385 lines
12 KiB
C++
385 lines
12 KiB
C++
// Copyright (c) 2016 The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#include "support/lockedpool.h"
|
|
#include "support/cleanse.h"
|
|
|
|
#if defined(HAVE_CONFIG_H)
|
|
#include "config/bitcoin-config.h"
|
|
#endif
|
|
|
|
#ifdef WIN32
|
|
#ifdef _WIN32_WINNT
|
|
#undef _WIN32_WINNT
|
|
#endif
|
|
#define _WIN32_WINNT 0x0501
|
|
#define WIN32_LEAN_AND_MEAN 1
|
|
#ifndef NOMINMAX
|
|
#define NOMINMAX
|
|
#endif
|
|
#include <windows.h>
|
|
#else
|
|
#include <sys/mman.h> // for mmap
|
|
#include <sys/resource.h> // for getrlimit
|
|
#include <limits.h> // for PAGESIZE
|
|
#include <unistd.h> // for sysconf
|
|
#endif
|
|
|
|
#include <algorithm>
|
|
|
|
LockedPoolManager* LockedPoolManager::_instance = NULL;
|
|
std::once_flag LockedPoolManager::init_flag;
|
|
|
|
/*******************************************************************************/
|
|
// Utilities
|
|
//
|
|
/** Align up to power of 2 */
|
|
static inline size_t align_up(size_t x, size_t align)
|
|
{
|
|
return (x + align - 1) & ~(align - 1);
|
|
}
|
|
|
|
/*******************************************************************************/
|
|
// Implementation: Arena
|
|
|
|
Arena::Arena(void *base_in, size_t size_in, size_t alignment_in):
|
|
base(static_cast<char*>(base_in)), end(static_cast<char*>(base_in) + size_in), alignment(alignment_in)
|
|
{
|
|
// Start with one free chunk that covers the entire arena
|
|
chunks_free.emplace(base, size_in);
|
|
}
|
|
|
|
Arena::~Arena()
|
|
{
|
|
}
|
|
|
|
void* Arena::alloc(size_t size)
|
|
{
|
|
// Round to next multiple of alignment
|
|
size = align_up(size, alignment);
|
|
|
|
// Don't handle zero-sized chunks
|
|
if (size == 0)
|
|
return nullptr;
|
|
|
|
// Pick a large enough free-chunk
|
|
auto it = std::find_if(chunks_free.begin(), chunks_free.end(),
|
|
[=](const std::map<char*, size_t>::value_type& chunk){ return chunk.second >= size; });
|
|
if (it == chunks_free.end())
|
|
return nullptr;
|
|
|
|
// Create the used-chunk, taking its space from the end of the free-chunk
|
|
auto alloced = chunks_used.emplace(it->first + it->second - size, size).first;
|
|
if (!(it->second -= size))
|
|
chunks_free.erase(it);
|
|
return reinterpret_cast<void*>(alloced->first);
|
|
}
|
|
|
|
/* extend the Iterator if other begins at its end */
|
|
template <class Iterator, class Pair> bool extend(Iterator it, const Pair& other) {
|
|
if (it->first + it->second == other.first) {
|
|
it->second += other.second;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Arena::free(void *ptr)
|
|
{
|
|
// Freeing the NULL pointer is OK.
|
|
if (ptr == nullptr) {
|
|
return;
|
|
}
|
|
|
|
// Remove chunk from used map
|
|
auto i = chunks_used.find(static_cast<char*>(ptr));
|
|
if (i == chunks_used.end()) {
|
|
throw std::runtime_error("Arena: invalid or double free");
|
|
}
|
|
auto freed = *i;
|
|
chunks_used.erase(i);
|
|
|
|
// Add space to free map, coalescing contiguous chunks
|
|
auto next = chunks_free.upper_bound(freed.first);
|
|
auto prev = (next == chunks_free.begin()) ? chunks_free.end() : std::prev(next);
|
|
if (prev == chunks_free.end() || !extend(prev, freed))
|
|
prev = chunks_free.emplace_hint(next, freed);
|
|
if (next != chunks_free.end() && extend(prev, *next))
|
|
chunks_free.erase(next);
|
|
}
|
|
|
|
Arena::Stats Arena::stats() const
|
|
{
|
|
Arena::Stats r{ 0, 0, 0, chunks_used.size(), chunks_free.size() };
|
|
for (const auto& chunk: chunks_used)
|
|
r.used += chunk.second;
|
|
for (const auto& chunk: chunks_free)
|
|
r.free += chunk.second;
|
|
r.total = r.used + r.free;
|
|
return r;
|
|
}
|
|
|
|
#ifdef ARENA_DEBUG
|
|
void printchunk(char* base, size_t sz, bool used) {
|
|
std::cout <<
|
|
"0x" << std::hex << std::setw(16) << std::setfill('0') << base <<
|
|
" 0x" << std::hex << std::setw(16) << std::setfill('0') << sz <<
|
|
" 0x" << used << std::endl;
|
|
}
|
|
void Arena::walk() const
|
|
{
|
|
for (const auto& chunk: chunks_used)
|
|
printchunk(chunk.first, chunk.second, true);
|
|
std::cout << std::endl;
|
|
for (const auto& chunk: chunks_free)
|
|
printchunk(chunk.first, chunk.second, false);
|
|
std::cout << std::endl;
|
|
}
|
|
#endif
|
|
|
|
/*******************************************************************************/
|
|
// Implementation: Win32LockedPageAllocator
|
|
|
|
#ifdef WIN32
|
|
/** LockedPageAllocator specialized for Windows.
|
|
*/
|
|
class Win32LockedPageAllocator: public LockedPageAllocator
|
|
{
|
|
public:
|
|
Win32LockedPageAllocator();
|
|
void* AllocateLocked(size_t len, bool *lockingSuccess) override;
|
|
void FreeLocked(void* addr, size_t len) override;
|
|
size_t GetLimit() override;
|
|
private:
|
|
size_t page_size;
|
|
};
|
|
|
|
Win32LockedPageAllocator::Win32LockedPageAllocator()
|
|
{
|
|
// Determine system page size in bytes
|
|
SYSTEM_INFO sSysInfo;
|
|
GetSystemInfo(&sSysInfo);
|
|
page_size = sSysInfo.dwPageSize;
|
|
}
|
|
void *Win32LockedPageAllocator::AllocateLocked(size_t len, bool *lockingSuccess)
|
|
{
|
|
len = align_up(len, page_size);
|
|
void *addr = VirtualAlloc(nullptr, len, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
|
|
if (addr) {
|
|
// VirtualLock is used to attempt to keep keying material out of swap. Note
|
|
// that it does not provide this as a guarantee, but, in practice, memory
|
|
// that has been VirtualLock'd almost never gets written to the pagefile
|
|
// except in rare circumstances where memory is extremely low.
|
|
*lockingSuccess = VirtualLock(const_cast<void*>(addr), len) != 0;
|
|
}
|
|
return addr;
|
|
}
|
|
void Win32LockedPageAllocator::FreeLocked(void* addr, size_t len)
|
|
{
|
|
len = align_up(len, page_size);
|
|
memory_cleanse(addr, len);
|
|
VirtualUnlock(const_cast<void*>(addr), len);
|
|
}
|
|
|
|
size_t Win32LockedPageAllocator::GetLimit()
|
|
{
|
|
// TODO is there a limit on windows, how to get it?
|
|
return std::numeric_limits<size_t>::max();
|
|
}
|
|
#endif
|
|
|
|
/*******************************************************************************/
|
|
// Implementation: PosixLockedPageAllocator
|
|
|
|
#ifndef WIN32
|
|
/** LockedPageAllocator specialized for OSes that don't try to be
|
|
* special snowflakes.
|
|
*/
|
|
class PosixLockedPageAllocator: public LockedPageAllocator
|
|
{
|
|
public:
|
|
PosixLockedPageAllocator();
|
|
void* AllocateLocked(size_t len, bool *lockingSuccess) override;
|
|
void FreeLocked(void* addr, size_t len) override;
|
|
size_t GetLimit() override;
|
|
private:
|
|
size_t page_size;
|
|
};
|
|
|
|
PosixLockedPageAllocator::PosixLockedPageAllocator()
|
|
{
|
|
// Determine system page size in bytes
|
|
#if defined(PAGESIZE) // defined in limits.h
|
|
page_size = PAGESIZE;
|
|
#else // assume some POSIX OS
|
|
page_size = sysconf(_SC_PAGESIZE);
|
|
#endif
|
|
}
|
|
|
|
// Some systems (at least OS X) do not define MAP_ANONYMOUS yet and define
|
|
// MAP_ANON which is deprecated
|
|
#ifndef MAP_ANONYMOUS
|
|
#define MAP_ANONYMOUS MAP_ANON
|
|
#endif
|
|
|
|
void *PosixLockedPageAllocator::AllocateLocked(size_t len, bool *lockingSuccess)
|
|
{
|
|
void *addr;
|
|
len = align_up(len, page_size);
|
|
addr = mmap(nullptr, len, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
|
|
if (addr) {
|
|
*lockingSuccess = mlock(addr, len) == 0;
|
|
}
|
|
return addr;
|
|
}
|
|
void PosixLockedPageAllocator::FreeLocked(void* addr, size_t len)
|
|
{
|
|
len = align_up(len, page_size);
|
|
memory_cleanse(addr, len);
|
|
munlock(addr, len);
|
|
munmap(addr, len);
|
|
}
|
|
size_t PosixLockedPageAllocator::GetLimit()
|
|
{
|
|
#ifdef RLIMIT_MEMLOCK
|
|
struct rlimit rlim;
|
|
if (getrlimit(RLIMIT_MEMLOCK, &rlim) == 0) {
|
|
if (rlim.rlim_cur != RLIM_INFINITY) {
|
|
return rlim.rlim_cur;
|
|
}
|
|
}
|
|
#endif
|
|
return std::numeric_limits<size_t>::max();
|
|
}
|
|
#endif
|
|
|
|
/*******************************************************************************/
|
|
// Implementation: LockedPool
|
|
|
|
LockedPool::LockedPool(std::unique_ptr<LockedPageAllocator> allocator_in, LockingFailed_Callback lf_cb_in):
|
|
allocator(std::move(allocator_in)), lf_cb(lf_cb_in), cumulative_bytes_locked(0)
|
|
{
|
|
}
|
|
|
|
LockedPool::~LockedPool()
|
|
{
|
|
}
|
|
void* LockedPool::alloc(size_t size)
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutex);
|
|
|
|
// Don't handle impossible sizes
|
|
if (size == 0 || size > ARENA_SIZE)
|
|
return nullptr;
|
|
|
|
// Try allocating from each current arena
|
|
for (auto &arena: arenas) {
|
|
void *addr = arena.alloc(size);
|
|
if (addr) {
|
|
return addr;
|
|
}
|
|
}
|
|
// If that fails, create a new one
|
|
if (new_arena(ARENA_SIZE, ARENA_ALIGN)) {
|
|
return arenas.back().alloc(size);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void LockedPool::free(void *ptr)
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutex);
|
|
// TODO we can do better than this linear search by keeping a map of arena
|
|
// extents to arena, and looking up the address.
|
|
for (auto &arena: arenas) {
|
|
if (arena.addressInArena(ptr)) {
|
|
arena.free(ptr);
|
|
return;
|
|
}
|
|
}
|
|
throw std::runtime_error("LockedPool: invalid address not pointing to any arena");
|
|
}
|
|
|
|
LockedPool::Stats LockedPool::stats() const
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutex);
|
|
LockedPool::Stats r{0, 0, 0, cumulative_bytes_locked, 0, 0};
|
|
for (const auto &arena: arenas) {
|
|
Arena::Stats i = arena.stats();
|
|
r.used += i.used;
|
|
r.free += i.free;
|
|
r.total += i.total;
|
|
r.chunks_used += i.chunks_used;
|
|
r.chunks_free += i.chunks_free;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
bool LockedPool::new_arena(size_t size, size_t align)
|
|
{
|
|
bool locked;
|
|
// If this is the first arena, handle this specially: Cap the upper size
|
|
// by the process limit. This makes sure that the first arena will at least
|
|
// be locked. An exception to this is if the process limit is 0:
|
|
// in this case no memory can be locked at all so we'll skip past this logic.
|
|
if (arenas.empty()) {
|
|
size_t limit = allocator->GetLimit();
|
|
if (limit > 0) {
|
|
size = std::min(size, limit);
|
|
}
|
|
}
|
|
void *addr = allocator->AllocateLocked(size, &locked);
|
|
if (!addr) {
|
|
return false;
|
|
}
|
|
if (locked) {
|
|
cumulative_bytes_locked += size;
|
|
} else if (lf_cb) { // Call the locking-failed callback if locking failed
|
|
if (!lf_cb()) { // If the callback returns false, free the memory and fail, otherwise consider the user warned and proceed.
|
|
allocator->FreeLocked(addr, size);
|
|
return false;
|
|
}
|
|
}
|
|
arenas.emplace_back(allocator.get(), addr, size, align);
|
|
return true;
|
|
}
|
|
|
|
LockedPool::LockedPageArena::LockedPageArena(LockedPageAllocator *allocator_in, void *base_in, size_t size_in, size_t align_in):
|
|
Arena(base_in, size_in, align_in), base(base_in), size(size_in), allocator(allocator_in)
|
|
{
|
|
}
|
|
LockedPool::LockedPageArena::~LockedPageArena()
|
|
{
|
|
allocator->FreeLocked(base, size);
|
|
}
|
|
|
|
/*******************************************************************************/
|
|
// Implementation: LockedPoolManager
|
|
//
|
|
LockedPoolManager::LockedPoolManager(std::unique_ptr<LockedPageAllocator> allocator_in):
|
|
LockedPool(std::move(allocator_in), &LockedPoolManager::LockingFailed)
|
|
{
|
|
}
|
|
|
|
bool LockedPoolManager::LockingFailed()
|
|
{
|
|
// TODO: log something but how? without including util.h
|
|
return true;
|
|
}
|
|
|
|
void LockedPoolManager::CreateInstance()
|
|
{
|
|
// Using a local static instance guarantees that the object is initialized
|
|
// when it's first needed and also deinitialized after all objects that use
|
|
// it are done with it. I can think of one unlikely scenario where we may
|
|
// have a static deinitialization order/problem, but the check in
|
|
// LockedPoolManagerBase's destructor helps us detect if that ever happens.
|
|
#ifdef WIN32
|
|
std::unique_ptr<LockedPageAllocator> allocator(new Win32LockedPageAllocator());
|
|
#else
|
|
std::unique_ptr<LockedPageAllocator> allocator(new PosixLockedPageAllocator());
|
|
#endif
|
|
static LockedPoolManager instance(std::move(allocator));
|
|
LockedPoolManager::_instance = &instance;
|
|
}
|