442 lines
14 KiB
C++
442 lines
14 KiB
C++
// Copyright (c) 2012-2017 The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#include "util.h"
|
|
#include "utiltime.h"
|
|
#include "validation.h"
|
|
|
|
#include "test/test_bitcoin.h"
|
|
#include "checkqueue.h"
|
|
#include <boost/test/unit_test.hpp>
|
|
#include <boost/thread.hpp>
|
|
#include <atomic>
|
|
#include <thread>
|
|
#include <vector>
|
|
#include <mutex>
|
|
#include <condition_variable>
|
|
|
|
#include <unordered_set>
|
|
#include <memory>
|
|
#include "random.h"
|
|
|
|
// BasicTestingSetup not sufficient because nScriptCheckThreads is not set
|
|
// otherwise.
|
|
BOOST_FIXTURE_TEST_SUITE(checkqueue_tests, TestingSetup)
|
|
|
|
static const int QUEUE_BATCH_SIZE = 128;
|
|
|
|
struct FakeCheck {
|
|
bool operator()()
|
|
{
|
|
return true;
|
|
}
|
|
void swap(FakeCheck& x){};
|
|
};
|
|
|
|
struct FakeCheckCheckCompletion {
|
|
static std::atomic<size_t> n_calls;
|
|
bool operator()()
|
|
{
|
|
++n_calls;
|
|
return true;
|
|
}
|
|
void swap(FakeCheckCheckCompletion& x){};
|
|
};
|
|
|
|
struct FailingCheck {
|
|
bool fails;
|
|
FailingCheck(bool _fails) : fails(_fails){};
|
|
FailingCheck() : fails(true){};
|
|
bool operator()()
|
|
{
|
|
return !fails;
|
|
}
|
|
void swap(FailingCheck& x)
|
|
{
|
|
std::swap(fails, x.fails);
|
|
};
|
|
};
|
|
|
|
struct UniqueCheck {
|
|
static std::mutex m;
|
|
static std::unordered_multiset<size_t> results;
|
|
size_t check_id;
|
|
UniqueCheck(size_t check_id_in) : check_id(check_id_in){};
|
|
UniqueCheck() : check_id(0){};
|
|
bool operator()()
|
|
{
|
|
std::lock_guard<std::mutex> l(m);
|
|
results.insert(check_id);
|
|
return true;
|
|
}
|
|
void swap(UniqueCheck& x) { std::swap(x.check_id, check_id); };
|
|
};
|
|
|
|
|
|
struct MemoryCheck {
|
|
static std::atomic<size_t> fake_allocated_memory;
|
|
bool b {false};
|
|
bool operator()()
|
|
{
|
|
return true;
|
|
}
|
|
MemoryCheck(){};
|
|
MemoryCheck(const MemoryCheck& x)
|
|
{
|
|
// We have to do this to make sure that destructor calls are paired
|
|
//
|
|
// Really, copy constructor should be deletable, but CCheckQueue breaks
|
|
// if it is deleted because of internal push_back.
|
|
fake_allocated_memory += b;
|
|
};
|
|
MemoryCheck(bool b_) : b(b_)
|
|
{
|
|
fake_allocated_memory += b;
|
|
};
|
|
~MemoryCheck(){
|
|
fake_allocated_memory -= b;
|
|
|
|
};
|
|
void swap(MemoryCheck& x) { std::swap(b, x.b); };
|
|
};
|
|
|
|
struct FrozenCleanupCheck {
|
|
static std::atomic<uint64_t> nFrozen;
|
|
static std::condition_variable cv;
|
|
static std::mutex m;
|
|
// Freezing can't be the default initialized behavior given how the queue
|
|
// swaps in default initialized Checks.
|
|
bool should_freeze {false};
|
|
bool operator()()
|
|
{
|
|
return true;
|
|
}
|
|
FrozenCleanupCheck() {}
|
|
~FrozenCleanupCheck()
|
|
{
|
|
if (should_freeze) {
|
|
std::unique_lock<std::mutex> l(m);
|
|
nFrozen = 1;
|
|
cv.notify_one();
|
|
cv.wait(l, []{ return nFrozen == 0;});
|
|
}
|
|
}
|
|
void swap(FrozenCleanupCheck& x){std::swap(should_freeze, x.should_freeze);};
|
|
};
|
|
|
|
// Static Allocations
|
|
std::mutex FrozenCleanupCheck::m{};
|
|
std::atomic<uint64_t> FrozenCleanupCheck::nFrozen{0};
|
|
std::condition_variable FrozenCleanupCheck::cv{};
|
|
std::mutex UniqueCheck::m;
|
|
std::unordered_multiset<size_t> UniqueCheck::results;
|
|
std::atomic<size_t> FakeCheckCheckCompletion::n_calls{0};
|
|
std::atomic<size_t> MemoryCheck::fake_allocated_memory{0};
|
|
|
|
// Queue Typedefs
|
|
typedef CCheckQueue<FakeCheckCheckCompletion> Correct_Queue;
|
|
typedef CCheckQueue<FakeCheck> Standard_Queue;
|
|
typedef CCheckQueue<FailingCheck> Failing_Queue;
|
|
typedef CCheckQueue<UniqueCheck> Unique_Queue;
|
|
typedef CCheckQueue<MemoryCheck> Memory_Queue;
|
|
typedef CCheckQueue<FrozenCleanupCheck> FrozenCleanup_Queue;
|
|
|
|
|
|
/** This test case checks that the CCheckQueue works properly
|
|
* with each specified size_t Checks pushed.
|
|
*/
|
|
void Correct_Queue_range(std::vector<size_t> range)
|
|
{
|
|
auto small_queue = std::unique_ptr<Correct_Queue>(new Correct_Queue {QUEUE_BATCH_SIZE});
|
|
boost::thread_group tg;
|
|
for (auto x = 0; x < nScriptCheckThreads; ++x) {
|
|
tg.create_thread([&]{small_queue->Thread();});
|
|
}
|
|
// Make vChecks here to save on malloc (this test can be slow...)
|
|
std::vector<FakeCheckCheckCompletion> vChecks;
|
|
for (auto i : range) {
|
|
size_t total = i;
|
|
FakeCheckCheckCompletion::n_calls = 0;
|
|
CCheckQueueControl<FakeCheckCheckCompletion> control(small_queue.get());
|
|
while (total) {
|
|
vChecks.resize(std::min(total, (size_t) GetRand(10)));
|
|
total -= vChecks.size();
|
|
control.Add(vChecks);
|
|
}
|
|
BOOST_REQUIRE(control.Wait());
|
|
if (FakeCheckCheckCompletion::n_calls != i) {
|
|
BOOST_REQUIRE_EQUAL(FakeCheckCheckCompletion::n_calls, i);
|
|
BOOST_TEST_MESSAGE("Failure on trial " << i << " expected, got " << FakeCheckCheckCompletion::n_calls);
|
|
}
|
|
}
|
|
tg.interrupt_all();
|
|
tg.join_all();
|
|
}
|
|
|
|
/** Test that 0 checks is correct
|
|
*/
|
|
BOOST_AUTO_TEST_CASE(test_CheckQueue_Correct_Zero)
|
|
{
|
|
std::vector<size_t> range;
|
|
range.push_back((size_t)0);
|
|
Correct_Queue_range(range);
|
|
}
|
|
/** Test that 1 check is correct
|
|
*/
|
|
BOOST_AUTO_TEST_CASE(test_CheckQueue_Correct_One)
|
|
{
|
|
std::vector<size_t> range;
|
|
range.push_back((size_t)1);
|
|
Correct_Queue_range(range);
|
|
}
|
|
/** Test that MAX check is correct
|
|
*/
|
|
BOOST_AUTO_TEST_CASE(test_CheckQueue_Correct_Max)
|
|
{
|
|
std::vector<size_t> range;
|
|
range.push_back(100000);
|
|
Correct_Queue_range(range);
|
|
}
|
|
/** Test that random numbers of checks are correct
|
|
*/
|
|
BOOST_AUTO_TEST_CASE(test_CheckQueue_Correct_Random)
|
|
{
|
|
std::vector<size_t> range;
|
|
range.reserve(100000/1000);
|
|
for (size_t i = 2; i < 100000; i += std::max((size_t)1, (size_t)GetRand(std::min((size_t)1000, ((size_t)100000) - i))))
|
|
range.push_back(i);
|
|
Correct_Queue_range(range);
|
|
}
|
|
|
|
|
|
/** Test that failing checks are caught */
|
|
BOOST_AUTO_TEST_CASE(test_CheckQueue_Catches_Failure)
|
|
{
|
|
auto fail_queue = std::unique_ptr<Failing_Queue>(new Failing_Queue {QUEUE_BATCH_SIZE});
|
|
|
|
boost::thread_group tg;
|
|
for (auto x = 0; x < nScriptCheckThreads; ++x) {
|
|
tg.create_thread([&]{fail_queue->Thread();});
|
|
}
|
|
|
|
for (size_t i = 0; i < 1001; ++i) {
|
|
CCheckQueueControl<FailingCheck> control(fail_queue.get());
|
|
size_t remaining = i;
|
|
while (remaining) {
|
|
size_t r = GetRand(10);
|
|
|
|
std::vector<FailingCheck> vChecks;
|
|
vChecks.reserve(r);
|
|
for (size_t k = 0; k < r && remaining; k++, remaining--)
|
|
vChecks.emplace_back(remaining == 1);
|
|
control.Add(vChecks);
|
|
}
|
|
bool success = control.Wait();
|
|
if (i > 0) {
|
|
BOOST_REQUIRE(!success);
|
|
} else if (i == 0) {
|
|
BOOST_REQUIRE(success);
|
|
}
|
|
}
|
|
tg.interrupt_all();
|
|
tg.join_all();
|
|
}
|
|
// Test that a block validation which fails does not interfere with
|
|
// future blocks, ie, the bad state is cleared.
|
|
BOOST_AUTO_TEST_CASE(test_CheckQueue_Recovers_From_Failure)
|
|
{
|
|
auto fail_queue = std::unique_ptr<Failing_Queue>(new Failing_Queue {QUEUE_BATCH_SIZE});
|
|
boost::thread_group tg;
|
|
for (auto x = 0; x < nScriptCheckThreads; ++x) {
|
|
tg.create_thread([&]{fail_queue->Thread();});
|
|
}
|
|
|
|
for (auto times = 0; times < 10; ++times) {
|
|
for (bool end_fails : {true, false}) {
|
|
CCheckQueueControl<FailingCheck> control(fail_queue.get());
|
|
{
|
|
std::vector<FailingCheck> vChecks;
|
|
vChecks.resize(100, false);
|
|
vChecks[99] = end_fails;
|
|
control.Add(vChecks);
|
|
}
|
|
bool r =control.Wait();
|
|
BOOST_REQUIRE(r || end_fails);
|
|
}
|
|
}
|
|
tg.interrupt_all();
|
|
tg.join_all();
|
|
}
|
|
|
|
// Test that unique checks are actually all called individually, rather than
|
|
// just one check being called repeatedly. Test that checks are not called
|
|
// more than once as well
|
|
BOOST_AUTO_TEST_CASE(test_CheckQueue_UniqueCheck)
|
|
{
|
|
auto queue = std::unique_ptr<Unique_Queue>(new Unique_Queue {QUEUE_BATCH_SIZE});
|
|
boost::thread_group tg;
|
|
for (auto x = 0; x < nScriptCheckThreads; ++x) {
|
|
tg.create_thread([&]{queue->Thread();});
|
|
|
|
}
|
|
|
|
size_t COUNT = 100000;
|
|
size_t total = COUNT;
|
|
{
|
|
CCheckQueueControl<UniqueCheck> control(queue.get());
|
|
while (total) {
|
|
size_t r = GetRand(10);
|
|
std::vector<UniqueCheck> vChecks;
|
|
for (size_t k = 0; k < r && total; k++)
|
|
vChecks.emplace_back(--total);
|
|
control.Add(vChecks);
|
|
}
|
|
}
|
|
bool r = true;
|
|
BOOST_REQUIRE_EQUAL(UniqueCheck::results.size(), COUNT);
|
|
for (size_t i = 0; i < COUNT; ++i)
|
|
r = r && UniqueCheck::results.count(i) == 1;
|
|
BOOST_REQUIRE(r);
|
|
tg.interrupt_all();
|
|
tg.join_all();
|
|
}
|
|
|
|
|
|
// Test that blocks which might allocate lots of memory free their memory aggressively.
|
|
//
|
|
// This test attempts to catch a pathological case where by lazily freeing
|
|
// checks might mean leaving a check un-swapped out, and decreasing by 1 each
|
|
// time could leave the data hanging across a sequence of blocks.
|
|
BOOST_AUTO_TEST_CASE(test_CheckQueue_Memory)
|
|
{
|
|
auto queue = std::unique_ptr<Memory_Queue>(new Memory_Queue {QUEUE_BATCH_SIZE});
|
|
boost::thread_group tg;
|
|
for (auto x = 0; x < nScriptCheckThreads; ++x) {
|
|
tg.create_thread([&]{queue->Thread();});
|
|
}
|
|
for (size_t i = 0; i < 1000; ++i) {
|
|
size_t total = i;
|
|
{
|
|
CCheckQueueControl<MemoryCheck> control(queue.get());
|
|
while (total) {
|
|
size_t r = GetRand(10);
|
|
std::vector<MemoryCheck> vChecks;
|
|
for (size_t k = 0; k < r && total; k++) {
|
|
total--;
|
|
// Each iteration leaves data at the front, back, and middle
|
|
// to catch any sort of deallocation failure
|
|
vChecks.emplace_back(total == 0 || total == i || total == i/2);
|
|
}
|
|
control.Add(vChecks);
|
|
}
|
|
}
|
|
BOOST_REQUIRE_EQUAL(MemoryCheck::fake_allocated_memory, 0);
|
|
}
|
|
tg.interrupt_all();
|
|
tg.join_all();
|
|
}
|
|
|
|
// Test that a new verification cannot occur until all checks
|
|
// have been destructed
|
|
BOOST_AUTO_TEST_CASE(test_CheckQueue_FrozenCleanup)
|
|
{
|
|
auto queue = std::unique_ptr<FrozenCleanup_Queue>(new FrozenCleanup_Queue {QUEUE_BATCH_SIZE});
|
|
boost::thread_group tg;
|
|
bool fails = false;
|
|
for (auto x = 0; x < nScriptCheckThreads; ++x) {
|
|
tg.create_thread([&]{queue->Thread();});
|
|
}
|
|
std::thread t0([&]() {
|
|
CCheckQueueControl<FrozenCleanupCheck> control(queue.get());
|
|
std::vector<FrozenCleanupCheck> vChecks(1);
|
|
// Freezing can't be the default initialized behavior given how the queue
|
|
// swaps in default initialized Checks (otherwise freezing destructor
|
|
// would get called twice).
|
|
vChecks[0].should_freeze = true;
|
|
control.Add(vChecks);
|
|
control.Wait(); // Hangs here
|
|
});
|
|
{
|
|
std::unique_lock<std::mutex> l(FrozenCleanupCheck::m);
|
|
// Wait until the queue has finished all jobs and frozen
|
|
FrozenCleanupCheck::cv.wait(l, [](){return FrozenCleanupCheck::nFrozen == 1;});
|
|
// Try to get control of the queue a bunch of times
|
|
for (auto x = 0; x < 100 && !fails; ++x) {
|
|
fails = queue->ControlMutex.try_lock();
|
|
}
|
|
// Unfreeze
|
|
FrozenCleanupCheck::nFrozen = 0;
|
|
}
|
|
// Awaken frozen destructor
|
|
FrozenCleanupCheck::cv.notify_one();
|
|
// Wait for control to finish
|
|
t0.join();
|
|
tg.interrupt_all();
|
|
tg.join_all();
|
|
BOOST_REQUIRE(!fails);
|
|
}
|
|
|
|
|
|
/** Test that CCheckQueueControl is threadsafe */
|
|
BOOST_AUTO_TEST_CASE(test_CheckQueueControl_Locks)
|
|
{
|
|
auto queue = std::unique_ptr<Standard_Queue>(new Standard_Queue{QUEUE_BATCH_SIZE});
|
|
{
|
|
boost::thread_group tg;
|
|
std::atomic<int> nThreads {0};
|
|
std::atomic<int> fails {0};
|
|
for (size_t i = 0; i < 3; ++i) {
|
|
tg.create_thread(
|
|
[&]{
|
|
CCheckQueueControl<FakeCheck> control(queue.get());
|
|
// While sleeping, no other thread should execute to this point
|
|
auto observed = ++nThreads;
|
|
MilliSleep(10);
|
|
fails += observed != nThreads;
|
|
});
|
|
}
|
|
tg.join_all();
|
|
BOOST_REQUIRE_EQUAL(fails, 0);
|
|
}
|
|
{
|
|
boost::thread_group tg;
|
|
std::mutex m;
|
|
bool has_lock {false};
|
|
bool has_tried {false};
|
|
bool done {false};
|
|
bool done_ack {false};
|
|
std::condition_variable cv;
|
|
{
|
|
std::unique_lock<std::mutex> l(m);
|
|
tg.create_thread([&]{
|
|
CCheckQueueControl<FakeCheck> control(queue.get());
|
|
std::unique_lock<std::mutex> ll(m);
|
|
has_lock = true;
|
|
cv.notify_one();
|
|
cv.wait(ll, [&]{return has_tried;});
|
|
done = true;
|
|
cv.notify_one();
|
|
// Wait until the done is acknowledged
|
|
//
|
|
cv.wait(ll, [&]{return done_ack;});
|
|
});
|
|
// Wait for thread to get the lock
|
|
cv.wait(l, [&](){return has_lock;});
|
|
bool fails = false;
|
|
for (auto x = 0; x < 100 && !fails; ++x) {
|
|
fails = queue->ControlMutex.try_lock();
|
|
}
|
|
has_tried = true;
|
|
cv.notify_one();
|
|
cv.wait(l, [&](){return done;});
|
|
// Acknowledge the done
|
|
done_ack = true;
|
|
cv.notify_one();
|
|
BOOST_REQUIRE(!fails);
|
|
}
|
|
tg.join_all();
|
|
}
|
|
}
|
|
BOOST_AUTO_TEST_SUITE_END()
|
|
|