lbrycrd/src/wallet/coinselection.cpp
Wladimir J. van der Laan ff2ad2d569 Add missing newlines to LogPrint debug logging
The linter only checked `LogPrintf`, not `LogPrint`.
Fix the remaining cases.
2018-05-02 15:14:04 +02:00

300 lines
13 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright (c) 2017 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <wallet/coinselection.h>
#include <util.h>
#include <utilmoneystr.h>
// Descending order comparator
struct {
bool operator()(const CInputCoin& a, const CInputCoin& b) const
{
return a.effective_value > b.effective_value;
}
} descending;
/*
* This is the Branch and Bound Coin Selection algorithm designed by Murch. It searches for an input
* set that can pay for the spending target and does not exceed the spending target by more than the
* cost of creating and spending a change output. The algorithm uses a depth-first search on a binary
* tree. In the binary tree, each node corresponds to the inclusion or the omission of a UTXO. UTXOs
* are sorted by their effective values and the trees is explored deterministically per the inclusion
* branch first. At each node, the algorithm checks whether the selection is within the target range.
* While the selection has not reached the target range, more UTXOs are included. When a selection's
* value exceeds the target range, the complete subtree deriving from this selection can be omitted.
* At that point, the last included UTXO is deselected and the corresponding omission branch explored
* instead. The search ends after the complete tree has been searched or after a limited number of tries.
*
* The search continues to search for better solutions after one solution has been found. The best
* solution is chosen by minimizing the waste metric. The waste metric is defined as the cost to
* spend the current inputs at the given fee rate minus the long term expected cost to spend the
* inputs, plus the amount the selection exceeds the spending target:
*
* waste = selectionTotal - target + inputs × (currentFeeRate - longTermFeeRate)
*
* The algorithm uses two additional optimizations. A lookahead keeps track of the total value of
* the unexplored UTXOs. A subtree is not explored if the lookahead indicates that the target range
* cannot be reached. Further, it is unnecessary to test equivalent combinations. This allows us
* to skip testing the inclusion of UTXOs that match the effective value and waste of an omitted
* predecessor.
*
* The Branch and Bound algorithm is described in detail in Murch's Master Thesis:
* https://murch.one/wp-content/uploads/2016/11/erhardt2016coinselection.pdf
*
* @param const std::vector<CInputCoin>& utxo_pool The set of UTXOs that we are choosing from.
* These UTXOs will be sorted in descending order by effective value and the CInputCoins'
* values are their effective values.
* @param const CAmount& target_value This is the value that we want to select. It is the lower
* bound of the range.
* @param const CAmount& cost_of_change This is the cost of creating and spending a change output.
* This plus target_value is the upper bound of the range.
* @param std::set<CInputCoin>& out_set -> This is an output parameter for the set of CInputCoins
* that have been selected.
* @param CAmount& value_ret -> This is an output parameter for the total value of the CInputCoins
* that were selected.
* @param CAmount not_input_fees -> The fees that need to be paid for the outputs and fixed size
* overhead (version, locktime, marker and flag)
*/
static const size_t TOTAL_TRIES = 100000;
bool SelectCoinsBnB(std::vector<CInputCoin>& utxo_pool, const CAmount& target_value, const CAmount& cost_of_change, std::set<CInputCoin>& out_set, CAmount& value_ret, CAmount not_input_fees)
{
out_set.clear();
CAmount curr_value = 0;
std::vector<bool> curr_selection; // select the utxo at this index
curr_selection.reserve(utxo_pool.size());
CAmount actual_target = not_input_fees + target_value;
// Calculate curr_available_value
CAmount curr_available_value = 0;
for (const CInputCoin& utxo : utxo_pool) {
// Assert that this utxo is not negative. It should never be negative, effective value calculation should have removed it
assert(utxo.effective_value > 0);
curr_available_value += utxo.effective_value;
}
if (curr_available_value < actual_target) {
return false;
}
// Sort the utxo_pool
std::sort(utxo_pool.begin(), utxo_pool.end(), descending);
CAmount curr_waste = 0;
std::vector<bool> best_selection;
CAmount best_waste = MAX_MONEY;
// Depth First search loop for choosing the UTXOs
for (size_t i = 0; i < TOTAL_TRIES; ++i) {
// Conditions for starting a backtrack
bool backtrack = false;
if (curr_value + curr_available_value < actual_target || // Cannot possibly reach target with the amount remaining in the curr_available_value.
curr_value > actual_target + cost_of_change || // Selected value is out of range, go back and try other branch
(curr_waste > best_waste && (utxo_pool.at(0).fee - utxo_pool.at(0).long_term_fee) > 0)) { // Don't select things which we know will be more wasteful if the waste is increasing
backtrack = true;
} else if (curr_value >= actual_target) { // Selected value is within range
curr_waste += (curr_value - actual_target); // This is the excess value which is added to the waste for the below comparison
// Adding another UTXO after this check could bring the waste down if the long term fee is higher than the current fee.
// However we are not going to explore that because this optimization for the waste is only done when we have hit our target
// value. Adding any more UTXOs will be just burning the UTXO; it will go entirely to fees. Thus we aren't going to
// explore any more UTXOs to avoid burning money like that.
if (curr_waste <= best_waste) {
best_selection = curr_selection;
best_selection.resize(utxo_pool.size());
best_waste = curr_waste;
}
curr_waste -= (curr_value - actual_target); // Remove the excess value as we will be selecting different coins now
backtrack = true;
}
// Backtracking, moving backwards
if (backtrack) {
// Walk backwards to find the last included UTXO that still needs to have its omission branch traversed.
while (!curr_selection.empty() && !curr_selection.back()) {
curr_selection.pop_back();
curr_available_value += utxo_pool.at(curr_selection.size()).effective_value;
};
if (curr_selection.empty()) { // We have walked back to the first utxo and no branch is untraversed. All solutions searched
break;
}
// Output was included on previous iterations, try excluding now.
curr_selection.back() = false;
CInputCoin& utxo = utxo_pool.at(curr_selection.size() - 1);
curr_value -= utxo.effective_value;
curr_waste -= utxo.fee - utxo.long_term_fee;
} else { // Moving forwards, continuing down this branch
CInputCoin& utxo = utxo_pool.at(curr_selection.size());
// Remove this utxo from the curr_available_value utxo amount
curr_available_value -= utxo.effective_value;
// Avoid searching a branch if the previous UTXO has the same value and same waste and was excluded. Since the ratio of fee to
// long term fee is the same, we only need to check if one of those values match in order to know that the waste is the same.
if (!curr_selection.empty() && !curr_selection.back() &&
utxo.effective_value == utxo_pool.at(curr_selection.size() - 1).effective_value &&
utxo.fee == utxo_pool.at(curr_selection.size() - 1).fee) {
curr_selection.push_back(false);
} else {
// Inclusion branch first (Largest First Exploration)
curr_selection.push_back(true);
curr_value += utxo.effective_value;
curr_waste += utxo.fee - utxo.long_term_fee;
}
}
}
// Check for solution
if (best_selection.empty()) {
return false;
}
// Set output set
value_ret = 0;
for (size_t i = 0; i < best_selection.size(); ++i) {
if (best_selection.at(i)) {
out_set.insert(utxo_pool.at(i));
value_ret += utxo_pool.at(i).txout.nValue;
}
}
return true;
}
static void ApproximateBestSubset(const std::vector<CInputCoin>& vValue, const CAmount& nTotalLower, const CAmount& nTargetValue,
std::vector<char>& vfBest, CAmount& nBest, int iterations = 1000)
{
std::vector<char> vfIncluded;
vfBest.assign(vValue.size(), true);
nBest = nTotalLower;
FastRandomContext insecure_rand;
for (int nRep = 0; nRep < iterations && nBest != nTargetValue; nRep++)
{
vfIncluded.assign(vValue.size(), false);
CAmount nTotal = 0;
bool fReachedTarget = false;
for (int nPass = 0; nPass < 2 && !fReachedTarget; nPass++)
{
for (unsigned int i = 0; i < vValue.size(); i++)
{
//The solver here uses a randomized algorithm,
//the randomness serves no real security purpose but is just
//needed to prevent degenerate behavior and it is important
//that the rng is fast. We do not use a constant random sequence,
//because there may be some privacy improvement by making
//the selection random.
if (nPass == 0 ? insecure_rand.randbool() : !vfIncluded[i])
{
nTotal += vValue[i].txout.nValue;
vfIncluded[i] = true;
if (nTotal >= nTargetValue)
{
fReachedTarget = true;
if (nTotal < nBest)
{
nBest = nTotal;
vfBest = vfIncluded;
}
nTotal -= vValue[i].txout.nValue;
vfIncluded[i] = false;
}
}
}
}
}
}
bool KnapsackSolver(const CAmount& nTargetValue, std::vector<CInputCoin>& vCoins, std::set<CInputCoin>& setCoinsRet, CAmount& nValueRet)
{
setCoinsRet.clear();
nValueRet = 0;
// List of values less than target
boost::optional<CInputCoin> coinLowestLarger;
std::vector<CInputCoin> vValue;
CAmount nTotalLower = 0;
random_shuffle(vCoins.begin(), vCoins.end(), GetRandInt);
for (const CInputCoin &coin : vCoins)
{
if (coin.txout.nValue == nTargetValue)
{
setCoinsRet.insert(coin);
nValueRet += coin.txout.nValue;
return true;
}
else if (coin.txout.nValue < nTargetValue + MIN_CHANGE)
{
vValue.push_back(coin);
nTotalLower += coin.txout.nValue;
}
else if (!coinLowestLarger || coin.txout.nValue < coinLowestLarger->txout.nValue)
{
coinLowestLarger = coin;
}
}
if (nTotalLower == nTargetValue)
{
for (const auto& input : vValue)
{
setCoinsRet.insert(input);
nValueRet += input.txout.nValue;
}
return true;
}
if (nTotalLower < nTargetValue)
{
if (!coinLowestLarger)
return false;
setCoinsRet.insert(coinLowestLarger.get());
nValueRet += coinLowestLarger->txout.nValue;
return true;
}
// Solve subset sum by stochastic approximation
std::sort(vValue.begin(), vValue.end(), descending);
std::vector<char> vfBest;
CAmount nBest;
ApproximateBestSubset(vValue, nTotalLower, nTargetValue, vfBest, nBest);
if (nBest != nTargetValue && nTotalLower >= nTargetValue + MIN_CHANGE)
ApproximateBestSubset(vValue, nTotalLower, nTargetValue + MIN_CHANGE, vfBest, nBest);
// If we have a bigger coin and (either the stochastic approximation didn't find a good solution,
// or the next bigger coin is closer), return the bigger coin
if (coinLowestLarger &&
((nBest != nTargetValue && nBest < nTargetValue + MIN_CHANGE) || coinLowestLarger->txout.nValue <= nBest))
{
setCoinsRet.insert(coinLowestLarger.get());
nValueRet += coinLowestLarger->txout.nValue;
}
else {
for (unsigned int i = 0; i < vValue.size(); i++)
if (vfBest[i])
{
setCoinsRet.insert(vValue[i]);
nValueRet += vValue[i].txout.nValue;
}
if (LogAcceptCategory(BCLog::SELECTCOINS)) {
LogPrint(BCLog::SELECTCOINS, "SelectCoins() best subset: "); /* Continued */
for (unsigned int i = 0; i < vValue.size(); i++) {
if (vfBest[i]) {
LogPrint(BCLog::SELECTCOINS, "%s ", FormatMoney(vValue[i].txout.nValue)); /* Continued */
}
}
LogPrint(BCLog::SELECTCOINS, "total %s\n", FormatMoney(nBest));
}
}
return true;
}