lbrycrd/src/merkleblock.cpp
Gregory Maxwell 3babbcb487 Remove confusing MAX_BLOCK_BASE_SIZE.
Some people keep thinking that MAX_BLOCK_BASE_SIZE is a separate
 size limit from the weight limit when it fact it is superfluous,
 and used in early tests before the witness data has been
 validated or just to compute worst case sizes.  The size checks
 that use it would not behave any differently consensus wise
 if they were eliminated completely.

Its correct value is not independently settable but is a function
 of the weight limit and weight formula.

This patch just eliminates it and uses the scale factor as
 required to compute the worse case constants.

It also moves the weight factor out of primitives into consensus,
 which is a more logical place for it.
2017-07-14 19:24:17 +00:00

181 lines
6.5 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "merkleblock.h"
#include "hash.h"
#include "consensus/consensus.h"
#include "utilstrencodings.h"
CMerkleBlock::CMerkleBlock(const CBlock& block, CBloomFilter& filter)
{
header = block.GetBlockHeader();
std::vector<bool> vMatch;
std::vector<uint256> vHashes;
vMatch.reserve(block.vtx.size());
vHashes.reserve(block.vtx.size());
for (unsigned int i = 0; i < block.vtx.size(); i++)
{
const uint256& hash = block.vtx[i]->GetHash();
if (filter.IsRelevantAndUpdate(*block.vtx[i]))
{
vMatch.push_back(true);
vMatchedTxn.push_back(std::make_pair(i, hash));
}
else
vMatch.push_back(false);
vHashes.push_back(hash);
}
txn = CPartialMerkleTree(vHashes, vMatch);
}
CMerkleBlock::CMerkleBlock(const CBlock& block, const std::set<uint256>& txids)
{
header = block.GetBlockHeader();
std::vector<bool> vMatch;
std::vector<uint256> vHashes;
vMatch.reserve(block.vtx.size());
vHashes.reserve(block.vtx.size());
for (unsigned int i = 0; i < block.vtx.size(); i++)
{
const uint256& hash = block.vtx[i]->GetHash();
if (txids.count(hash))
vMatch.push_back(true);
else
vMatch.push_back(false);
vHashes.push_back(hash);
}
txn = CPartialMerkleTree(vHashes, vMatch);
}
uint256 CPartialMerkleTree::CalcHash(int height, unsigned int pos, const std::vector<uint256> &vTxid) {
if (height == 0) {
// hash at height 0 is the txids themself
return vTxid[pos];
} else {
// calculate left hash
uint256 left = CalcHash(height-1, pos*2, vTxid), right;
// calculate right hash if not beyond the end of the array - copy left hash otherwise
if (pos*2+1 < CalcTreeWidth(height-1))
right = CalcHash(height-1, pos*2+1, vTxid);
else
right = left;
// combine subhashes
return Hash(BEGIN(left), END(left), BEGIN(right), END(right));
}
}
void CPartialMerkleTree::TraverseAndBuild(int height, unsigned int pos, const std::vector<uint256> &vTxid, const std::vector<bool> &vMatch) {
// determine whether this node is the parent of at least one matched txid
bool fParentOfMatch = false;
for (unsigned int p = pos << height; p < (pos+1) << height && p < nTransactions; p++)
fParentOfMatch |= vMatch[p];
// store as flag bit
vBits.push_back(fParentOfMatch);
if (height==0 || !fParentOfMatch) {
// if at height 0, or nothing interesting below, store hash and stop
vHash.push_back(CalcHash(height, pos, vTxid));
} else {
// otherwise, don't store any hash, but descend into the subtrees
TraverseAndBuild(height-1, pos*2, vTxid, vMatch);
if (pos*2+1 < CalcTreeWidth(height-1))
TraverseAndBuild(height-1, pos*2+1, vTxid, vMatch);
}
}
uint256 CPartialMerkleTree::TraverseAndExtract(int height, unsigned int pos, unsigned int &nBitsUsed, unsigned int &nHashUsed, std::vector<uint256> &vMatch, std::vector<unsigned int> &vnIndex) {
if (nBitsUsed >= vBits.size()) {
// overflowed the bits array - failure
fBad = true;
return uint256();
}
bool fParentOfMatch = vBits[nBitsUsed++];
if (height==0 || !fParentOfMatch) {
// if at height 0, or nothing interesting below, use stored hash and do not descend
if (nHashUsed >= vHash.size()) {
// overflowed the hash array - failure
fBad = true;
return uint256();
}
const uint256 &hash = vHash[nHashUsed++];
if (height==0 && fParentOfMatch) { // in case of height 0, we have a matched txid
vMatch.push_back(hash);
vnIndex.push_back(pos);
}
return hash;
} else {
// otherwise, descend into the subtrees to extract matched txids and hashes
uint256 left = TraverseAndExtract(height-1, pos*2, nBitsUsed, nHashUsed, vMatch, vnIndex), right;
if (pos*2+1 < CalcTreeWidth(height-1)) {
right = TraverseAndExtract(height-1, pos*2+1, nBitsUsed, nHashUsed, vMatch, vnIndex);
if (right == left) {
// The left and right branches should never be identical, as the transaction
// hashes covered by them must each be unique.
fBad = true;
}
} else {
right = left;
}
// and combine them before returning
return Hash(BEGIN(left), END(left), BEGIN(right), END(right));
}
}
CPartialMerkleTree::CPartialMerkleTree(const std::vector<uint256> &vTxid, const std::vector<bool> &vMatch) : nTransactions(vTxid.size()), fBad(false) {
// reset state
vBits.clear();
vHash.clear();
// calculate height of tree
int nHeight = 0;
while (CalcTreeWidth(nHeight) > 1)
nHeight++;
// traverse the partial tree
TraverseAndBuild(nHeight, 0, vTxid, vMatch);
}
CPartialMerkleTree::CPartialMerkleTree() : nTransactions(0), fBad(true) {}
uint256 CPartialMerkleTree::ExtractMatches(std::vector<uint256> &vMatch, std::vector<unsigned int> &vnIndex) {
vMatch.clear();
// An empty set will not work
if (nTransactions == 0)
return uint256();
// check for excessively high numbers of transactions
if (nTransactions > MAX_BLOCK_WEIGHT / MIN_TRANSACTION_WEIGHT)
return uint256();
// there can never be more hashes provided than one for every txid
if (vHash.size() > nTransactions)
return uint256();
// there must be at least one bit per node in the partial tree, and at least one node per hash
if (vBits.size() < vHash.size())
return uint256();
// calculate height of tree
int nHeight = 0;
while (CalcTreeWidth(nHeight) > 1)
nHeight++;
// traverse the partial tree
unsigned int nBitsUsed = 0, nHashUsed = 0;
uint256 hashMerkleRoot = TraverseAndExtract(nHeight, 0, nBitsUsed, nHashUsed, vMatch, vnIndex);
// verify that no problems occurred during the tree traversal
if (fBad)
return uint256();
// verify that all bits were consumed (except for the padding caused by serializing it as a byte sequence)
if ((nBitsUsed+7)/8 != (vBits.size()+7)/8)
return uint256();
// verify that all hashes were consumed
if (nHashUsed != vHash.size())
return uint256();
return hashMerkleRoot;
}