lbrycrd/qa/rpc-tests/maxblocksinflight.py
Suhas Daftuar 6c1d1ba6fc Python p2p testing framework
mininode.py provides a framework for connecting to a bitcoin node over the p2p
network. NodeConn is the main object that manages connectivity to a node and
provides callbacks; the interface for those callbacks is defined by NodeConnCB.
Defined also are all data structures from bitcoin core that pass on the network
(CBlock, CTransaction, etc), along with de-/serialization functions.

maxblocksinflight.py is an example test using this framework that tests whether
a node is limiting the maximum number of in-flight block requests.

This also adds support to util.py for specifying the binary to use when
starting nodes (for tests that compare the behavior of different bitcoind
versions), and adds maxblocksinflight.py to the pull tester.
2015-04-28 12:38:29 -04:00

99 lines
3.8 KiB
Python
Executable file

#!/usr/bin/env python2
#
# Distributed under the MIT/X11 software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
#
from mininode import *
from test_framework import BitcoinTestFramework
from util import *
import logging
'''
In this test we connect to one node over p2p, send it numerous inv's, and
compare the resulting number of getdata requests to a max allowed value. We
test for exceeding 128 blocks in flight, which was the limit an 0.9 client will
reach. [0.10 clients shouldn't request more than 16 from a single peer.]
'''
MAX_REQUESTS = 128
class TestManager(NodeConnCB):
# set up NodeConnCB callbacks, overriding base class
def on_getdata(self, conn, message):
self.log.debug("got getdata %s" % repr(message))
# Log the requests
for inv in message.inv:
if inv.hash not in self.blockReqCounts:
self.blockReqCounts[inv.hash] = 0
self.blockReqCounts[inv.hash] += 1
def on_close(self, conn):
if not self.disconnectOkay:
raise EarlyDisconnectError(0)
def __init__(self):
NodeConnCB.__init__(self)
self.log = logging.getLogger("BlockRelayTest")
self.create_callback_map()
def add_new_connection(self, connection):
self.connection = connection
self.blockReqCounts = {}
self.disconnectOkay = False
def run(self):
try:
fail = False
self.connection.rpc.generate(1) # Leave IBD
numBlocksToGenerate = [ 8, 16, 128, 1024 ]
for count in range(len(numBlocksToGenerate)):
current_invs = []
for i in range(numBlocksToGenerate[count]):
current_invs.append(CInv(2, random.randrange(0, 1<<256)))
if len(current_invs) >= 50000:
self.connection.send_message(msg_inv(current_invs))
current_invs = []
if len(current_invs) > 0:
self.connection.send_message(msg_inv(current_invs))
# Wait and see how many blocks were requested
time.sleep(2)
total_requests = 0
for key in self.blockReqCounts:
total_requests += self.blockReqCounts[key]
if self.blockReqCounts[key] > 1:
raise AssertionError("Error, test failed: block %064x requested more than once" % key)
if total_requests > MAX_REQUESTS:
raise AssertionError("Error, too many blocks (%d) requested" % total_requests)
print "Round %d: success (total requests: %d)" % (count, total_requests)
except AssertionError as e:
print "TEST FAILED: ", e.args
self.disconnectOkay = True
self.connection.disconnect_node()
class MaxBlocksInFlightTest(BitcoinTestFramework):
def add_options(self, parser):
parser.add_option("--testbinary", dest="testbinary", default="bitcoind",
help="Binary to test max block requests behavior")
def setup_chain(self):
print "Initializing test directory "+self.options.tmpdir
initialize_chain_clean(self.options.tmpdir, 1)
def setup_network(self):
self.nodes = start_nodes(1, self.options.tmpdir,
extra_args=[['-debug', '-whitelist=127.0.0.1']],
binary=[self.options.testbinary])
def run_test(self):
test = TestManager()
test.add_new_connection(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], test))
NetworkThread().start() # Start up network handling in another thread
test.run()
if __name__ == '__main__':
MaxBlocksInFlightTest().main()