lbrycrd/src/bench/crypto_hash.cpp
Martin Ankerl 00721e69f8 Improved microbenchmarking with multiple features.
* inline performance critical code
* Average runtime is specified and used to calculate iterations.
* Console: show median of multiple runs
* plot: show box plot
* filter benchmarks
* specify scaling factor
* ignore src/test and src/bench in command line check script
* number of iterations instead of time
* Replaced runtime in BENCHMARK makro number of iterations.
* Added -? to bench_bitcoin
* Benchmark plotly.js URL, width, height can be customized
* Fixed incorrect precision warning
2017-12-23 11:03:17 +01:00

99 lines
2.4 KiB
C++

// Copyright (c) 2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <iostream>
#include <bench/bench.h>
#include <bloom.h>
#include <hash.h>
#include <random.h>
#include <uint256.h>
#include <utiltime.h>
#include <crypto/ripemd160.h>
#include <crypto/sha1.h>
#include <crypto/sha256.h>
#include <crypto/sha512.h>
/* Number of bytes to hash per iteration */
static const uint64_t BUFFER_SIZE = 1000*1000;
static void RIPEMD160(benchmark::State& state)
{
uint8_t hash[CRIPEMD160::OUTPUT_SIZE];
std::vector<uint8_t> in(BUFFER_SIZE,0);
while (state.KeepRunning())
CRIPEMD160().Write(in.data(), in.size()).Finalize(hash);
}
static void SHA1(benchmark::State& state)
{
uint8_t hash[CSHA1::OUTPUT_SIZE];
std::vector<uint8_t> in(BUFFER_SIZE,0);
while (state.KeepRunning())
CSHA1().Write(in.data(), in.size()).Finalize(hash);
}
static void SHA256(benchmark::State& state)
{
uint8_t hash[CSHA256::OUTPUT_SIZE];
std::vector<uint8_t> in(BUFFER_SIZE,0);
while (state.KeepRunning())
CSHA256().Write(in.data(), in.size()).Finalize(hash);
}
static void SHA256_32b(benchmark::State& state)
{
std::vector<uint8_t> in(32,0);
while (state.KeepRunning()) {
CSHA256()
.Write(in.data(), in.size())
.Finalize(in.data());
}
}
static void SHA512(benchmark::State& state)
{
uint8_t hash[CSHA512::OUTPUT_SIZE];
std::vector<uint8_t> in(BUFFER_SIZE,0);
while (state.KeepRunning())
CSHA512().Write(in.data(), in.size()).Finalize(hash);
}
static void SipHash_32b(benchmark::State& state)
{
uint256 x;
uint64_t k1 = 0;
while (state.KeepRunning()) {
*((uint64_t*)x.begin()) = SipHashUint256(0, ++k1, x);
}
}
static void FastRandom_32bit(benchmark::State& state)
{
FastRandomContext rng(true);
uint32_t x = 0;
while (state.KeepRunning()) {
x += rng.rand32();
}
}
static void FastRandom_1bit(benchmark::State& state)
{
FastRandomContext rng(true);
uint32_t x = 0;
while (state.KeepRunning()) {
x += rng.randbool();
}
}
BENCHMARK(RIPEMD160, 440);
BENCHMARK(SHA1, 570);
BENCHMARK(SHA256, 340);
BENCHMARK(SHA512, 330);
BENCHMARK(SHA256_32b, 4700 * 1000);
BENCHMARK(SipHash_32b, 40 * 1000 * 1000);
BENCHMARK(FastRandom_32bit, 110 * 1000 * 1000);
BENCHMARK(FastRandom_1bit, 440 * 1000 * 1000);