272 lines
8 KiB
C++
272 lines
8 KiB
C++
// Copyright (c) 2012-2014 The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#include "bloom.h"
|
|
|
|
#include "primitives/transaction.h"
|
|
#include "hash.h"
|
|
#include "script/script.h"
|
|
#include "script/standard.h"
|
|
#include "random.h"
|
|
#include "streams.h"
|
|
|
|
#include <math.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <boost/foreach.hpp>
|
|
|
|
#define LN2SQUARED 0.4804530139182014246671025263266649717305529515945455
|
|
#define LN2 0.6931471805599453094172321214581765680755001343602552
|
|
|
|
using namespace std;
|
|
|
|
CBloomFilter::CBloomFilter(unsigned int nElements, double nFPRate, unsigned int nTweakIn, unsigned char nFlagsIn) :
|
|
/**
|
|
* The ideal size for a bloom filter with a given number of elements and false positive rate is:
|
|
* - nElements * log(fp rate) / ln(2)^2
|
|
* We ignore filter parameters which will create a bloom filter larger than the protocol limits
|
|
*/
|
|
vData(min((unsigned int)(-1 / LN2SQUARED * nElements * log(nFPRate)), MAX_BLOOM_FILTER_SIZE * 8) / 8),
|
|
/**
|
|
* The ideal number of hash functions is filter size * ln(2) / number of elements
|
|
* Again, we ignore filter parameters which will create a bloom filter with more hash functions than the protocol limits
|
|
* See https://en.wikipedia.org/wiki/Bloom_filter for an explanation of these formulas
|
|
*/
|
|
isFull(false),
|
|
isEmpty(false),
|
|
nHashFuncs(min((unsigned int)(vData.size() * 8 / nElements * LN2), MAX_HASH_FUNCS)),
|
|
nTweak(nTweakIn),
|
|
nFlags(nFlagsIn)
|
|
{
|
|
}
|
|
|
|
// Private constructor used by CRollingBloomFilter
|
|
CBloomFilter::CBloomFilter(unsigned int nElements, double nFPRate, unsigned int nTweakIn) :
|
|
vData((unsigned int)(-1 / LN2SQUARED * nElements * log(nFPRate)) / 8),
|
|
isFull(false),
|
|
isEmpty(true),
|
|
nHashFuncs((unsigned int)(vData.size() * 8 / nElements * LN2)),
|
|
nTweak(nTweakIn),
|
|
nFlags(BLOOM_UPDATE_NONE)
|
|
{
|
|
}
|
|
|
|
inline unsigned int CBloomFilter::Hash(unsigned int nHashNum, const std::vector<unsigned char>& vDataToHash) const
|
|
{
|
|
// 0xFBA4C795 chosen as it guarantees a reasonable bit difference between nHashNum values.
|
|
return MurmurHash3(nHashNum * 0xFBA4C795 + nTweak, vDataToHash) % (vData.size() * 8);
|
|
}
|
|
|
|
void CBloomFilter::insert(const vector<unsigned char>& vKey)
|
|
{
|
|
if (isFull)
|
|
return;
|
|
for (unsigned int i = 0; i < nHashFuncs; i++)
|
|
{
|
|
unsigned int nIndex = Hash(i, vKey);
|
|
// Sets bit nIndex of vData
|
|
vData[nIndex >> 3] |= (1 << (7 & nIndex));
|
|
}
|
|
isEmpty = false;
|
|
}
|
|
|
|
void CBloomFilter::insert(const COutPoint& outpoint)
|
|
{
|
|
CDataStream stream(SER_NETWORK, PROTOCOL_VERSION);
|
|
stream << outpoint;
|
|
vector<unsigned char> data(stream.begin(), stream.end());
|
|
insert(data);
|
|
}
|
|
|
|
void CBloomFilter::insert(const uint256& hash)
|
|
{
|
|
vector<unsigned char> data(hash.begin(), hash.end());
|
|
insert(data);
|
|
}
|
|
|
|
bool CBloomFilter::contains(const vector<unsigned char>& vKey) const
|
|
{
|
|
if (isFull)
|
|
return true;
|
|
if (isEmpty)
|
|
return false;
|
|
for (unsigned int i = 0; i < nHashFuncs; i++)
|
|
{
|
|
unsigned int nIndex = Hash(i, vKey);
|
|
// Checks bit nIndex of vData
|
|
if (!(vData[nIndex >> 3] & (1 << (7 & nIndex))))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool CBloomFilter::contains(const COutPoint& outpoint) const
|
|
{
|
|
CDataStream stream(SER_NETWORK, PROTOCOL_VERSION);
|
|
stream << outpoint;
|
|
vector<unsigned char> data(stream.begin(), stream.end());
|
|
return contains(data);
|
|
}
|
|
|
|
bool CBloomFilter::contains(const uint256& hash) const
|
|
{
|
|
vector<unsigned char> data(hash.begin(), hash.end());
|
|
return contains(data);
|
|
}
|
|
|
|
void CBloomFilter::clear()
|
|
{
|
|
vData.assign(vData.size(),0);
|
|
isFull = false;
|
|
isEmpty = true;
|
|
}
|
|
|
|
void CBloomFilter::reset(unsigned int nNewTweak)
|
|
{
|
|
clear();
|
|
nTweak = nNewTweak;
|
|
}
|
|
|
|
bool CBloomFilter::IsWithinSizeConstraints() const
|
|
{
|
|
return vData.size() <= MAX_BLOOM_FILTER_SIZE && nHashFuncs <= MAX_HASH_FUNCS;
|
|
}
|
|
|
|
bool CBloomFilter::IsRelevantAndUpdate(const CTransaction& tx)
|
|
{
|
|
bool fFound = false;
|
|
// Match if the filter contains the hash of tx
|
|
// for finding tx when they appear in a block
|
|
if (isFull)
|
|
return true;
|
|
if (isEmpty)
|
|
return false;
|
|
const uint256& hash = tx.GetHash();
|
|
if (contains(hash))
|
|
fFound = true;
|
|
|
|
for (unsigned int i = 0; i < tx.vout.size(); i++)
|
|
{
|
|
const CTxOut& txout = tx.vout[i];
|
|
// Match if the filter contains any arbitrary script data element in any scriptPubKey in tx
|
|
// If this matches, also add the specific output that was matched.
|
|
// This means clients don't have to update the filter themselves when a new relevant tx
|
|
// is discovered in order to find spending transactions, which avoids round-tripping and race conditions.
|
|
CScript::const_iterator pc = txout.scriptPubKey.begin();
|
|
vector<unsigned char> data;
|
|
while (pc < txout.scriptPubKey.end())
|
|
{
|
|
opcodetype opcode;
|
|
if (!txout.scriptPubKey.GetOp(pc, opcode, data))
|
|
break;
|
|
if (data.size() != 0 && contains(data))
|
|
{
|
|
fFound = true;
|
|
if ((nFlags & BLOOM_UPDATE_MASK) == BLOOM_UPDATE_ALL)
|
|
insert(COutPoint(hash, i));
|
|
else if ((nFlags & BLOOM_UPDATE_MASK) == BLOOM_UPDATE_P2PUBKEY_ONLY)
|
|
{
|
|
txnouttype type;
|
|
vector<vector<unsigned char> > vSolutions;
|
|
if (Solver(txout.scriptPubKey, type, vSolutions) &&
|
|
(type == TX_PUBKEY || type == TX_MULTISIG))
|
|
insert(COutPoint(hash, i));
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (fFound)
|
|
return true;
|
|
|
|
BOOST_FOREACH(const CTxIn& txin, tx.vin)
|
|
{
|
|
// Match if the filter contains an outpoint tx spends
|
|
if (contains(txin.prevout))
|
|
return true;
|
|
|
|
// Match if the filter contains any arbitrary script data element in any scriptSig in tx
|
|
CScript::const_iterator pc = txin.scriptSig.begin();
|
|
vector<unsigned char> data;
|
|
while (pc < txin.scriptSig.end())
|
|
{
|
|
opcodetype opcode;
|
|
if (!txin.scriptSig.GetOp(pc, opcode, data))
|
|
break;
|
|
if (data.size() != 0 && contains(data))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void CBloomFilter::UpdateEmptyFull()
|
|
{
|
|
bool full = true;
|
|
bool empty = true;
|
|
for (unsigned int i = 0; i < vData.size(); i++)
|
|
{
|
|
full &= vData[i] == 0xff;
|
|
empty &= vData[i] == 0;
|
|
}
|
|
isFull = full;
|
|
isEmpty = empty;
|
|
}
|
|
|
|
CRollingBloomFilter::CRollingBloomFilter(unsigned int nElements, double fpRate) :
|
|
b1(nElements * 2, fpRate, 0), b2(nElements * 2, fpRate, 0)
|
|
{
|
|
// Implemented using two bloom filters of 2 * nElements each.
|
|
// We fill them up, and clear them, staggered, every nElements
|
|
// inserted, so at least one always contains the last nElements
|
|
// inserted.
|
|
nInsertions = 0;
|
|
nBloomSize = nElements * 2;
|
|
|
|
reset();
|
|
}
|
|
|
|
void CRollingBloomFilter::insert(const std::vector<unsigned char>& vKey)
|
|
{
|
|
if (nInsertions == 0) {
|
|
b1.clear();
|
|
} else if (nInsertions == nBloomSize / 2) {
|
|
b2.clear();
|
|
}
|
|
b1.insert(vKey);
|
|
b2.insert(vKey);
|
|
if (++nInsertions == nBloomSize) {
|
|
nInsertions = 0;
|
|
}
|
|
}
|
|
|
|
void CRollingBloomFilter::insert(const uint256& hash)
|
|
{
|
|
vector<unsigned char> data(hash.begin(), hash.end());
|
|
insert(data);
|
|
}
|
|
|
|
bool CRollingBloomFilter::contains(const std::vector<unsigned char>& vKey) const
|
|
{
|
|
if (nInsertions < nBloomSize / 2) {
|
|
return b2.contains(vKey);
|
|
}
|
|
return b1.contains(vKey);
|
|
}
|
|
|
|
bool CRollingBloomFilter::contains(const uint256& hash) const
|
|
{
|
|
vector<unsigned char> data(hash.begin(), hash.end());
|
|
return contains(data);
|
|
}
|
|
|
|
void CRollingBloomFilter::reset()
|
|
{
|
|
unsigned int nNewTweak = GetRand(std::numeric_limits<unsigned int>::max());
|
|
b1.reset(nNewTweak);
|
|
b2.reset(nNewTweak);
|
|
nInsertions = 0;
|
|
}
|