lbrycrd/src/netbase.cpp
2015-12-13 18:08:39 +01:00

1466 lines
43 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2015 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifdef HAVE_CONFIG_H
#include "config/bitcoin-config.h"
#endif
#include "netbase.h"
#include "hash.h"
#include "sync.h"
#include "uint256.h"
#include "random.h"
#include "util.h"
#include "utilstrencodings.h"
#ifdef HAVE_GETADDRINFO_A
#include <netdb.h>
#endif
#ifndef WIN32
#if HAVE_INET_PTON
#include <arpa/inet.h>
#endif
#include <fcntl.h>
#endif
#include <boost/algorithm/string/case_conv.hpp> // for to_lower()
#include <boost/algorithm/string/predicate.hpp> // for startswith() and endswith()
#include <boost/thread.hpp>
#if !defined(HAVE_MSG_NOSIGNAL) && !defined(MSG_NOSIGNAL)
#define MSG_NOSIGNAL 0
#endif
// Settings
static proxyType proxyInfo[NET_MAX];
static proxyType nameProxy;
static CCriticalSection cs_proxyInfos;
int nConnectTimeout = DEFAULT_CONNECT_TIMEOUT;
bool fNameLookup = DEFAULT_NAME_LOOKUP;
static const unsigned char pchIPv4[12] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff };
// Need ample time for negotiation for very slow proxies such as Tor (milliseconds)
static const int SOCKS5_RECV_TIMEOUT = 20 * 1000;
enum Network ParseNetwork(std::string net) {
boost::to_lower(net);
if (net == "ipv4") return NET_IPV4;
if (net == "ipv6") return NET_IPV6;
if (net == "tor" || net == "onion") return NET_TOR;
return NET_UNROUTABLE;
}
std::string GetNetworkName(enum Network net) {
switch(net)
{
case NET_IPV4: return "ipv4";
case NET_IPV6: return "ipv6";
case NET_TOR: return "onion";
default: return "";
}
}
void SplitHostPort(std::string in, int &portOut, std::string &hostOut) {
size_t colon = in.find_last_of(':');
// if a : is found, and it either follows a [...], or no other : is in the string, treat it as port separator
bool fHaveColon = colon != in.npos;
bool fBracketed = fHaveColon && (in[0]=='[' && in[colon-1]==']'); // if there is a colon, and in[0]=='[', colon is not 0, so in[colon-1] is safe
bool fMultiColon = fHaveColon && (in.find_last_of(':',colon-1) != in.npos);
if (fHaveColon && (colon==0 || fBracketed || !fMultiColon)) {
int32_t n;
if (ParseInt32(in.substr(colon + 1), &n) && n > 0 && n < 0x10000) {
in = in.substr(0, colon);
portOut = n;
}
}
if (in.size()>0 && in[0] == '[' && in[in.size()-1] == ']')
hostOut = in.substr(1, in.size()-2);
else
hostOut = in;
}
bool static LookupIntern(const char *pszName, std::vector<CNetAddr>& vIP, unsigned int nMaxSolutions, bool fAllowLookup)
{
vIP.clear();
{
CNetAddr addr;
if (addr.SetSpecial(std::string(pszName))) {
vIP.push_back(addr);
return true;
}
}
#ifdef HAVE_GETADDRINFO_A
struct in_addr ipv4_addr;
#ifdef HAVE_INET_PTON
if (inet_pton(AF_INET, pszName, &ipv4_addr) > 0) {
vIP.push_back(CNetAddr(ipv4_addr));
return true;
}
struct in6_addr ipv6_addr;
if (inet_pton(AF_INET6, pszName, &ipv6_addr) > 0) {
vIP.push_back(CNetAddr(ipv6_addr));
return true;
}
#else
ipv4_addr.s_addr = inet_addr(pszName);
if (ipv4_addr.s_addr != INADDR_NONE) {
vIP.push_back(CNetAddr(ipv4_addr));
return true;
}
#endif
#endif
struct addrinfo aiHint;
memset(&aiHint, 0, sizeof(struct addrinfo));
aiHint.ai_socktype = SOCK_STREAM;
aiHint.ai_protocol = IPPROTO_TCP;
aiHint.ai_family = AF_UNSPEC;
#ifdef WIN32
aiHint.ai_flags = fAllowLookup ? 0 : AI_NUMERICHOST;
#else
aiHint.ai_flags = fAllowLookup ? AI_ADDRCONFIG : AI_NUMERICHOST;
#endif
struct addrinfo *aiRes = NULL;
#ifdef HAVE_GETADDRINFO_A
struct gaicb gcb, *query = &gcb;
memset(query, 0, sizeof(struct gaicb));
gcb.ar_name = pszName;
gcb.ar_request = &aiHint;
int nErr = getaddrinfo_a(GAI_NOWAIT, &query, 1, NULL);
if (nErr)
return false;
do {
// Should set the timeout limit to a resonable value to avoid
// generating unnecessary checking call during the polling loop,
// while it can still response to stop request quick enough.
// 2 seconds looks fine in our situation.
struct timespec ts = { 2, 0 };
gai_suspend(&query, 1, &ts);
boost::this_thread::interruption_point();
nErr = gai_error(query);
if (0 == nErr)
aiRes = query->ar_result;
} while (nErr == EAI_INPROGRESS);
#else
int nErr = getaddrinfo(pszName, NULL, &aiHint, &aiRes);
#endif
if (nErr)
return false;
struct addrinfo *aiTrav = aiRes;
while (aiTrav != NULL && (nMaxSolutions == 0 || vIP.size() < nMaxSolutions))
{
if (aiTrav->ai_family == AF_INET)
{
assert(aiTrav->ai_addrlen >= sizeof(sockaddr_in));
vIP.push_back(CNetAddr(((struct sockaddr_in*)(aiTrav->ai_addr))->sin_addr));
}
if (aiTrav->ai_family == AF_INET6)
{
assert(aiTrav->ai_addrlen >= sizeof(sockaddr_in6));
vIP.push_back(CNetAddr(((struct sockaddr_in6*)(aiTrav->ai_addr))->sin6_addr));
}
aiTrav = aiTrav->ai_next;
}
freeaddrinfo(aiRes);
return (vIP.size() > 0);
}
bool LookupHost(const char *pszName, std::vector<CNetAddr>& vIP, unsigned int nMaxSolutions, bool fAllowLookup)
{
std::string strHost(pszName);
if (strHost.empty())
return false;
if (boost::algorithm::starts_with(strHost, "[") && boost::algorithm::ends_with(strHost, "]"))
{
strHost = strHost.substr(1, strHost.size() - 2);
}
return LookupIntern(strHost.c_str(), vIP, nMaxSolutions, fAllowLookup);
}
bool Lookup(const char *pszName, std::vector<CService>& vAddr, int portDefault, bool fAllowLookup, unsigned int nMaxSolutions)
{
if (pszName[0] == 0)
return false;
int port = portDefault;
std::string hostname = "";
SplitHostPort(std::string(pszName), port, hostname);
std::vector<CNetAddr> vIP;
bool fRet = LookupIntern(hostname.c_str(), vIP, nMaxSolutions, fAllowLookup);
if (!fRet)
return false;
vAddr.resize(vIP.size());
for (unsigned int i = 0; i < vIP.size(); i++)
vAddr[i] = CService(vIP[i], port);
return true;
}
bool Lookup(const char *pszName, CService& addr, int portDefault, bool fAllowLookup)
{
std::vector<CService> vService;
bool fRet = Lookup(pszName, vService, portDefault, fAllowLookup, 1);
if (!fRet)
return false;
addr = vService[0];
return true;
}
bool LookupNumeric(const char *pszName, CService& addr, int portDefault)
{
return Lookup(pszName, addr, portDefault, false);
}
struct timeval MillisToTimeval(int64_t nTimeout)
{
struct timeval timeout;
timeout.tv_sec = nTimeout / 1000;
timeout.tv_usec = (nTimeout % 1000) * 1000;
return timeout;
}
/**
* Read bytes from socket. This will either read the full number of bytes requested
* or return False on error or timeout.
* This function can be interrupted by boost thread interrupt.
*
* @param data Buffer to receive into
* @param len Length of data to receive
* @param timeout Timeout in milliseconds for receive operation
*
* @note This function requires that hSocket is in non-blocking mode.
*/
bool static InterruptibleRecv(char* data, size_t len, int timeout, SOCKET& hSocket)
{
int64_t curTime = GetTimeMillis();
int64_t endTime = curTime + timeout;
// Maximum time to wait in one select call. It will take up until this time (in millis)
// to break off in case of an interruption.
const int64_t maxWait = 1000;
while (len > 0 && curTime < endTime) {
ssize_t ret = recv(hSocket, data, len, 0); // Optimistically try the recv first
if (ret > 0) {
len -= ret;
data += ret;
} else if (ret == 0) { // Unexpected disconnection
return false;
} else { // Other error or blocking
int nErr = WSAGetLastError();
if (nErr == WSAEINPROGRESS || nErr == WSAEWOULDBLOCK || nErr == WSAEINVAL) {
if (!IsSelectableSocket(hSocket)) {
return false;
}
struct timeval tval = MillisToTimeval(std::min(endTime - curTime, maxWait));
fd_set fdset;
FD_ZERO(&fdset);
FD_SET(hSocket, &fdset);
int nRet = select(hSocket + 1, &fdset, NULL, NULL, &tval);
if (nRet == SOCKET_ERROR) {
return false;
}
} else {
return false;
}
}
boost::this_thread::interruption_point();
curTime = GetTimeMillis();
}
return len == 0;
}
struct ProxyCredentials
{
std::string username;
std::string password;
};
/** Connect using SOCKS5 (as described in RFC1928) */
static bool Socks5(const std::string& strDest, int port, const ProxyCredentials *auth, SOCKET& hSocket)
{
LogPrintf("SOCKS5 connecting %s\n", strDest);
if (strDest.size() > 255) {
CloseSocket(hSocket);
return error("Hostname too long");
}
// Accepted authentication methods
std::vector<uint8_t> vSocks5Init;
vSocks5Init.push_back(0x05);
if (auth) {
vSocks5Init.push_back(0x02); // # METHODS
vSocks5Init.push_back(0x00); // X'00' NO AUTHENTICATION REQUIRED
vSocks5Init.push_back(0x02); // X'02' USERNAME/PASSWORD (RFC1929)
} else {
vSocks5Init.push_back(0x01); // # METHODS
vSocks5Init.push_back(0x00); // X'00' NO AUTHENTICATION REQUIRED
}
ssize_t ret = send(hSocket, (const char*)begin_ptr(vSocks5Init), vSocks5Init.size(), MSG_NOSIGNAL);
if (ret != (ssize_t)vSocks5Init.size()) {
CloseSocket(hSocket);
return error("Error sending to proxy");
}
char pchRet1[2];
if (!InterruptibleRecv(pchRet1, 2, SOCKS5_RECV_TIMEOUT, hSocket)) {
CloseSocket(hSocket);
return error("Error reading proxy response");
}
if (pchRet1[0] != 0x05) {
CloseSocket(hSocket);
return error("Proxy failed to initialize");
}
if (pchRet1[1] == 0x02 && auth) {
// Perform username/password authentication (as described in RFC1929)
std::vector<uint8_t> vAuth;
vAuth.push_back(0x01);
if (auth->username.size() > 255 || auth->password.size() > 255)
return error("Proxy username or password too long");
vAuth.push_back(auth->username.size());
vAuth.insert(vAuth.end(), auth->username.begin(), auth->username.end());
vAuth.push_back(auth->password.size());
vAuth.insert(vAuth.end(), auth->password.begin(), auth->password.end());
ret = send(hSocket, (const char*)begin_ptr(vAuth), vAuth.size(), MSG_NOSIGNAL);
if (ret != (ssize_t)vAuth.size()) {
CloseSocket(hSocket);
return error("Error sending authentication to proxy");
}
LogPrint("proxy", "SOCKS5 sending proxy authentication %s:%s\n", auth->username, auth->password);
char pchRetA[2];
if (!InterruptibleRecv(pchRetA, 2, SOCKS5_RECV_TIMEOUT, hSocket)) {
CloseSocket(hSocket);
return error("Error reading proxy authentication response");
}
if (pchRetA[0] != 0x01 || pchRetA[1] != 0x00) {
CloseSocket(hSocket);
return error("Proxy authentication unsuccessful");
}
} else if (pchRet1[1] == 0x00) {
// Perform no authentication
} else {
CloseSocket(hSocket);
return error("Proxy requested wrong authentication method %02x", pchRet1[1]);
}
std::vector<uint8_t> vSocks5;
vSocks5.push_back(0x05); // VER protocol version
vSocks5.push_back(0x01); // CMD CONNECT
vSocks5.push_back(0x00); // RSV Reserved
vSocks5.push_back(0x03); // ATYP DOMAINNAME
vSocks5.push_back(strDest.size()); // Length<=255 is checked at beginning of function
vSocks5.insert(vSocks5.end(), strDest.begin(), strDest.end());
vSocks5.push_back((port >> 8) & 0xFF);
vSocks5.push_back((port >> 0) & 0xFF);
ret = send(hSocket, (const char*)begin_ptr(vSocks5), vSocks5.size(), MSG_NOSIGNAL);
if (ret != (ssize_t)vSocks5.size()) {
CloseSocket(hSocket);
return error("Error sending to proxy");
}
char pchRet2[4];
if (!InterruptibleRecv(pchRet2, 4, SOCKS5_RECV_TIMEOUT, hSocket)) {
CloseSocket(hSocket);
return error("Error reading proxy response");
}
if (pchRet2[0] != 0x05) {
CloseSocket(hSocket);
return error("Proxy failed to accept request");
}
if (pchRet2[1] != 0x00) {
CloseSocket(hSocket);
switch (pchRet2[1])
{
case 0x01: return error("Proxy error: general failure");
case 0x02: return error("Proxy error: connection not allowed");
case 0x03: return error("Proxy error: network unreachable");
case 0x04: return error("Proxy error: host unreachable");
case 0x05: return error("Proxy error: connection refused");
case 0x06: return error("Proxy error: TTL expired");
case 0x07: return error("Proxy error: protocol error");
case 0x08: return error("Proxy error: address type not supported");
default: return error("Proxy error: unknown");
}
}
if (pchRet2[2] != 0x00) {
CloseSocket(hSocket);
return error("Error: malformed proxy response");
}
char pchRet3[256];
switch (pchRet2[3])
{
case 0x01: ret = InterruptibleRecv(pchRet3, 4, SOCKS5_RECV_TIMEOUT, hSocket); break;
case 0x04: ret = InterruptibleRecv(pchRet3, 16, SOCKS5_RECV_TIMEOUT, hSocket); break;
case 0x03:
{
ret = InterruptibleRecv(pchRet3, 1, SOCKS5_RECV_TIMEOUT, hSocket);
if (!ret) {
CloseSocket(hSocket);
return error("Error reading from proxy");
}
int nRecv = pchRet3[0];
ret = InterruptibleRecv(pchRet3, nRecv, SOCKS5_RECV_TIMEOUT, hSocket);
break;
}
default: CloseSocket(hSocket); return error("Error: malformed proxy response");
}
if (!ret) {
CloseSocket(hSocket);
return error("Error reading from proxy");
}
if (!InterruptibleRecv(pchRet3, 2, SOCKS5_RECV_TIMEOUT, hSocket)) {
CloseSocket(hSocket);
return error("Error reading from proxy");
}
LogPrintf("SOCKS5 connected %s\n", strDest);
return true;
}
bool static ConnectSocketDirectly(const CService &addrConnect, SOCKET& hSocketRet, int nTimeout)
{
hSocketRet = INVALID_SOCKET;
struct sockaddr_storage sockaddr;
socklen_t len = sizeof(sockaddr);
if (!addrConnect.GetSockAddr((struct sockaddr*)&sockaddr, &len)) {
LogPrintf("Cannot connect to %s: unsupported network\n", addrConnect.ToString());
return false;
}
SOCKET hSocket = socket(((struct sockaddr*)&sockaddr)->sa_family, SOCK_STREAM, IPPROTO_TCP);
if (hSocket == INVALID_SOCKET)
return false;
int set = 1;
#ifdef SO_NOSIGPIPE
// Different way of disabling SIGPIPE on BSD
setsockopt(hSocket, SOL_SOCKET, SO_NOSIGPIPE, (void*)&set, sizeof(int));
#endif
//Disable Nagle's algorithm
#ifdef WIN32
setsockopt(hSocket, IPPROTO_TCP, TCP_NODELAY, (const char*)&set, sizeof(int));
#else
setsockopt(hSocket, IPPROTO_TCP, TCP_NODELAY, (void*)&set, sizeof(int));
#endif
// Set to non-blocking
if (!SetSocketNonBlocking(hSocket, true))
return error("ConnectSocketDirectly: Setting socket to non-blocking failed, error %s\n", NetworkErrorString(WSAGetLastError()));
if (connect(hSocket, (struct sockaddr*)&sockaddr, len) == SOCKET_ERROR)
{
int nErr = WSAGetLastError();
// WSAEINVAL is here because some legacy version of winsock uses it
if (nErr == WSAEINPROGRESS || nErr == WSAEWOULDBLOCK || nErr == WSAEINVAL)
{
struct timeval timeout = MillisToTimeval(nTimeout);
fd_set fdset;
FD_ZERO(&fdset);
FD_SET(hSocket, &fdset);
int nRet = select(hSocket + 1, NULL, &fdset, NULL, &timeout);
if (nRet == 0)
{
LogPrint("net", "connection to %s timeout\n", addrConnect.ToString());
CloseSocket(hSocket);
return false;
}
if (nRet == SOCKET_ERROR)
{
LogPrintf("select() for %s failed: %s\n", addrConnect.ToString(), NetworkErrorString(WSAGetLastError()));
CloseSocket(hSocket);
return false;
}
socklen_t nRetSize = sizeof(nRet);
#ifdef WIN32
if (getsockopt(hSocket, SOL_SOCKET, SO_ERROR, (char*)(&nRet), &nRetSize) == SOCKET_ERROR)
#else
if (getsockopt(hSocket, SOL_SOCKET, SO_ERROR, &nRet, &nRetSize) == SOCKET_ERROR)
#endif
{
LogPrintf("getsockopt() for %s failed: %s\n", addrConnect.ToString(), NetworkErrorString(WSAGetLastError()));
CloseSocket(hSocket);
return false;
}
if (nRet != 0)
{
LogPrintf("connect() to %s failed after select(): %s\n", addrConnect.ToString(), NetworkErrorString(nRet));
CloseSocket(hSocket);
return false;
}
}
#ifdef WIN32
else if (WSAGetLastError() != WSAEISCONN)
#else
else
#endif
{
LogPrintf("connect() to %s failed: %s\n", addrConnect.ToString(), NetworkErrorString(WSAGetLastError()));
CloseSocket(hSocket);
return false;
}
}
hSocketRet = hSocket;
return true;
}
bool SetProxy(enum Network net, const proxyType &addrProxy) {
assert(net >= 0 && net < NET_MAX);
if (!addrProxy.IsValid())
return false;
LOCK(cs_proxyInfos);
proxyInfo[net] = addrProxy;
return true;
}
bool GetProxy(enum Network net, proxyType &proxyInfoOut) {
assert(net >= 0 && net < NET_MAX);
LOCK(cs_proxyInfos);
if (!proxyInfo[net].IsValid())
return false;
proxyInfoOut = proxyInfo[net];
return true;
}
bool SetNameProxy(const proxyType &addrProxy) {
if (!addrProxy.IsValid())
return false;
LOCK(cs_proxyInfos);
nameProxy = addrProxy;
return true;
}
bool GetNameProxy(proxyType &nameProxyOut) {
LOCK(cs_proxyInfos);
if(!nameProxy.IsValid())
return false;
nameProxyOut = nameProxy;
return true;
}
bool HaveNameProxy() {
LOCK(cs_proxyInfos);
return nameProxy.IsValid();
}
bool IsProxy(const CNetAddr &addr) {
LOCK(cs_proxyInfos);
for (int i = 0; i < NET_MAX; i++) {
if (addr == (CNetAddr)proxyInfo[i].proxy)
return true;
}
return false;
}
static bool ConnectThroughProxy(const proxyType &proxy, const std::string& strDest, int port, SOCKET& hSocketRet, int nTimeout, bool *outProxyConnectionFailed)
{
SOCKET hSocket = INVALID_SOCKET;
// first connect to proxy server
if (!ConnectSocketDirectly(proxy.proxy, hSocket, nTimeout)) {
if (outProxyConnectionFailed)
*outProxyConnectionFailed = true;
return false;
}
// do socks negotiation
if (proxy.randomize_credentials) {
ProxyCredentials random_auth;
random_auth.username = strprintf("%i", insecure_rand());
random_auth.password = strprintf("%i", insecure_rand());
if (!Socks5(strDest, (unsigned short)port, &random_auth, hSocket))
return false;
} else {
if (!Socks5(strDest, (unsigned short)port, 0, hSocket))
return false;
}
hSocketRet = hSocket;
return true;
}
bool ConnectSocket(const CService &addrDest, SOCKET& hSocketRet, int nTimeout, bool *outProxyConnectionFailed)
{
proxyType proxy;
if (outProxyConnectionFailed)
*outProxyConnectionFailed = false;
if (GetProxy(addrDest.GetNetwork(), proxy))
return ConnectThroughProxy(proxy, addrDest.ToStringIP(), addrDest.GetPort(), hSocketRet, nTimeout, outProxyConnectionFailed);
else // no proxy needed (none set for target network)
return ConnectSocketDirectly(addrDest, hSocketRet, nTimeout);
}
bool ConnectSocketByName(CService &addr, SOCKET& hSocketRet, const char *pszDest, int portDefault, int nTimeout, bool *outProxyConnectionFailed)
{
std::string strDest;
int port = portDefault;
if (outProxyConnectionFailed)
*outProxyConnectionFailed = false;
SplitHostPort(std::string(pszDest), port, strDest);
proxyType nameProxy;
GetNameProxy(nameProxy);
CService addrResolved(CNetAddr(strDest, fNameLookup && !HaveNameProxy()), port);
if (addrResolved.IsValid()) {
addr = addrResolved;
return ConnectSocket(addr, hSocketRet, nTimeout);
}
addr = CService("0.0.0.0:0");
if (!HaveNameProxy())
return false;
return ConnectThroughProxy(nameProxy, strDest, port, hSocketRet, nTimeout, outProxyConnectionFailed);
}
void CNetAddr::Init()
{
memset(ip, 0, sizeof(ip));
}
void CNetAddr::SetIP(const CNetAddr& ipIn)
{
memcpy(ip, ipIn.ip, sizeof(ip));
}
void CNetAddr::SetRaw(Network network, const uint8_t *ip_in)
{
switch(network)
{
case NET_IPV4:
memcpy(ip, pchIPv4, 12);
memcpy(ip+12, ip_in, 4);
break;
case NET_IPV6:
memcpy(ip, ip_in, 16);
break;
default:
assert(!"invalid network");
}
}
static const unsigned char pchOnionCat[] = {0xFD,0x87,0xD8,0x7E,0xEB,0x43};
bool CNetAddr::SetSpecial(const std::string &strName)
{
if (strName.size()>6 && strName.substr(strName.size() - 6, 6) == ".onion") {
std::vector<unsigned char> vchAddr = DecodeBase32(strName.substr(0, strName.size() - 6).c_str());
if (vchAddr.size() != 16-sizeof(pchOnionCat))
return false;
memcpy(ip, pchOnionCat, sizeof(pchOnionCat));
for (unsigned int i=0; i<16-sizeof(pchOnionCat); i++)
ip[i + sizeof(pchOnionCat)] = vchAddr[i];
return true;
}
return false;
}
CNetAddr::CNetAddr()
{
Init();
}
CNetAddr::CNetAddr(const struct in_addr& ipv4Addr)
{
SetRaw(NET_IPV4, (const uint8_t*)&ipv4Addr);
}
CNetAddr::CNetAddr(const struct in6_addr& ipv6Addr)
{
SetRaw(NET_IPV6, (const uint8_t*)&ipv6Addr);
}
CNetAddr::CNetAddr(const char *pszIp, bool fAllowLookup)
{
Init();
std::vector<CNetAddr> vIP;
if (LookupHost(pszIp, vIP, 1, fAllowLookup))
*this = vIP[0];
}
CNetAddr::CNetAddr(const std::string &strIp, bool fAllowLookup)
{
Init();
std::vector<CNetAddr> vIP;
if (LookupHost(strIp.c_str(), vIP, 1, fAllowLookup))
*this = vIP[0];
}
unsigned int CNetAddr::GetByte(int n) const
{
return ip[15-n];
}
bool CNetAddr::IsIPv4() const
{
return (memcmp(ip, pchIPv4, sizeof(pchIPv4)) == 0);
}
bool CNetAddr::IsIPv6() const
{
return (!IsIPv4() && !IsTor());
}
bool CNetAddr::IsRFC1918() const
{
return IsIPv4() && (
GetByte(3) == 10 ||
(GetByte(3) == 192 && GetByte(2) == 168) ||
(GetByte(3) == 172 && (GetByte(2) >= 16 && GetByte(2) <= 31)));
}
bool CNetAddr::IsRFC2544() const
{
return IsIPv4() && GetByte(3) == 198 && (GetByte(2) == 18 || GetByte(2) == 19);
}
bool CNetAddr::IsRFC3927() const
{
return IsIPv4() && (GetByte(3) == 169 && GetByte(2) == 254);
}
bool CNetAddr::IsRFC6598() const
{
return IsIPv4() && GetByte(3) == 100 && GetByte(2) >= 64 && GetByte(2) <= 127;
}
bool CNetAddr::IsRFC5737() const
{
return IsIPv4() && ((GetByte(3) == 192 && GetByte(2) == 0 && GetByte(1) == 2) ||
(GetByte(3) == 198 && GetByte(2) == 51 && GetByte(1) == 100) ||
(GetByte(3) == 203 && GetByte(2) == 0 && GetByte(1) == 113));
}
bool CNetAddr::IsRFC3849() const
{
return GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x0D && GetByte(12) == 0xB8;
}
bool CNetAddr::IsRFC3964() const
{
return (GetByte(15) == 0x20 && GetByte(14) == 0x02);
}
bool CNetAddr::IsRFC6052() const
{
static const unsigned char pchRFC6052[] = {0,0x64,0xFF,0x9B,0,0,0,0,0,0,0,0};
return (memcmp(ip, pchRFC6052, sizeof(pchRFC6052)) == 0);
}
bool CNetAddr::IsRFC4380() const
{
return (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0 && GetByte(12) == 0);
}
bool CNetAddr::IsRFC4862() const
{
static const unsigned char pchRFC4862[] = {0xFE,0x80,0,0,0,0,0,0};
return (memcmp(ip, pchRFC4862, sizeof(pchRFC4862)) == 0);
}
bool CNetAddr::IsRFC4193() const
{
return ((GetByte(15) & 0xFE) == 0xFC);
}
bool CNetAddr::IsRFC6145() const
{
static const unsigned char pchRFC6145[] = {0,0,0,0,0,0,0,0,0xFF,0xFF,0,0};
return (memcmp(ip, pchRFC6145, sizeof(pchRFC6145)) == 0);
}
bool CNetAddr::IsRFC4843() const
{
return (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x00 && (GetByte(12) & 0xF0) == 0x10);
}
bool CNetAddr::IsTor() const
{
return (memcmp(ip, pchOnionCat, sizeof(pchOnionCat)) == 0);
}
bool CNetAddr::IsLocal() const
{
// IPv4 loopback
if (IsIPv4() && (GetByte(3) == 127 || GetByte(3) == 0))
return true;
// IPv6 loopback (::1/128)
static const unsigned char pchLocal[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
if (memcmp(ip, pchLocal, 16) == 0)
return true;
return false;
}
bool CNetAddr::IsMulticast() const
{
return (IsIPv4() && (GetByte(3) & 0xF0) == 0xE0)
|| (GetByte(15) == 0xFF);
}
bool CNetAddr::IsValid() const
{
// Cleanup 3-byte shifted addresses caused by garbage in size field
// of addr messages from versions before 0.2.9 checksum.
// Two consecutive addr messages look like this:
// header20 vectorlen3 addr26 addr26 addr26 header20 vectorlen3 addr26 addr26 addr26...
// so if the first length field is garbled, it reads the second batch
// of addr misaligned by 3 bytes.
if (memcmp(ip, pchIPv4+3, sizeof(pchIPv4)-3) == 0)
return false;
// unspecified IPv6 address (::/128)
unsigned char ipNone[16] = {};
if (memcmp(ip, ipNone, 16) == 0)
return false;
// documentation IPv6 address
if (IsRFC3849())
return false;
if (IsIPv4())
{
// INADDR_NONE
uint32_t ipNone = INADDR_NONE;
if (memcmp(ip+12, &ipNone, 4) == 0)
return false;
// 0
ipNone = 0;
if (memcmp(ip+12, &ipNone, 4) == 0)
return false;
}
return true;
}
bool CNetAddr::IsRoutable() const
{
return IsValid() && !(IsRFC1918() || IsRFC2544() || IsRFC3927() || IsRFC4862() || IsRFC6598() || IsRFC5737() || (IsRFC4193() && !IsTor()) || IsRFC4843() || IsLocal());
}
enum Network CNetAddr::GetNetwork() const
{
if (!IsRoutable())
return NET_UNROUTABLE;
if (IsIPv4())
return NET_IPV4;
if (IsTor())
return NET_TOR;
return NET_IPV6;
}
std::string CNetAddr::ToStringIP() const
{
if (IsTor())
return EncodeBase32(&ip[6], 10) + ".onion";
CService serv(*this, 0);
struct sockaddr_storage sockaddr;
socklen_t socklen = sizeof(sockaddr);
if (serv.GetSockAddr((struct sockaddr*)&sockaddr, &socklen)) {
char name[1025] = "";
if (!getnameinfo((const struct sockaddr*)&sockaddr, socklen, name, sizeof(name), NULL, 0, NI_NUMERICHOST))
return std::string(name);
}
if (IsIPv4())
return strprintf("%u.%u.%u.%u", GetByte(3), GetByte(2), GetByte(1), GetByte(0));
else
return strprintf("%x:%x:%x:%x:%x:%x:%x:%x",
GetByte(15) << 8 | GetByte(14), GetByte(13) << 8 | GetByte(12),
GetByte(11) << 8 | GetByte(10), GetByte(9) << 8 | GetByte(8),
GetByte(7) << 8 | GetByte(6), GetByte(5) << 8 | GetByte(4),
GetByte(3) << 8 | GetByte(2), GetByte(1) << 8 | GetByte(0));
}
std::string CNetAddr::ToString() const
{
return ToStringIP();
}
bool operator==(const CNetAddr& a, const CNetAddr& b)
{
return (memcmp(a.ip, b.ip, 16) == 0);
}
bool operator!=(const CNetAddr& a, const CNetAddr& b)
{
return (memcmp(a.ip, b.ip, 16) != 0);
}
bool operator<(const CNetAddr& a, const CNetAddr& b)
{
return (memcmp(a.ip, b.ip, 16) < 0);
}
bool CNetAddr::GetInAddr(struct in_addr* pipv4Addr) const
{
if (!IsIPv4())
return false;
memcpy(pipv4Addr, ip+12, 4);
return true;
}
bool CNetAddr::GetIn6Addr(struct in6_addr* pipv6Addr) const
{
memcpy(pipv6Addr, ip, 16);
return true;
}
// get canonical identifier of an address' group
// no two connections will be attempted to addresses with the same group
std::vector<unsigned char> CNetAddr::GetGroup() const
{
std::vector<unsigned char> vchRet;
int nClass = NET_IPV6;
int nStartByte = 0;
int nBits = 16;
// all local addresses belong to the same group
if (IsLocal())
{
nClass = 255;
nBits = 0;
}
// all unroutable addresses belong to the same group
if (!IsRoutable())
{
nClass = NET_UNROUTABLE;
nBits = 0;
}
// for IPv4 addresses, '1' + the 16 higher-order bits of the IP
// includes mapped IPv4, SIIT translated IPv4, and the well-known prefix
else if (IsIPv4() || IsRFC6145() || IsRFC6052())
{
nClass = NET_IPV4;
nStartByte = 12;
}
// for 6to4 tunnelled addresses, use the encapsulated IPv4 address
else if (IsRFC3964())
{
nClass = NET_IPV4;
nStartByte = 2;
}
// for Teredo-tunnelled IPv6 addresses, use the encapsulated IPv4 address
else if (IsRFC4380())
{
vchRet.push_back(NET_IPV4);
vchRet.push_back(GetByte(3) ^ 0xFF);
vchRet.push_back(GetByte(2) ^ 0xFF);
return vchRet;
}
else if (IsTor())
{
nClass = NET_TOR;
nStartByte = 6;
nBits = 4;
}
// for he.net, use /36 groups
else if (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x04 && GetByte(12) == 0x70)
nBits = 36;
// for the rest of the IPv6 network, use /32 groups
else
nBits = 32;
vchRet.push_back(nClass);
while (nBits >= 8)
{
vchRet.push_back(GetByte(15 - nStartByte));
nStartByte++;
nBits -= 8;
}
if (nBits > 0)
vchRet.push_back(GetByte(15 - nStartByte) | ((1 << (8 - nBits)) - 1));
return vchRet;
}
uint64_t CNetAddr::GetHash() const
{
uint256 hash = Hash(&ip[0], &ip[16]);
uint64_t nRet;
memcpy(&nRet, &hash, sizeof(nRet));
return nRet;
}
// private extensions to enum Network, only returned by GetExtNetwork,
// and only used in GetReachabilityFrom
static const int NET_UNKNOWN = NET_MAX + 0;
static const int NET_TEREDO = NET_MAX + 1;
int static GetExtNetwork(const CNetAddr *addr)
{
if (addr == NULL)
return NET_UNKNOWN;
if (addr->IsRFC4380())
return NET_TEREDO;
return addr->GetNetwork();
}
/** Calculates a metric for how reachable (*this) is from a given partner */
int CNetAddr::GetReachabilityFrom(const CNetAddr *paddrPartner) const
{
enum Reachability {
REACH_UNREACHABLE,
REACH_DEFAULT,
REACH_TEREDO,
REACH_IPV6_WEAK,
REACH_IPV4,
REACH_IPV6_STRONG,
REACH_PRIVATE
};
if (!IsRoutable())
return REACH_UNREACHABLE;
int ourNet = GetExtNetwork(this);
int theirNet = GetExtNetwork(paddrPartner);
bool fTunnel = IsRFC3964() || IsRFC6052() || IsRFC6145();
switch(theirNet) {
case NET_IPV4:
switch(ourNet) {
default: return REACH_DEFAULT;
case NET_IPV4: return REACH_IPV4;
}
case NET_IPV6:
switch(ourNet) {
default: return REACH_DEFAULT;
case NET_TEREDO: return REACH_TEREDO;
case NET_IPV4: return REACH_IPV4;
case NET_IPV6: return fTunnel ? REACH_IPV6_WEAK : REACH_IPV6_STRONG; // only prefer giving our IPv6 address if it's not tunnelled
}
case NET_TOR:
switch(ourNet) {
default: return REACH_DEFAULT;
case NET_IPV4: return REACH_IPV4; // Tor users can connect to IPv4 as well
case NET_TOR: return REACH_PRIVATE;
}
case NET_TEREDO:
switch(ourNet) {
default: return REACH_DEFAULT;
case NET_TEREDO: return REACH_TEREDO;
case NET_IPV6: return REACH_IPV6_WEAK;
case NET_IPV4: return REACH_IPV4;
}
case NET_UNKNOWN:
case NET_UNROUTABLE:
default:
switch(ourNet) {
default: return REACH_DEFAULT;
case NET_TEREDO: return REACH_TEREDO;
case NET_IPV6: return REACH_IPV6_WEAK;
case NET_IPV4: return REACH_IPV4;
case NET_TOR: return REACH_PRIVATE; // either from Tor, or don't care about our address
}
}
}
void CService::Init()
{
port = 0;
}
CService::CService()
{
Init();
}
CService::CService(const CNetAddr& cip, unsigned short portIn) : CNetAddr(cip), port(portIn)
{
}
CService::CService(const struct in_addr& ipv4Addr, unsigned short portIn) : CNetAddr(ipv4Addr), port(portIn)
{
}
CService::CService(const struct in6_addr& ipv6Addr, unsigned short portIn) : CNetAddr(ipv6Addr), port(portIn)
{
}
CService::CService(const struct sockaddr_in& addr) : CNetAddr(addr.sin_addr), port(ntohs(addr.sin_port))
{
assert(addr.sin_family == AF_INET);
}
CService::CService(const struct sockaddr_in6 &addr) : CNetAddr(addr.sin6_addr), port(ntohs(addr.sin6_port))
{
assert(addr.sin6_family == AF_INET6);
}
bool CService::SetSockAddr(const struct sockaddr *paddr)
{
switch (paddr->sa_family) {
case AF_INET:
*this = CService(*(const struct sockaddr_in*)paddr);
return true;
case AF_INET6:
*this = CService(*(const struct sockaddr_in6*)paddr);
return true;
default:
return false;
}
}
CService::CService(const char *pszIpPort, bool fAllowLookup)
{
Init();
CService ip;
if (Lookup(pszIpPort, ip, 0, fAllowLookup))
*this = ip;
}
CService::CService(const char *pszIpPort, int portDefault, bool fAllowLookup)
{
Init();
CService ip;
if (Lookup(pszIpPort, ip, portDefault, fAllowLookup))
*this = ip;
}
CService::CService(const std::string &strIpPort, bool fAllowLookup)
{
Init();
CService ip;
if (Lookup(strIpPort.c_str(), ip, 0, fAllowLookup))
*this = ip;
}
CService::CService(const std::string &strIpPort, int portDefault, bool fAllowLookup)
{
Init();
CService ip;
if (Lookup(strIpPort.c_str(), ip, portDefault, fAllowLookup))
*this = ip;
}
unsigned short CService::GetPort() const
{
return port;
}
bool operator==(const CService& a, const CService& b)
{
return (CNetAddr)a == (CNetAddr)b && a.port == b.port;
}
bool operator!=(const CService& a, const CService& b)
{
return (CNetAddr)a != (CNetAddr)b || a.port != b.port;
}
bool operator<(const CService& a, const CService& b)
{
return (CNetAddr)a < (CNetAddr)b || ((CNetAddr)a == (CNetAddr)b && a.port < b.port);
}
bool CService::GetSockAddr(struct sockaddr* paddr, socklen_t *addrlen) const
{
if (IsIPv4()) {
if (*addrlen < (socklen_t)sizeof(struct sockaddr_in))
return false;
*addrlen = sizeof(struct sockaddr_in);
struct sockaddr_in *paddrin = (struct sockaddr_in*)paddr;
memset(paddrin, 0, *addrlen);
if (!GetInAddr(&paddrin->sin_addr))
return false;
paddrin->sin_family = AF_INET;
paddrin->sin_port = htons(port);
return true;
}
if (IsIPv6()) {
if (*addrlen < (socklen_t)sizeof(struct sockaddr_in6))
return false;
*addrlen = sizeof(struct sockaddr_in6);
struct sockaddr_in6 *paddrin6 = (struct sockaddr_in6*)paddr;
memset(paddrin6, 0, *addrlen);
if (!GetIn6Addr(&paddrin6->sin6_addr))
return false;
paddrin6->sin6_family = AF_INET6;
paddrin6->sin6_port = htons(port);
return true;
}
return false;
}
std::vector<unsigned char> CService::GetKey() const
{
std::vector<unsigned char> vKey;
vKey.resize(18);
memcpy(&vKey[0], ip, 16);
vKey[16] = port / 0x100;
vKey[17] = port & 0x0FF;
return vKey;
}
std::string CService::ToStringPort() const
{
return strprintf("%u", port);
}
std::string CService::ToStringIPPort() const
{
if (IsIPv4() || IsTor()) {
return ToStringIP() + ":" + ToStringPort();
} else {
return "[" + ToStringIP() + "]:" + ToStringPort();
}
}
std::string CService::ToString() const
{
return ToStringIPPort();
}
void CService::SetPort(unsigned short portIn)
{
port = portIn;
}
CSubNet::CSubNet():
valid(false)
{
memset(netmask, 0, sizeof(netmask));
}
CSubNet::CSubNet(const std::string &strSubnet, bool fAllowLookup)
{
size_t slash = strSubnet.find_last_of('/');
std::vector<CNetAddr> vIP;
valid = true;
// Default to /32 (IPv4) or /128 (IPv6), i.e. match single address
memset(netmask, 255, sizeof(netmask));
std::string strAddress = strSubnet.substr(0, slash);
if (LookupHost(strAddress.c_str(), vIP, 1, fAllowLookup))
{
network = vIP[0];
if (slash != strSubnet.npos)
{
std::string strNetmask = strSubnet.substr(slash + 1);
int32_t n;
// IPv4 addresses start at offset 12, and first 12 bytes must match, so just offset n
const int astartofs = network.IsIPv4() ? 12 : 0;
if (ParseInt32(strNetmask, &n)) // If valid number, assume /24 symtex
{
if(n >= 0 && n <= (128 - astartofs*8)) // Only valid if in range of bits of address
{
n += astartofs*8;
// Clear bits [n..127]
for (; n < 128; ++n)
netmask[n>>3] &= ~(1<<(7-(n&7)));
}
else
{
valid = false;
}
}
else // If not a valid number, try full netmask syntax
{
if (LookupHost(strNetmask.c_str(), vIP, 1, false)) // Never allow lookup for netmask
{
// Copy only the *last* four bytes in case of IPv4, the rest of the mask should stay 1's as
// we don't want pchIPv4 to be part of the mask.
for(int x=astartofs; x<16; ++x)
netmask[x] = vIP[0].ip[x];
}
else
{
valid = false;
}
}
}
}
else
{
valid = false;
}
// Normalize network according to netmask
for(int x=0; x<16; ++x)
network.ip[x] &= netmask[x];
}
CSubNet::CSubNet(const CNetAddr &addr):
valid(addr.IsValid())
{
memset(netmask, 255, sizeof(netmask));
network = addr;
}
bool CSubNet::Match(const CNetAddr &addr) const
{
if (!valid || !addr.IsValid())
return false;
for(int x=0; x<16; ++x)
if ((addr.ip[x] & netmask[x]) != network.ip[x])
return false;
return true;
}
static inline int NetmaskBits(uint8_t x)
{
switch(x) {
case 0x00: return 0; break;
case 0x80: return 1; break;
case 0xc0: return 2; break;
case 0xe0: return 3; break;
case 0xf0: return 4; break;
case 0xf8: return 5; break;
case 0xfc: return 6; break;
case 0xfe: return 7; break;
case 0xff: return 8; break;
default: return -1; break;
}
}
std::string CSubNet::ToString() const
{
/* Parse binary 1{n}0{N-n} to see if mask can be represented as /n */
int cidr = 0;
bool valid_cidr = true;
int n = network.IsIPv4() ? 12 : 0;
for (; n < 16 && netmask[n] == 0xff; ++n)
cidr += 8;
if (n < 16) {
int bits = NetmaskBits(netmask[n]);
if (bits < 0)
valid_cidr = false;
else
cidr += bits;
++n;
}
for (; n < 16 && valid_cidr; ++n)
if (netmask[n] != 0x00)
valid_cidr = false;
/* Format output */
std::string strNetmask;
if (valid_cidr) {
strNetmask = strprintf("%u", cidr);
} else {
if (network.IsIPv4())
strNetmask = strprintf("%u.%u.%u.%u", netmask[12], netmask[13], netmask[14], netmask[15]);
else
strNetmask = strprintf("%x:%x:%x:%x:%x:%x:%x:%x",
netmask[0] << 8 | netmask[1], netmask[2] << 8 | netmask[3],
netmask[4] << 8 | netmask[5], netmask[6] << 8 | netmask[7],
netmask[8] << 8 | netmask[9], netmask[10] << 8 | netmask[11],
netmask[12] << 8 | netmask[13], netmask[14] << 8 | netmask[15]);
}
return network.ToString() + "/" + strNetmask;
}
bool CSubNet::IsValid() const
{
return valid;
}
bool operator==(const CSubNet& a, const CSubNet& b)
{
return a.valid == b.valid && a.network == b.network && !memcmp(a.netmask, b.netmask, 16);
}
bool operator!=(const CSubNet& a, const CSubNet& b)
{
return !(a==b);
}
bool operator<(const CSubNet& a, const CSubNet& b)
{
return (a.network < b.network || (a.network == b.network && memcmp(a.netmask, b.netmask, 16) < 0));
}
#ifdef WIN32
std::string NetworkErrorString(int err)
{
char buf[256];
buf[0] = 0;
if(FormatMessageA(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS | FORMAT_MESSAGE_MAX_WIDTH_MASK,
NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
buf, sizeof(buf), NULL))
{
return strprintf("%s (%d)", buf, err);
}
else
{
return strprintf("Unknown error (%d)", err);
}
}
#else
std::string NetworkErrorString(int err)
{
char buf[256];
const char *s = buf;
buf[0] = 0;
/* Too bad there are two incompatible implementations of the
* thread-safe strerror. */
#ifdef STRERROR_R_CHAR_P /* GNU variant can return a pointer outside the passed buffer */
s = strerror_r(err, buf, sizeof(buf));
#else /* POSIX variant always returns message in buffer */
if (strerror_r(err, buf, sizeof(buf)))
buf[0] = 0;
#endif
return strprintf("%s (%d)", s, err);
}
#endif
bool CloseSocket(SOCKET& hSocket)
{
if (hSocket == INVALID_SOCKET)
return false;
#ifdef WIN32
int ret = closesocket(hSocket);
#else
int ret = close(hSocket);
#endif
hSocket = INVALID_SOCKET;
return ret != SOCKET_ERROR;
}
bool SetSocketNonBlocking(SOCKET& hSocket, bool fNonBlocking)
{
if (fNonBlocking) {
#ifdef WIN32
u_long nOne = 1;
if (ioctlsocket(hSocket, FIONBIO, &nOne) == SOCKET_ERROR) {
#else
int fFlags = fcntl(hSocket, F_GETFL, 0);
if (fcntl(hSocket, F_SETFL, fFlags | O_NONBLOCK) == SOCKET_ERROR) {
#endif
CloseSocket(hSocket);
return false;
}
} else {
#ifdef WIN32
u_long nZero = 0;
if (ioctlsocket(hSocket, FIONBIO, &nZero) == SOCKET_ERROR) {
#else
int fFlags = fcntl(hSocket, F_GETFL, 0);
if (fcntl(hSocket, F_SETFL, fFlags & ~O_NONBLOCK) == SOCKET_ERROR) {
#endif
CloseSocket(hSocket);
return false;
}
}
return true;
}