename D>
explicit CFlatData(prevector<N, T, S, D> &v)
{
pbegin = (char*)v.data();
pend = (char*)(v.data() + v.size());
}
char* begin() { return pbegin; }
const char* begin() const { return pbegin; }
char* end() { return pend; }
const char* end() const { return pend; }
template<typename Stream>
void Serialize(Stream& s) const
{
s.write(pbegin, pend - pbegin);
}
template<typename Stream>
void Unserialize(Stream& s)
{
s.read(pbegin, pend - pbegin);
}
};
template<typename I>
class CVarInt
{
protected:
I &n;
public:
CVarInt(I& nIn) : n(nIn) { }
template<typename Stream>
void Serialize(Stream &s) const {
WriteVarInt<Stream,I>(s, n);
}
template<typename Stream>
void Unserialize(Stream& s) {
n = ReadVarInt<Stream,I>(s);
}
};
class CCompactSize
{
protected:
uint64_t &n;
public:
CCompactSize(uint64_t& nIn) : n(nIn) { }
template<typename Stream>
void Serialize(Stream &s) const {
WriteCompactSize<Stream>(s, n);
}
template<typename Stream>
void Unserialize(Stream& s) {
n = ReadCompactSize<Stream>(s);
}
};
template<size_t Limit>
class LimitedString
{
protected:
std::string& string;
public:
LimitedString(std::string& _string) : string(_string) {}
template<typename Stream>
void Unserialize(Stream& s)
{
size_t size = ReadCompactSize(s);
if (size > Limit) {
throw std::ios_base::failure("String length limit exceeded");
}
string.resize(size);
if (size != 0)
s.read((char*)&string[0], size);
}
template<typename Stream>
void Serialize(Stream& s) const
{
WriteCompactSize(s, string.size());
if (!string.empty())
s.write((char*)&string[0], string.size());
}
};
template<typename I>
CVarInt<I> WrapVarInt(I& n) { return CVarInt<I>(n); }
/**
* Forward declarations
*/
/**
* string
*/
template<typename Stream, typename C> void Serialize(Stream& os, const std::basic_string<C>& str);
template<typename Stream, typename C> void Unserialize(Stream& is, std::basic_string<C>& str);
/**
* prevector
* prevectors of unsigned char are a special case and are intended to be serialized as a single opaque blob.
*/
template<typename Stream, unsigned int N, typename T> void Serialize_impl(Stream& os, const prevector<N, T>& v, const unsigned char&);
template<typename Stream, unsigned int N, typename T, typename V> void Serialize_impl(Stream& os, const prevector<N, T>& v, const V&);
template<typename Stream, unsigned int N, typename T> inline void Serialize(Stream& os, const prevector<N, T>& v);
template<typename Stream, unsigned int N, typename T> void Unserialize_impl(Stream& is, prevector<N, T>& v, const unsigned char&);
template<typename Stream, unsigned int N, typename T, typename V> void Unserialize_impl(Stream& is, prevector<N, T>& v, const V&);
template<typename Stream, unsigned int N, typename T> inline void Unserialize(Stream& is, prevector<N, T>& v);
/**
* vector
* vectors of unsigned char are a special case and are intended to be serialized as a single opaque blob.
*/
template<typename Stream, typename T, typename A> void Serialize_impl(Stream& os, const std::vector<T, A>& v, const unsigned char&);
template<typename Stream, typename T, typename A, typename V> void Serialize_impl(Stream& os, const std::vector<T, A>& v, const V&);
template<typename Stream, typename T, typename A> inline void Serialize(Stream& os, const std::vector<T, A>& v);
template<typename Stream, typename T, typename A> void Unserialize_impl(Stream& is, std::vector<T, A>& v, const unsigned char&);
template<typename Stream, typename T, typename A, typename V> void Unserialize_impl(Stream& is, std::vector<T, A>& v, const V&);
template<typename Stream, typename T, typename A> inline void Unserialize(Stream& is, std::vector<T, A>& v);
/**
* pair
*/
template<typename Stream, typename K, typename T> void Serialize(Stream& os, const std::pair<K, T>& item);
template<typename Stream, typename K, typename T> void Unserialize(Stream& is, std::pair<K, T>& item);
/**
* map
*/
template<typename Stream, typename K, typename T, typename Pred, typename A> void Serialize(Stream& os, const std::map<K, T, Pred, A>& m);
template<typename Stream, typename K, typename T, typename Pred, typename A> void Unserialize(Stream& is, std::map<K, T, Pred, A>& m);
/**
* set
*/
template<typename Stream, typename K, typename Pred, typename A> void Serialize(Stream& os, const std::set<K, Pred, A>& m);
template<typename Stream, typename K, typename Pred, typename A> void Unserialize(Stream& is, std::set<K, Pred, A>& m);
/**
* shared_ptr
*/
template<typename Stream, typename T> void Serialize(Stream& os, const std::shared_ptr<const T>& p);
template<typename Stream, typename T> void Unserialize(Stream& os, std::shared_ptr<const T>& p);
/**
* unique_ptr
*/
template<typename Stream, typename T> void Serialize(Stream& os, const std::unique_ptr<const T>& p);
template<typename Stream, typename T> void Unserialize(Stream& os, std::unique_ptr<const T>& p);
/**
* If none of the specialized versions above matched, default to calling member function.
*/
template<typename Stream, typename T>
inline void Serialize(Stream& os, const T& a)
{
a.Serialize(os);
}
template<typename Stream, typename T>
inline void Unserialize(Stream& is, T& a)
{
a.Unserialize(is);
}
/**
* string
*/
template<typename Stream, typename C>
void Serialize(Stream& os, const std::basic_string<C>& str)
{
WriteCompactSize(os, str.size());
if (!str.empty())
os.write((char*)&str[0], str.size() * sizeof(str[0]));
}
template<typename Stream, typename C>
void Unserialize(Stream& is, std::basic_string<C>& str)
{
unsigned int nSize = ReadCompactSize(is);
str.resize(nSize);
if (nSize != 0)
is.read((char*)&str[0], nSize * sizeof(str[0]));
}
/**
* prevector
*/
template<typename Stream, unsigned int N, typename T>
void Serialize_impl(Stream& os, const prevector<N, T>& v, const unsigned char&)
{
WriteCompactSize(os, v.size());
if (!v.empty())
os.write((char*)&v[0], v.size() * sizeof(T));
}
template<typename Stream, unsigned int N, typename T, typename V>
void Serialize_impl(Stream& os, const prevector<N, T>& v, const V&)
{
WriteCompactSize(os, v.size());
for (typename prevector<N, T>::const_iterator vi = v.begin(); vi != v.end(); ++vi)
::Serialize(os, (*vi));
}
template<typename Stream, unsigned int N, typename T>
inline void Serialize(Stream& os, const prevector<N, T>& v)
{
Serialize_impl(os, v, T());
}
template<typename Stream, unsigned int N, typename T>
void Unserialize_impl(Stream& is, prevector<N, T>& v, const unsigned char&)
{
// Limit size per read so bogus size value won't cause out of memory
v.clear();
unsigned int nSize = ReadCompactSize(is);
unsigned int i = 0;
while (i < nSize)
{
unsigned int blk = std::min(nSize - i, (unsigned int)(1 + 4999999 / sizeof(T)));
v.resize(i + blk);
is.read((char*)&v[i], blk * sizeof(T));
i += blk;
}
}
template<typename Stream, unsigned int N, typename T, typename V>
void Unserialize_impl(Stream& is, prevector<N, T>& v, const V&)
{
v.clear();
unsigned int nSize = ReadCompactSize(is);
unsigned int i = 0;
unsigned int nMid = 0;
while (nMid < nSize)
{
nMid += 5000000 / sizeof(T);
if (nMid > nSize)
nMid = nSize;
v.resize(nMid);
for (; i < nMid; i++)
Unserialize(is, v[i]);
}
}
template<typename Stream, unsigned int N, typename T>
inline void Unserialize(Stream& is, prevector<N, T>& v)
{
Unserialize_impl(is, v, T());
}
/**
* vector
*/
template<typename Stream, typename T, typename A>
void Serialize_impl(Stream& os, const std::vector<T, A>& v, const unsigned char&)
{
WriteCompactSize(os, v.size());
if (!v.empty())
os.write((char*)&v[0], v.size() * sizeof(T));
}
template<typename Stream, typename T, typename A, typename V>
void Serialize_impl(Stream& os, const std::vector<T, A>& v, const V&)
{
WriteCompactSize(os, v.size());
for (typename std::vector<T, A>::const_iterator vi = v.begin(); vi != v.end(); ++vi)
::Serialize(os, (*vi));
}
template<typename Stream, typename T, typename A>
inline void Serialize(Stream& os, const std::vector<T, A>& v)
{
Serialize_impl(os, v, T());
}
template<typename Stream, typename T, typename A>
void Unserialize_impl(Stream& is, std::vector<T, A>& v, const unsigned char&)
{
// Limit size per read so bogus size value won't cause out of memory
v.clear();
unsigned int nSize = ReadCompactSize(is);
unsigned int i = 0;
while (i < nSize)
{
unsigned int blk = std::min(nSize - i, (unsigned int)(1 + 4999999 / sizeof(T)));
v.resize(i + blk);
is.read((char*)&v[i], blk * sizeof(T));
i += blk;
}
}
template<typename Stream, typename T, typename A, typename V>
void Unserialize_impl(Stream& is, std::vector<T, A>& v, const V&)
{
v.clear();
unsigned int nSize = ReadCompactSize(is);
unsigned int i = 0;
unsigned int nMid = 0;
while (nMid < nSize)
{
nMid += 5000000 / sizeof(T);
if (nMid > nSize)
nMid = nSize;
v.resize(nMid);
for (; i < nMid; i++)
Unserialize(is, v[i]);
}
}
template<typename Stream, typename T, typename A>
inline void Unserialize(Stream& is, std::vector<T, A>& v)
{
Unserialize_impl(is, v, T());
}
/**
* pair
*/
template<typename Stream, typename K, typename T>
void Serialize(Stream& os, const std::pair<K, T>& item)
{
Serialize(os, item.first);
Serialize(os, item.second);
}
template<typename Stream, typename K, typename T>
void Unserialize(Stream& is, std::pair<K, T>& item)
{
Unserialize(is, item.first);
Unserialize(is, item.second);
}
/**
* map
*/
template<typename Stream, typename K, typename T, typename Pred, typename A>
void Serialize(Stream& os, const std::map<K, T, Pred, A>& m)
{
WriteCompactSize(os, m.size());
for (typename std::map<K, T, Pred, A>::const_iterator mi = m.begin(); mi != m.end(); ++mi)
Serialize(os, (*mi));
}
template<typename Stream, typename K, typename T, typename Pred, typename A>
void Unserialize(Stream& is, std::map<K, T, Pred, A>& m)
{
m.clear();
unsigned int nSize = ReadCompactSize(is);
typename std::map<K, T, Pred, A>::iterator mi = m.begin();
for (unsigned int i = 0; i < nSize; i++)
{
std::pair<K, T> item;
Unserialize(is, item);
mi = m.insert(mi, item);
}
}
/**
* set
*/
template<typename Stream, typename K, typename Pred, typename A>
void Serialize(Stream& os, const std::set<K, Pred, A>& m)
{
WriteCompactSize(os, m.size());
for (typename std::set<K, Pred, A>::const_iterator it = m.begin(); it != m.end(); ++it)
Serialize(os, (*it));
}
template<typename Stream, typename K, typename Pred, typename A>
void Unserialize(Stream& is, std::set<K, Pred, A>& m)
{
m.clear();
unsigned int nSize = ReadCompactSize(is);
typename std::set<K, Pred, A>::iterator it = m.begin();
for (unsigned int i = 0; i < nSize; i++)
{
K key;
Unserialize(is, key);
it = m.insert(it, key);
}
}
/**
* unique_ptr
*/
template<typename Stream, typename T> void
Serialize(Stream& os, const std::unique_ptr<const T>& p)
{
Serialize(os, *p);
}
template<typename Stream, typename T>
void Unserialize(Stream& is, std::unique_ptr<const T>& p)
{
p.reset(new T(deserialize, is));
}
/**
* shared_ptr
*/
template<typename Stream, typename T> void
Serialize(Stream& os, const std::shared_ptr<const T>& p)
{
Serialize(os, *p);
}
template<typename Stream, typename T>
void Unserialize(Stream& is, std::shared_ptr<const T>& p)
{
p = std::make_shared<const T>(deserialize, is);
}
/**
* Support for ADD_SERIALIZE_METHODS and READWRITE macro
*/
struct CSerActionSerialize
{
constexpr bool ForRead() const { return false; }
};
struct CSerActionUnserialize
{
constexpr bool ForRead() const { return true; }
};
template<typename Stream, typename T>
inline void SerReadWrite(Stream& s, const T& obj, CSerActionSerialize ser_action)
{
::Serialize(s, obj);
}
template<typename Stream, typename T>
inline void SerReadWrite(Stream& s, T& obj, CSerActionUnserialize ser_action)
{
::Unserialize(s, obj);
}
/* ::GetSerializeSize implementations
*
* Computing the serialized size of objects is done through a special stream
* object of type CSizeComputer, which only records the number of bytes written
* to it.
*
* If your Serialize or SerializationOp method has non-trivial overhead for
* serialization, it may be worthwhile to implement a specialized version for
* CSizeComputer, which uses the s.seek() method to record bytes that would
* be written instead.
*/
class CSizeComputer
{
protected:
size_t nSize;
const int nType;
const int nVersion;
public:
CSizeComputer(int nTypeIn, int nVersionIn) : nSize(0), nType(nTypeIn), nVersion(nVersionIn) {}
void write(const char *psz, size_t _nSize)
{
this->nSize += _nSize;
}
/** Pretend _nSize bytes are written, without specifying them. */
void seek(size_t _nSize)
{
this->nSize += _nSize;
}
template<typename T>
CSizeComputer& operator<<(const T& obj)
{
::Serialize(*this, obj);
return (*this);
}
size_t size() const {
return nSize;
}
int GetVersion() const { return nVersion; }
int GetType() const { return nType; }
};
template<typename Stream>
void SerializeMany(Stream& s)
{
}
template<typename Stream, typename Arg>
void SerializeMany(Stream& s, Arg&& arg)
{
::Serialize(s, std::forward<Arg>(arg));
}
template<typename Stream, typename Arg, typename... Args>
void SerializeMany(Stream& s, Arg&& arg, Args&&... args)
{
::Serialize(s, std::forward<Arg>(arg));
::SerializeMany(s, std::forward<Args>(args)...);
}
template<typename Stream>
inline void UnserializeMany(Stream& s)
{
}
template<typename Stream, typename Arg>
inline void UnserializeMany(Stream& s, Arg& arg)
{
::Unserialize(s, arg);
}
template<typename Stream, typename Arg, typename... Args>
inline void UnserializeMany(Stream& s, Arg& arg, Args&... args)
{
::Unserialize(s, arg);
::UnserializeMany(s, args...);
}
template<typename Stream, typename... Args>
inline void SerReadWriteMany(Stream& s, CSerActionSerialize ser_action, Args&&... args)
{
::SerializeMany(s, std::forward<Args>(args)...);
}
template<typename Stream, typename... Args>
inline void SerReadWriteMany(Stream& s, CSerActionUnserialize ser_action, Args&... args)
{
::UnserializeMany(s, args...);
}
template<typename I>
inline void WriteVarInt(CSizeComputer &s, I n)
{
s.seek(GetSizeOfVarInt<I>(n));
}
inline void WriteCompactSize(CSizeComputer &s, uint64_t nSize)
{
s.seek(GetSizeOfCompactSize(nSize));
}
template <typename T>
size_t GetSerializeSize(const T& t, int nType, int nVersion = 0)
{
return (CSizeComputer(nType, nVersion) << t).size();
}
template <typename S, typename T>
size_t GetSerializeSize(const S& s, const T& t)
{
return (CSizeComputer(s.GetType(), s.GetVersion()) << t).size();
}
#endif // BITCOIN_SERIALIZE_H